Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Теория и методика подтягиваний на перекладине. Часть 2. Подтягивание реферат


Реферат - А. Кожуркин Теория и методика подтягиваний на перекладине. Часть 3

А.Кожуркин

Теория и методика подтягиваний на перекладине. Часть 3. Содержание А.Кожуркин 1

Теория и методика подтягиваний на перекладине. Часть 3. 1

Содержание 1

Глава 7. Развитие динамической силовой выносливости мышц, участвующих в подтягивании. 2

7.1 Мышцы, производящие подъём/опускание туловища. 2

7.2 Строение мышечных волокон и механизм мышечных сокращений 5

7.2.1 Строение и химический состав скелетных мышц 5

7.2.1.1 Митохондрии 6

7.2.1.2 Миофибриллы 9

7.2.2 Механизм мышечного сокращения. 10

7.2.3 Изменение величины силы в фазе подъёма 12

^ 7.3 Изменения в мышечных волокнах под влиянием различных тренировочных воздействий. 15

7.3.1 Особенности различных типов мышечных волокон 16

7.3.2 Увеличение количества миофибрилл в быстрых мышечных волокнах 17

7.3.3 Увеличение количества митохондрий в быстрых мышечных волокнах 19

7.3.4 Параллельное увеличение количества митохондрий и миофибрилл в быстрых мышечных волокнах 22

7.3.5 Увеличение количества миофибрилл в медленных мышечных волокнах 23

7.3.6 Увеличение количества митохондрий в медленных мышечных волокнах 25

7.3.7 Схема изменений в мышечных волокнах под воздействием нагрузки. 26

^ 7.4 Энергообеспечение динамической работы при подтягивании. 27

7.4.1 Энергообеспечение динамической работы при подтягивании в оптимальном соревновательном темпе 27

7.4.2 Энергообеспечение динамической работы при подтягивании в низком темпе 29

7.4.3 Энергообеспечение динамической работы при подтягивании в повышенном темпе 30

7.4.4 Энергообеспечение динамической работы при подтягивании в максимальном темпе 30

7.5 Оценка уровня развития силовых способностей по внешним признакам. 31

7.7 Условия для повышения динамических силовых способностей 38^ Глава 7. Развитие динамической силовой выносливости мышц, участвующих в подтягивании.

Анализируя соревновательные раскладки ведущих спортсменов-полиатлонистов, способных подтянуться 60 и более раз, можно придти к простому выводу.

Для того чтобы за 4 минуты подтянуться 60 и более раз, нужно за 3 минуты подтягиваться не менее 50 раз. Для того чтобы за 3 минуты подтянуться не менее 50 раз, нужно за 2 минуты подтягиваться не менее 37 раз. Для того чтобы за 2 минуты подтянуться не менее 37 раз, нужно за первую минуту успеть подтянуться не менее 22 раз.

Но ведь для того чтобы после 22 подтягиваний за минуту спортсмен был способен выполнять упражнение ещё в течение 3 минут, у него к началу второй минуты должен оставаться достаточный для этого резерв силовых способностей. Следовательно, 22 раза в минуту – это далеко не предельные возможности спортсмена, т.к. в противном случае на второй минуте произошло бы закисление рабочих мышц, и спортсмен был бы вынужден прекратить выполнение подтягиваний.

Попробуем оценить необходимый резерв силы, исходя из следующих данных: спортсмен на соревнованиях подтягивается за 4 минуты 45 раз, выполняя на первой минуте 18 подтягиваний. При этом в тесте на максимальное количество подтягиваний за 1 минуту его результат составляет 28 раз. Тогда в соревновательном подходе спортсмен использует свои динамические силовые способности на 18/28*100%=65%, т.е. его резерв силы составляет 35%. Для того чтобы с таким же запасом силы подтягиваться в темпе 22 раза за первую минуту, спортсмену нужно развить свои силовые способности до уровня, позволяющего в 1 минутном тесте подтянуться 22*100/65=34 раза.

Аналогичным образом можно оценить силовой потенциал спортсмена для двух, трёх и четырёх минут выполнения упражнения.

Какие механизмы энергопродукции обеспечивают динамическую работу по подъёму туловища на 1, 2 ,3 и 4 минутах выполнения упражнения, как сократительные свойства мышечных волокон влияют на результат, каким образом различные структурные элементы мышечных волокон связаны с силой и продолжительностью мышечных сокращений – эти и другие вопросы будут рассмотрены в данной главе. Таким образом, будет сделана попытка раскрыть взаимосвязь между сократительными возможностями, метаболическими свойствами, морфологическим строением мышечных волокон и проследить их влияние на спортивный результат в подтягивании.^ 7.1 Мышцы, производящие подъём/опускание туловища.

Вис на прямых руках (ИП). Наибольшее напряжение в ИП падает на мышцы верхних конечностей, которые должны не только удерживать пальцы на перекладине, но и предохранять суставы и связки от растяжений и разрывов. На предплечье и кисти сокращёнными оказываются сгибатели пальцев, в области плечевого и локтевого суставов – все окружающие их мышцы, которые, обладая большей суммарной силой, находятся в менее напряжённом состоянии, чем сгибатели пальцев. В локтевом суставе работу мышц облегчает сама конструкция сустава: локтевой отросток локтевой кости, как крючок, охватывает блок плечевой кости.

Большую нагрузку несут мышцы, удерживающие туловище около свободных верхних конечностей. Непосредственно туловище около плечевых костей удерживают большие грудные и широчайшие мышцы спины. При этом если используется узкий хват, большие грудные мышцы в основном противодействуют силе тяжести. При увеличении ширины хвата всё большая часть усилий этой мышцы идёт на укрепление плечевого сустава. Головка плечевой кости удерживается в суставной впадине лопатки напряжением длинной головки трёглавой мышцы плеча.

Через лопатку туловище около плечевой кости фиксируют мышцы, удерживающие лопатку около туловища и мышцы, удерживающие лопатку около плечевого пояса. Лопатку около туловища удерживают главным образом ромбовидные мышцы, которые находятся в сильно растянутом состоянии, а также трапециевидные, передние зубчатые, мышцы, поднимающие лопатку, широчайшие мышцы спины. Лопатку около плечевого пояса удерживают подлопаточные, большая и малая круглые мышцы, подостные мышцы.

В укреплении плечевого сустава также принимают участие клювовидно-плечевая, дельтовидная и двуглавая мышца плеча.

Позвоночный столб в разогнутом положении находится за счёт силы тяжести и мышц-разгибателей позвоночника. Тазобедренный сустав в разогнутом положении удерживается силой больших ягодичных, полусухожильной и полуперепончатой мышц; четырёхглавая мышца бедра удерживает в разогнутом положении коленный сустав. Носки ног в ИП оттянуты книзу усилием икроножных мышц.

^ Подъём/опускание туловища. Подъём туловища («скользящий» вис на согнутых руках) характерен тем, что вклад в общее усилие различных мышечных групп изменяется в ходе движения в связи с изменением длины мышц и величины суставных углов. Так, двуглавая мышца плеча, развивающая максимальное усилие где-то в середине траектории движения, в верхней её точке укорачивается настолько, что перестаёт играть существенную роль в положении виса на согнутых руках в момент перехода подбородка через уровень грифа перекладины. А плечевая и плечелучевая мышцы, напротив, в верхней части траектории выполняют настолько большую работу, что могут находиться в этом положении сравнительно короткое время.

Рисунок 7.1 Мышцы верхней конечности, вид спереди

А – расположение мышц по [31]

Б – схема расположения мышц по [27]

1 – грудино-ключично-сосцевидная мышца; 2 – трапециевидная мышца; 3 – большая грудная мышца; 4 - передняя зубчатая мышца; 5 – широчайшая мышца спины; 6 – большая круглая мышца; 7 – клювовидно-плечевая мышца; 8 – дельтовидная мышца; 9 – двуглавая мышца плеча; 10 – плечевая мышца; 11 – трёхглавая мышца плеча; 12 – круглый пронатор; 13 – плечелучевая мышца; 14 – мышцы-сгибатели кисти и пальцев; 15 – подключичная мышца; 16 – малая грудная мышца; 17 – подлопаточная мышца

Рисунок 7.2 Мышцы верхней конечности, вид сзади

А – расположение мышц по [31]

Б – схема расположения мышц по [27]

1 - трапециевидная мышца; 2 - дельтовидная мышца; 3 – подостная мышца; 4 - малая круглая мышца; 5 - большая круглая мышца; 6 - широчайшая мышца спины; 7 - трёхглавая мышца плеча; 8- плечевая мышца; 9 - двуглавая мышца плеча; 10 - мышцы-разгибатели кисти и пальцев; 11 – надостная мышца; 12 – мышца, поднимающая лопатку; 13 – малая ромбовидная мышца; 14 - большая ромбовидная мышца

Напряжение длинной головки трёхглавой мышцы плеча тесно связано со сгибанием руки в локтевом суставе: чем больше степень этого сгибания, тем больше напряжение данной мышцы, т.к. по мере сгибания отдаляется место её прикрепления от места начала [4].

Поскольку подтягивание на перекладине производится при верхней опоре, считается, что при этом происходит сгибание плеча по отношению к предплечью, а не наоборот (но по отношению к туловищу происходит разгибание плеча).

В зависимости от ширины хвата изменяется состав и степень включения участвующих в подъёме/опускании мышц.

При широком хвате локти разведены и во время подъёма «смотрят» в стороны. При этом в плечевом суставе происходит движение, которое называется приведением плеча (к туловищу). Приведение плеча осуществляется по правилу параллелограмма сил мышцами, расположенными спереди (большая грудная) и сзади плечевого сустава (широчайшая и большая круглая) при одновременном их сокращении. Этим мышцам помогают подостная, малая круглая, подлопаточная, а также длинная головка трёхглавой мышцы плеча.

Когда спортсмен выполняет подтягивание узким хватом, локти сближены и в фазе подъёма туловища «смотрят» вперёд. При этом в плечевом суставе происходит разгибание плеча по отношению к туловищу. Мышцы-разгибатели плеча находятся сзади плечевого сустава. В разгибании плеча (при фиксированной верхней конечности) принимают участие широчайшая мышца спины, малая круглая, большая круглая, подостная, длинная головка трёхглавой мышцы плеча, нижний отдел большой грудной мышцы, задняя часть дельтовидной мышцы.

Таким образом, при увеличении ширины хвата увеличивается роль мышц, участвующих в приведении плеча.

Когда спортсмен, привыкший на тренировках подтягиваться широким хватом, вынужден после замечания судьи перейти на более узкий хват, это, как правило, отрицательно сказывается на спортивном результате, поскольку из-за перераспределения нагрузки та часть мышц, которая оказывается под непривычно высокой нагрузкой, быстро закисляется и ограничивает темп выполнения подтягиваний.

По мере нарастания утомления некоторые спортсмены плавно выносят прямые ноги вперёд, производя сгибание в тазобедренных суставах (и разгибание в коленных). Это способствует переводу туловища из наклонного в более вертикальное положение, в результате чего мышцы, производящие подъём туловища, получают более выгодные условия для сокращения.

Сгибание в тазобедренных суставах происходит за счёт усилий мышц, располагающихся спереди от оси тазобедренного сустава. Подъём ног происходит при активном участии мышц живота («пресс»). ^ 7.2 Строение мышечных волокон и механизм мышечных сокращений Статическая сила, динамическая сила, статическая силовая выносливость, динамическая силовая выносливость… - физические качества, уровень развития которых определяет спортивный результат в подтягивании.

Миофибриллы, митохондрии, саркоплазматический ретикулум… - структурные элементы мышечной клетки, участвующие в преобразовании потенциальной химической энергии в полезную механическую работу или мышечное напряжение.

Креатинфосфатная реакция, гликолиз, аэробное окисление – механизмы энергообеспечения, которые служат делу обеспечения непрерывного ресинтеза АТФ в работающих мышцах.

Медленные окислительные, быстрые гликолитические, быстрые окислительно-гликолитические – типы мышечных волокон, отличающихся по скорости сокращения, активности ферментов ресинтеза АТФ, преимущественным механизмам энергопродукции.

Попробуем увязать между собой физические качества спортсмена, физиологию мышечного сокращения и биохимические процессы, происходящие в мышечных клетках.

Для этого предварительно рассмотрим строение мышечного волокна и механизм мышечного сокращения в той степени, в которой это необходимо для подтягиваний.^ 7.2.1 Строение и химический состав скелетных мышц Скелетная мышца состоит из мышечных волокон (миоцитов). Мышечные волокна представляют собой гигантские многоядерные клетки длиной от 0,1 до 2-3 сантиметров, а в некоторых мышцах миоциты достигают 12 сантиметров. Площадь поперечного сечения мышечных клеток составляет от 3 до 10 квадратных микрометров.

Волокно покрыто эластичной оболочкой — сарколеммой и состоит из саркоплазмы, структурными элементами которой являются такие органоиды, как митохондрии, рибосомы, трубочки и пузырьки саркоплазматической сети (ретикулума) и так называемая Т-система а также различные включения. В саркоплазме условно выделяют две части – саркоплазматический матрикс и саркоплазматический ретикулум.

Саркоплазматический ретикулум, представляющий собой определённым образом организованную сеть соединяющихся цистерн (содержащих в большой концентрации ионы кальция) и трубочек, играет важную роль в механизмах сокращения и расслабления мышцы. Кроме того, к части ретикулума прикреплены рибосомы, специальные сферические образования, на которых и при участии которых происходит биосинтез белков. Саркоплазматическая сеть с помощью особых трубочек, называемых Т-системой, связана с оболочкой мышечной клетки. Т-система также имеет прямое отношение к мышечному сокращению, так как по ней передаётся изменение электрического потенциала поверхностной мембраны элементам ретикулума, что приводит к освобождению ионов кальция, поступающих к миофибриллам и запускающих процесс мышечного сокращения [24].

Рисунок 7.3 Строение Т-системы и саркоплазматического ретикулума мышечного волокна

[из [24] по: Кроленко, 1975].

Саркоплазматический матрикс представляет собой коллоидный раствор, содержащий белки, гликоген, жировые капли и другие включения [11]. Миофибриллы – сократительные элементы мышечных клеток – также находятся в саркоплазматическом матриксе.

Кроме того, в саркоплазме находятся ферменты гликолиза, расщепляющие гликоген или глюкозу до пировиноградной или молочной кислоты и креатинкиназа – фермент, ускоряющий креатинфосфатную реакцию. Особый белок саркоплазмы – миоглобин – обеспечивает некоторый запас кислорода в мышечной ткани, а также участвует в переносе кислорода от сарколеммы к митохондриям.

Мышечная клетка имеет не одно, а множество ядер, которые располагаются на её периферии – под сарколеммой. Внутри каждого ядра находится ДНК, являющаяся носителем носледственной информации и состоящая из генов, в которых закодирована структура всех синтезируемых мышечными волокнами белков.

Лизосомы, представляющие собой микроскопические пузырьки, содержат в растворённом виде различные ферменты, способные в условиях кислой реакции среды расщеплять различные высокомолекулярные вещества. Такая необходимость может возникать в мышечных клетках, например, при очень напряжённой мышечной деятельности.7.2.1.1 Митохондрии Митохондрии, одни из важнейших структурных компонентов мышечного волокна, располагаются цепочками вдоль миофибрилл (рисунок 7.3), тесно соприкасаясь с мембранами ретикулума. В митохондриях протекает аэробное окисление углеводов, жиров и аминокислот, а за счёт энергии, выделяющейся при окислении, происходит ресинтез АТФ.

Митохондрии ограничены двумя мембранами (рисунок 7.4). Наружняя митохондриальная мембрана имеет ровные контуры, не образует выпячиваний или складок. Наружную мембрану от внутренней отделяет межмембранное пространство. Внутренняя мембрана ограничивает внутреннее содержимое митохондрии, ее матрикс. Характерной чертой внутренней мембраны митохондрий является их способность образовывать многочисленные выпячивания внутрь митохондрий. Такие выпячивания чаще всего имеют вид плоских гребней, или крист, существенно увеличивая поверхность внутренней мембраны. Мембраны митохондрий построены из белка и содержащих фосфорную кислоту жироподобных веществ - фосфолипидов. На внутренней мембране в определённом порядке расположены биологические катализаторы – ферменты, при помощи которых происходят окислительные процессы, а также компоненты дыхательной цепи – главной системы превращения энергии в митохондриях. На внешней мембране митохондрий в определённом порядке расположены ферменты, не имеющие отношения к дыхательной цепи. Немало ферментов в растворённом виде содержится и в матриксе. Кроме того, матрикс митохондрий содержит рибосомы и митохондриальную ДНК.

Рисунок 7.4 Схема строения митохондрии

(по А.Кузнецов, [29])

Великое множество миофибрилл, содержащихся в мышечных волокнах, требуют большого количества АТФ, которое должно быть доставлено к каждому саркомеру миофибрилл. На продольных ультратонких срезах скелетных мышц в электронном микроскопе видны многочисленные округлые мелкие сечения митохондрий, располагающихся в соседстве с саркомерами. Если же исследовать поперечные срезы мышечных волокон на уровне Z-дисков (см. п.7.2.1.2), то видно, что мышечные митохондрии представляют собой не мелкие шарики или палочки, а как бы паукообразные структуры, отростки которых могут ветвиться и простираться на большие расстояния, иногда через весь поперечник мышечного волокна. При этом разветвления митохондрий окружают каждую миофибриллу в мышечном волокне, снабжая их АТФ, необходимой для мышечного сокращения. Следовательно, в плоскости z-диска митохондрии представлены типичным митохондриальным ретикулумом – единой митохондриальной системой. Такой пласт или этаж митохондриального ретикулума повторяется дважды на каждый саркомер, а все мышечное волокно имеет тысячи поперечно расположенных поэтажных пластов митохондриального ретикулума. Было обнаружено, что между этажами вдоль миофибрилл располагаются нитчатые митохондрии, соединяющие эти митохондриальные пласты. Тем самым создается трехмерная картина митохондриального ретикулума, проходящего через весь объем мышечного волокна [28].

Предполагается, что с помощью специальных межмитохондриальных соединений или контактов может происходить функциональное объединение отдельных митохондрий и митохондриальных ретикуломов в единую энергетическую систему, позволяющую всем миофибриллам в мышечном волокне сокращаться синхронно по всей длине, поскольку механизм взаимодействия митохондрий посредством межмитохондриальных контактов может обеспечить синхронное поступление АТФ во все участки сокращающегося мышечного волокна.

Механизм кооперации и синхронизации работы митохондрий позволяет вести синтез АТФ в любой точке поверхности внутренней мембраны таких разветвлённых митохондрии, обеспечивая энергией для сокращения те участки мышечного волокна, где в этом возникает необходимость. Но связывание отдельных митохондрий в единую цепь с помощью межмитохондриальных контактов наряду с очевидными преимуществами имеет и существенный недостаток. Дело в том, что при функциональном объединении митохондрий в единую митохондриальную систему любое существенное повреждение (пробой) её внутренней мембраны приводит к потере способности к ресинтезу АТФ сразу у всей объединённой группы митохондрий.

При проведении серии развивающих тренировок по подтягиванию направленных на развитие статической выносливости мышц-сгибателей кисти нередко используется метод выполнения нагрузки «до отказа». Если тренировки разделены недостаточным для восстановления интервалом отдыха, после проведения 4-5 развивающих тренировок подряд, в ходе которых может наблюдаться существенный прирост времени виса (т.е. увеличение аэробных возможностей мышц), неожиданно наступает срыв адаптации и возврат времени виса к первоначальному уровню.

Например, если спортсмен форсирует тренировочный процесс и выполняет через день по 4-6 подходов до отказа, подняв за 2 недели вис с подтягиванием в темпе 1 раз в 8 секунд с 2 до 4 минут (такое возможно у квалифицированных спортсменов, например, после длительного вынужденного перерыва в тренировках), то внезапно – без видимых причин - время виса может упасть до прежних двух минут и даже меньше.

Долгое время было непонятно, почему так происходит. В качестве одной из возможных причин называлась перегрузка нервной системы тренировками до отказа. Но срыв адаптации обычно происходил на фоне эмоционального подъёма от быстрого прогресса тренировочных результатов и связанного с этим желания тренироваться всё больше и больше и имел мало общего с нервным срывом.

Возможно, что резкое падение результатов происходит из-за пробоя внутренней мембраны митохондриальной системы мышечного волокна, вследствие, например, чрезмерного закисления мышц на предшествующей срыву адаптации тренировке. В этом случае повреждение небольшого по площади участка любой из митохондрий, входящих в митохондриальную сеть, должно приводить к отключению механизма аэробного окисления сразу во всей сети.

Тренировки с облегчением в 5-7% от веса тела позволяют резко (в 1,5 – 2 раза) увеличить объём тренировочной работы за счёт увеличения количества подтягиваний в подходе с соответствующим увеличением времени выполнения подхода. При этом энергопродукция смещается в сторону аэробного окисления, всё в большей степени активизируя работу митохондриальной системы. Серия развивающих тренировок с облегчением без должного интервала отдыха между ними также может привести к скачкообразному падению результатов, что также может быть объяснено повреждением внутренних мембран митохондрий продуктами метаболизма.

Можно ли каким-либо образом почувствовать приближение момента срыва адаптации и, снизив нагрузку, предотвратить это нежелательное явление?

Биологическое окисление, протекающее в митохондриях, состоит в окислении органических субстратов, например глюкозы, до углекислого газа и воды с выделением около 680 ккал (в расчёте на 1 моль, т.е. 180 г глюкозы), которая в дальнейшем идёт на создание макроэнергетической связи в молекуле АТФ (фосфорилирование АДФ). Окисление и фосфорилирование – это два, в принципе, независимых процесса, которые для эффективного ресинтеза АТФ должны быть сопряжены. Сопряжение окисления и фосфорилирования происходит на внутренних мембранах митохондрий. Поэтому, когда мембраны повреждены, происходит разобщение этих процессов. Реакции окисления глюкозы продолжают идти, а ресинтез АТФ замедляется или прекращается. И сейчас даже неважно, что является причиной повреждения мембран – избыток молочной кислоты, недостаток кислорода или повышенное его потребление, свободнорадикальное окисление или это происходит по каким-то иным причинам. Важно, что при повреждении мембран митохондрий в результате чрезмерного воздействия тренировочных нагрузок нарушается процесс ресинтеза АТФ, а энергия, выделяющаяся в процессе биологического окисления, теперь может превращаться только в тепло, приводя к локальному нагреву мышечной ткани.

Но одним из отдалённых признаком перетренированности является внезапная испарина, выступающая не только на лбу, но и на рабочих мышцах спортсмена в начале выполнения даже не очень напряжённой нагрузки. Возможно, таким образом организм реагирует на начинающийся процесс разобщения окисления и фосфорилирования, связанный с повреждением мембран митохондрий. Поэтому, если после серии развивающих нагрузок на очередной тренировке вы начинаете по непонятным причинам сильно потеть, стоит задуматься: а не перебрали ли вы с нагрузкой?

В любом случае безопасным (но в то же время обеспечивающим прогресс) считается вариант, когда тяжёлые развивающие тренировки проводятся не чаще одного раза в 5 – 7 дней.

Экспериментальные данные говорят в пользу того, что увеличение числа митохондрий происходит путём роста и деления предшествующих митохондрий. Более того, митохондрии обладают собственным генетическим аппаратом, т.е. обладают полной системой авторепродукции, хотя и находящейся под генетическим контролем со стороны клеточного ядра [28].

Все митохондрии в теле человека наследуются от матери, а не от отца, поэтому способность к длительному выполнению упражнений передаётся по материнской линии.

По форме и размеру митохондрии напоминают бактерий; они содержат собственную ДНК и размножаются делением. Эти и другие факты привели к возникновению гипотезы о том, что много миллионов лет назад бактерии проникли в более высокоразвитые клетки и прочно обосновались в них, потеряв былую самостоятельность и со временем превратившись в клеточные органеллы, которые теперь называют митохондриями [30].

7.2.1.2 Миофибриллы Сократительные элементы – миофибриллы – занимают большую часть объёма мышечных клеток. Миофибриллы состоят из многочисленных параллельно расположенных нитей – филаментов. Перегородки, называемые Z – пластинками, разделяют их на отдельные участки, называемые саркомерами. Строение саркомера мышечного волокна показано на рисунке 7.5.

Мышечные нити – филаменты бывают двух типов: толстые и тонкие.Толстые имеют диаметр около 10 нм (1 нм = 10-9 м), а тонкие – около 5 нм. Толстые нити, состоящие из белка миозина, расположены в дисках А (рис. 7.3, 7.5), а тонкие, основным белком которых является актин, находятся в дисках I, частично заходя в диск А. Середину диска I пересекает Z – пластинка, соединяющая тонкие нити между собой и с сарколеммой. В поперечном сечении толстые и тонкие нити располагаются правильными шестиугольниками так, что каждая толстая нить окружена шестью тонкими, а каждая тонкая нить может вступать в контакт с тремя толстыми [24].

Рисунок 7.5. Строение саркомера поперечнополосатого мышечного волокна: А — электронная микрофотография (малое увеличение), на которой четко видна структура саркомера; Б — схема саркомера; В — электронная микрофотография с высокой разрешающей способностью; Г — поперечное сечение саркомера на различных уровнях, видно положение толстых и тонких нитей в различных участках покоящегося саркомера (по Х. Хаксли)

Из-за особенностей своих оптических свойств миозиновые нити, находящиеся в середине саркомера, выглядят в световом микроскопе тёмной полосой, а актиновые нити – светлой. Именно в результате такого периодического чередования светлых и тёмных полос в бесчисленных саркомерах миофибриллы выглядят поперечно-полосатыми.^ 7.2.2 Механизм мышечного сокращения. В соответствии с теорией скользящих нитей мышца сокращается в результате укорочения множества последовательно соединенных саркомеров в миофибриллах, при этом тонкие актиновые нити скользят вдоль толстых миозиновых, двигаясь между ними к середине саркомера.

Миозиновые нити несут поперечные выступы с головками, состоящими примерно из 150 молекул миозина (рисунок 7.6А). Во время сокращения каждая головка (поперечный мостик) может связывать миозиновую нить с соседними актиновыми. Движение головок создаёт объединённое усилие, как бы «гребок», продвигающий актиновые нити в середину саркомера [31].

Рисунок 7.6 Функция поперечных мостиков.

А – модель механизма сокращения: миозиновая нить с поперечными мостиками, прикреплёнными к соседним актиновым нитям. Вверху – до, внизу – после «гребкового» движения.

Б – модель механизма генерирования силы при статическом напряжении. Слева - до, справа – после «гребка» (по Й. Рюэгг[31]).

В расслабленном состоянии механизм взаимодействия миозиновых головок с актиновыми нитями блокируется за счёт того, что участок актиновых нитей, предназначенный для связывания с головками миозина, перекрыт молекулами белков тропонина и тропомиозина.

Мышечное сокращение происходит под воздействием двигательного нервного импульса, представляющего собой волну повышенной мембранной проницаемости, распространяющейся по нервному волокну. Эта волна передаётся на Т-систему саркоплазматической сети и в конечном итоге достигает цистерн, содержащих ионы кальция. Проницаемость стенок цистерн повышается, ионы кальция выходят из цистерн в саркоплазму, где их концентрация за очень короткое время (около 3милисекунд) увеличивается примерно в 1000 раз. Ионы кальция, взаимодействуя с тропонином, изменяют его пространственную форму, что вызывает смещение молекул тропомиозина, обеспечивая доступ миозиновых головок к активным участкам актиновых нитей. В результате этого между миозином и актином возникает поперечный мостик, расположенный под углом 90о (рисунок 7.6А). Поскольку в толстые и тонкие нити входит большое число молекул миозина и актина, между мышечными нитями образуется довольно большое число поперечных мостиков. Образование связи между актином и миозином сопровождается повышением АТФ-азной активности миозина, разрешая её расщепление. За счёт энергии, выделяющейся при гидролизе АТФ, миозиновая головка подобно веслу лодки поворачивается и мостик между толстыми и тонкими нитями оказывается под углом 45о, что приводит к скольжению мышечных нитей навстречу друг другу (рисунок 7.6А) [11].

Совершив поворот, мостики между тонкими и толстыми нитями разрываются, АТФ-азная активность миозина резко снижается и гидролиз АТФ прекращается. Но если двигательный нервный импульс продолжает поступать в мышцу и в саркоплазме сохраняется высокая концентрация ионов кальция, поперечные мостики образуются снова, повторно включается гидролиз АТФ, дающий энергию для поворота поперечных мостиков с последующим их разрывом. За счёт ритмичных прикреплений и отделений миозиновых головок актиновая нить подтягивается к середине саркомера подобно тому, как группа людей тянет верёвку, перебирая её руками. Когда принцип «вытягивания верёвки» реализуется во множестве последовательно расположенных саркомеров, повторяющиеся молекулярные движения поперечных мостиков приводят к движению всей мышцы [31].

Каждый цикл сокращения, включающий образование, поворот и разрыв мостика, требует расходования одной молекулы АТФ в качестве источника энергии [11].

При сокращении мышцы происходит её укорочение. Но при статической нагрузке длина мышцы не изменяется. Что же в таком случае происходит в мышце с точки зрения «гребковой» теории Хаксли?

Благодаря упругости поперечных мостиков саркомер может развивать силу даже без скольжения нитей относительно друг друга. Процесс генерирования изометрической (т.е. статической) силы показан на рисунке 7.6Б. Сначала головка миозиновой молекулы прикрепляется к актиновой нити под прямым углом. Затем она наклоняется под углом 45о, возможно благодаря притяжению между соседними точками прикрепления на ней и на актиновой нити. При этом головка действует как миниатюрный рычаг, приводя внутреннюю упругую структуру поперечного мостика в напряжённое состояние. Упругое напряжение, создаваемое индивидуальным поперечным мостиком очень мало и для создания необходимой мышечной силы требуется объединение усилий огромного количества таких соединённых параллельно мостиков. Они будут тянуть соседние актиновые нити, как команда игроков тянет канат. Но даже при изометрическом сокращении поперечные мостики не находятся в непрерывно напряжённом состоянии. Каждая миозиновая головка уже через десятые или даже сотые доли секунды отделяется от актиновой нити, прикрепляясь к ней снова через такое же короткое время. Однако несмотря на чередование прикреплений и отделений, следующих с частотой от 5 до 50 раз в секунду, сила, развиваемая мышцей, остаётся неизменной, так как статистически в каждый момент времени в прикреплённом состоянии находится одно и то же количество мостиков [31].

Расслабление мышцы происходит после прекращения поступления двигательного импульса. При этом ионы кальция переходят обратно в цистерны саркоплазматического ретикулума. Уборка ионов кальция происходит в сторону с более высокой концентрацией этих ионов, поэтому этот процесс требует дополнительных затрат энергии. Процесс уборки ионов кальция называют кальциевым насосом и производится он за счёт энергии, получаемой при расщеплении АТФ, причём на уборку каждого иона кальция затрачивается две молекулы АТФ [24]. Снижение концентрации кальция в саркоплазме вызывает изменение пространственной ориентации тропонина, что в конечном итоге приводит к невозможности образования поперечных мостиков между толстыми и тонкими нитями. За счёт упругих сил, возникших ранее (при мышечном сокращении) в коллагеновых нитях, окружающих мышечное волокно, мышца расслабляется и возвращается в исходное положение, чему также может способствовать и сокращение мышц-антогонистов [11].

^ 7.2.3 Изменение величины силы в фазе подъёма Количество поперечных мостиков, связывающих актиновые и миозиновые нити, а, следовательно, и развиваемая мышечная сила согласно теории скользящих нитей, зависит от степени перекрытия толстых и тонких нитей, а значит, и от длины саркомера или мышцы. Максимум развиваемой изолированной мышцей силы будет наблюдаться при длине, примерно соответствующей состоянию покоя. При уменьшении длины сила уменьшается из-за того, что актиновые и миозиновые нити начинают мешать друг другу, а при растяжении мышцы до большей, чем в покое, длины сила уменьшается из-за того, что нити актина оказываются вытянутыми из миозиновых пучков. При этом только часть головок миозина может присоединиться к актину [31].

В реальных условиях мышцы, прикрепляющиеся к костям, вызывают движение рабочих звеньев тела. С движением рабочего звена меняется угол в суставе и, следовательно, длина обслуживающих данное сочленение мышц и угол подхода их к месту прикрепления на кости. При этом увеличиваются или уменьшаются плечо и момент силы мышц, что, в свою очередь, изменяет механические условия их работы. Эти условия могут быть выгодными, когда силовой потенциал используется полностью, и невыгодными, когда максимальное напряжение мышц используется только частично [18].

Сила, проявляемая в наименее целесообразной с механической точки зрения фазе движения, часто составляет не более 50-60% (рисунок 7.7) от силы в наиболее целесообразной его фазе [23].

Рисунок 7.7 А - динамика максимальной силы при сгибании руки в локтевом суставе (по Платонову В.Н.).

Б - рисунок, иллюстрирующий сгибание руки в локтевом суставе (по [27]).

1 – плечевая кость; 2 - двуглавая мышца плеча; 3 - плечевая мышца; 4 - плечелучевая мышца; 5 – лучевая кость; 6 – локтевая кость; 8 - трёхглавая мышца плеча (разгибатель локтевого сустава)

При подтягивании на перекладине наименее благоприятным является верхний участок траектории движения в фазе подъёма, который недостаточно подготовленные спортсмены проходят с большим трудом, особенно в конечной части выполнения упражнения.

В начале подтягиваний, когда силовые способности спортсмена находятся на должном уровне, он может проходить проблемный участок по инерции – за счёт набранной ранее скорости. По мере накопления усталости силовые способности спортсмена снижаются настолько, что он уже не может набрать необходимую скорость. Поэтому в случае недостаточного уровня развития силы спортсмен «зависает» на верхнем участке траектории движения, затрачивая на его прохождение неоправданно большое количество энергии.

На рисунке 7.8 приведены графики зависимости резерва силовых способностей от высоты подъёма для 6 человек – 5 спортсменов (КМС и МС по полиатлону) и одного человека, не занимающегося спортом. Резервом силы в данном случае считается сила, которую способен развить испытуемый в какой-либо точке траектории движения сверх веса своего тела. Поскольку рост (а значит, и высота подъёма) и вес тела спортсменов различен, их силовые способности следует выражать в относительных единицах. Так, высота подъёма из исходного положения до уровня грифа принята за 100%, а резерв силы выражен в долях веса тела каждого из участников эксперимента.

В нижней части траектории движения (от 0 до 30 %) характер изменения резерва силы может быть

www.ronl.ru

Доклад по физкультуре: «Подтягивания» — Школьные знания

Доклад по физкультуре: "Подтягивания".

  • Подтягивания на турнике - это очень простое, но в то же время очень эффективное упражнение.  К тому же, все что нужно для выполнения подтягиваний - это перекладина во дворе или настенный турник дома. Надобность посещения спортивного зала, в принципе, отпадает, но результат можно получить даже лучший.Подтягиваниям на турнике посвящена данная статья, Вы узнает об этом упражнении все что нужно знать для того, чтобы извлечь из него максимум пользы и достичь отличного результата. Что дают нам подтягивания?Казалось бы обычное дворовое упражнение, которым балуются ребята на спортивных площадках. Но не все так просто как кажется. На самом деле подтягивания  обладают очень большим потенциалом и улучшают многие физические качества спортсмена. А именно:Увеличение силы и массыУвеличение выносливостиУкрепление кистейПовышение крепости хватаПридание мышцам рельефаУлучшение работы сердечно-сосудистой системыУлучшение общей физической формыОсновные виды подтягиванийРазновидность подтягиваний заключается в изменении ширины хвата и непосредственно самого хвата (прямой или обратный). От этих изменений зависит акцент нагрузки, ложащийся на определенные мышцы.Так, например подтягивания  широким хватом, делают основной акцент на развитие мышц спины, а при подтягиваниях узким хватом, основная нагрузка ложиться на бицепсы.Различают три вида ширины хвата - узкий средний и широкий. При узком хвате руке находятся максимально близко к друг другу, при среднем - примерно на ширине плеч, а при широком - следует располагать руки на максимальном расстоянии друг от друга, но в пределах разумного, конечно.Подтягивания прямым широким хватом за голову. Этот вид подтягиваний развивает широчайшие мышцы спины и делает их более широкими, иначе говоря придает вашей спине треугольную форму.Подтягивания на турнике прямым широким хватом к груди.  Аналогично предыдущему, этот вид подтягиваний также развивает широчайшие мышцы спины, но в этом случае увеличение мышцы происходит не в ширину, а в толщину.Подтягивания прямым узким хватом. Такие подтягивания отлично прокачивают низ широчайших, а также существенно задействуют бицепсы.Подтягивания обратным узким хватом. Здесь уже мышцы спины получают минимальную нагрузку, а основной акцент ложится на бицепсы. Данный вид подтягиваний будет настоящей "палочкой-выручалочкой" для тех у кого пошел застой в росте бицепсов, при использовании штанги и тренажеров.Подтягивания  средним хватом являются компромиссным вариантом между тренировкой бицепсов и мышц спины. Именно такие подтягивания следует выполнять новичкам, а затем уже переходить к узким или широким.Также существуют специальные виды подтягиваний, которые базируются на основных, но немного изменены. Выполнять их несколько сложнее, но эффект от них гораздо больший.Подтягивание ЖирондыЭтот вид подтягиваний назван в честь знаменитого Винса Жиронды - бодибилдера, тренера и конструктора некоторых тренажеров. Особенность его в том, что здесь широчайшие получают гораздо большую нагрузку нежели в классических подтягиваниях к груди.Подтягивания РоккиДанный вид подтягиваний более сложный чем предыдущий. За счет чередования подтягивания за голову и  Жиронды, упражнение приобретает более интенсивный характер.Подтягивания из стороны в сторонуПеренося вес тела по разным сторонам, мы также переносим большую часть нагрузки на левую и правую части широчайших мышц. Таким образом нагружая их поочередно, но с более сильной нагрузкой чем в обычных прямых подтягиваниях.Подтягивания  на одной рукеРука, которая держится не за ремень, а за перекладину получает существенно большую нагрузку нежели другая. Используя данный вид подтягиваний и постепенно держась за ремень все ниже и ниже, можно научиться подтягиваться на одной руке - от сюда и такое название.Как правильно подтягиваться?При выполнении подтягиваний, как в прочем и при выполнении других упражнений, главное это не количество, а качество! Чтобы добиться хороших результатов и застраховать себя от возможных травм, нужно выполнять подтягивания технически правильно.Вот несколько правил как правильно подтягиваться:Выполнять подтягивания следует, не раскачиваясь.Движения не должны осуществляться рывками.В верхней точке упражнения подбородок должен быть выше перекладины (если используется средний или узкий хват). При широком хвате нужно стараться дотронуться к перекладине грудью.Положения корпуса должно быть строго вертикальнымНе забывайте правильно дышать. При движении вверх делайте выдох, а при движении вниз - вдох.Выполняя подтягивания на турнике, также не следует забывать и о крепости хвата.

Внимание, только СЕГОДНЯ!

ipaddim.ru

Теория и методика подтягиваний на перекладине. Часть 2 - Реферат

Теория и методика подтягиваний на перекладине.

Часть 2.

Содержание.

Введение. Краткий обзор некоторых систем тренировок по подтягиванию на перекладине

Глава 3. Характеристика тренировочной нагрузки.

3.1Внешняя и внутренняя стороны нагрузки

3.2 Параметры нагрузки.

3.2.1 Объём нагрузки.

3.2.2 Интенсивность нагрузки.

3.2.3 Длительность выполнения нагрузки

3.2.4 Величина нагрузки

3.2.5 Эффект воздействия нагрузки.

3.2.6 Способы изменения величины нагрузки

3.2.6.1 Некоторые способы создания отягощений.

3.2.6.2 Некоторые способы уменьшения величины нагрузки.

3.3 Классификация нагрузок по величине.

Глава 4. Отдых и восстановление.

4.1 Изменение работоспособности под воздействием нагрузки

4.1.1 Срочное восстановление

4.1.2 Отставленное восстановление

4.2 Продолжительность интервалов отдыха между подходами.

4.3 Характер отдыха между подходами.

Глава 5. Направленность тренировочной нагрузки

5.1 Направленность нагрузки.

5.2 Целенаправленный подход при планировании тренировочного процесса в подтягивании на перекладине.

Глава 6. Развитие статической силовой выносливости мышц предплечья.

6.1 Энергообеспечение при статическом напряжении мышц предплечья.

6.1.1 Увеличение ёмкости креатинфосфатного механизма.

6.1.2 Снижение негативных последствий гликолиза.

6.1.3 Источники энергии для аэробного ресинтеза АТФ.

6.1.4 Доставка кислорода в работающие мышцы.

6.1.4.1 Развитие капиллярной сети.

6.1.4.2 Создание условий для эффективного кровообращения.

6.1.5 Развитие возможностей механизма аэробного окисления в работающих мышцах.

6.1.5.1 Увеличение числа мышечных волокон, способных к аэробному ресинтезу АТФ.

6.1.5.2 Увеличение количества и размера митохондрий.

6.1.6 Уменьшение времени развёртывания механизма аэробного ресинтеза АТФ.

6.1.7 Предполагаемые изменения в схеме энергопродукции

6.2 Преимущественная направленность тренировочной нагрузки.

6.3 Мышцы-сгибатели, их строение и функции.

6.4 Характеристика развивающей нагрузки.

6.4.1 Общие требования.

6.4.2 Выбор исходной нагрузки

6.4.3 Целевые параметры нагрузки.

6.4.4 Варианты изменения параметров нагрузки.

6.4.5 Дополнительные условия проведения развивающих тренировок.

6.5 Сочетание нагрузок при развитии статической силовой выносливости.

6.6 Краткое описание тренировочного процесса.

6.7 Практический пример

Подтягивание на перекладине – это первый из трёх видов программы зимнего полиатлона у мужчин. Нет ничего удивительного в том, что вместе с возобновлением Всесоюзных соревнований в 1990 году – тогда ещё не по полиатлону, а по зимнему многоборью комплекса ГТО – началась нескончаемая гонка тренеров и спортсменов по разработке эффективных тренировочных методик по подтягиванию. Есть такая забава у спортсменов – выяснять, кто из них круче.

Со временем некоторые системы подготовки устарели и были забыты даже теми, кто их придумал, другие доказали своё право на существование и продолжали развиваться, привлекая под свои знамёна всё большее число поклонников, а третьи оказались настолько эффективны, что остаются «засекреченными» до сих пор.

Когда менялись правила соревнований по подтягиванию, изменялись и требования к силовым способностям спортсменов, иногда случалось так, что фаворитами становились недавние аутсайдеры. Ломались ставшие уже привычными тренировочные системы, рушились «железные» методики, проверенные алгоритмы подготовки переставали работать. Многим приходилось начинать всё сначала.

Так было, так есть и так будет до тех пор, пока не встретятся вместе научные знания из теории спорта и проверенный временем практический опыт спортсменов и тренеров. А вот когда это всё-таки произойдёт, подтянуться 50 раз за 4 минуты будет не сложнее, чем выпить стакан воды.

И тогда снова изменятся правила…

Введение.

Краткий обзор различных систем тренировок по подтягиванию на перекладине

Исторически первой появилась система подтягивания, основанная на повторно-серийном методе тренировки. Главной идеей этой системы был переход от выполнения большого количества подходов с малым числом подтягиваний к малому количеству подходов с большим количеством подтягиваний.

При трёхразовой тренировке в неделю со средним тренировочным объёмом 150 раз за тренировку система обеспечивала непрерывный рост результатов. К достоинствам системы можно было отнести её простоту, лёгкость контроля роста тренированности, отсутствие предельных нагрузок, а к недостаткам – монотонность и слишком длительный период времени до появления требуемых результатов. После запрещения применения клеящих веществ обнаружился ещё один существенный недостаток – система в большей степени была направлена на развитие динамической выносливости (тяги), чем на развитие статической выносливости (виса). Оказалось, что для того, чтобы обеспечить надёжный хват в течение 4 минут, приходилось выполнять гораздо больший объём работы, чем до запрещения применения клеящих веществ.

Для того чтобы компенсировать этот недостаток, были придуманы манжеты с отягощением, надеваемые на предплечья, что позволяло увеличить только статическую компоненту нагрузки, не затрагивая компоненту динамическую. Дело в том, что часть руки от локтя до кисти неподвижна во время выполнения подтягиваний и, следовательно, любое отягощение, размещаемое на предплечье, не оказывает никакого влияния на динамически работающие мышцы, выполняющие подъём туловища. Этот факт подтолкнул к идеям сначала о возможности, а затем и к необходимости раздельной тренировки динамики и статики, несмотря на неразрывность их проявления в ходе выполнения подтягиваний.

Возможность раздельной тренировки динамической выносливости мышц, выполняющих подъём и опускание туловища и статической выносливости мышц-сгибателей пальцев, помогла осознать существование двух принципиально различных подходов при построении тренировочного процесса. Первый – традиционный – подход состоит в постепенном развитии всех важных для подтягивания физических качеств от их исходного уровня до уровня, необходимого для достижения планируемого результата. Второй же подход состоит в том, что создаются условия, при которых спортсмен с первой тренировки оказывается способен показать требуемый результат, правда в облегчённых (по одному из компонент нагрузки) условиях. Степень облегчения от тренировки к тренировке постепенно уменьшается. Такой подход, например, позволяет начинающему спортсмену, который в обычном режиме не в состоянии подтянуться ни одного раза, в облегчённых условиях выполнять по 50 подтягиваний за 4 минуты. Для этого нужно просто подобрать величину облегчения, например с помощью груза, переброшенного через блок. Кроме того, подтягивание с облегчением помогает пробить психологический барьер тем спортсменам, которые долго и безуспешно топчутся на одном и том же уровне, например, 30 раз.

После введения ограничения времени подтягивания четырьмя минутами выяснилось, что подтянуться 60 раз без учёта времени и те же 60 раз за 4 минуты – это две большие разницы. Так на сцене появилась мощность работы, что привело к необходимости искать тренировочные нагрузки и режимы их использования, позволяющие увеличить темп выполнения подтягиваний. Сразу же выяснилось, что если просто увеличивать темп выполнения подтягиваний, это неизбежно приводит к уменьшению времени надёжного хвата и срыву с перекладины до окончания 4 минут. Таким образом, увеличение мощности динамической работы требовало соответствующего увеличения и статических способностей мышц, обеспечивающих хват. Учитывая то, что спортсменов, изначально не имеющих проблем с хватом, намного меньше, чем тех, для кого слабым звеном является именно хват, была высказана гипотеза о необходимости опережающего развития статической выносливости. Проще говоря, тем спортсменам, которые имеют серьёзные проблемы с хватом, нужно все силы направить на развитие статики, до определённого времени не обращая внимания на динамику. Дело в том, что развитие статической выносливости в первую очередь требует изменения структуры мышечных волокон, что является длительным и трудоёмким процессом. Положение ещё осложняется тем, что развивающие статические нагрузки должны выполняться на фоне динамической работы. Это означало, что применение чистого виса (т.е. виса без подтягиваний) бесполезно с точки зрения развития статики, а эффективной оказалась тренировка, использующая постепенный переход от подтягиваний с большой паузой отдыха в висе к подтягиваниям с сокращенной паузой отдыха между подтягиваниями. Подтягивания в этом случае, оказывается, удобно выполнять под электронный метроном, имеющий возможность программирования частоты следования звуковых сигналов, хотя при отсутствии такого подойдёт и обычный секундомер – было бы желание.

Поиск решения проблемы по увеличению темпа подтягиваний привёл к использованию отягощений, размещаемых на поясе спортсмена. При этом оказалось, что общий вес дополнительных грузов не должен превышать 10% от веса тела, в противном случае будут развиваться не те качества, которые требуются, да и время подходов будет небольшим, что рано или поздно скажется на статической выносливости. Попросту говоря, оказалось, что если долго подтягиваться с большими грузами, время виса может упасть. А зачем вам сила, если лапы отвалились? Правда впоследствии выяснилось, что если в тренировочный процесс, направленный на развитие статической выносливости, кратковременно включать подтягивания с большими грузами, что развивает динамическую силу, это положительно влияет на результат, т.к. под влиянием силовых нагрузок спортсмен получает способность затрачивать меньше времени на прохождение верхнего – проблемного – участка траектории движения в фазе подъёма туловища, а значит, меньше времени находиться в висе на согнутых руках, что позволяет значительно экономить силы.

В конце концов, анализируя различные системы и методы тренировок, был сделан вывод о том, что раз к одному и тому же результату можно прийти совершенно различными способами тренировки, то важно определить свои слабые звенья и выбрать такой набор тренировочных нагрузок, который позволит достичь запланированного результата за минимальное время.

Глава 3. Характеристика тренировочной нагрузки.

3.1 Внешняя и внутренняя стороны нагрузки

Одно и то же физическое упражнение может оказывать различное физиологическое воздействие на организм занимающихся, в связи с чем под нагрузкой в спортивной тренировке принято понимать как определённую величину воздействия физических упражнений на организм занимающихся, так и степень преодолеваемых при этом объективных и субъективных трудностей. Величину воздействия физических упражнений на организм занимающихся относят к «внешней» стороне нагрузки, а величину реакции организма на выполняемую работу – к её «внутренней» стороне [5].

Для характеристики внешней стороны нагрузки при выполнении подтягиваний используются такие показатели, как длительность выполнения упражнения, количество подтягиваний в подходе, количество подходов в серии, темп выполнения подтягиваний, величина применяемых отягощений и т.д.

Внутреннюю сторону нагрузки можно оценить по величине функциональных и связанных с ними сдвигов в организме спортсмена, причём наряду с показателями, следящими за изменением функциональных систем организма непосредственно во время работы (степень увеличения частоты сердечных сокращений, минутного объёма дыхания, скорости потребления кислорода, минутного объёма крови и др.), целесообразно использовать данные о характере и продолжительности периода восстановления.

Характеристики нагрузки с «внешней» и «внутренней» стороны тесно взаимосвязаны: увеличение объёма и интенсивности тренировочной работы приводит к увеличению сдвигов в функциональном состоянии различных систем и органов, к развитию и углублению процессов утомления. Однако величина функциональных сдвигов организма может быть различной даже при одних и тех же внешних характеристиках нагрузки. Так, выполнение подхода из 30 подтягиваний в темпе 15 раз в минуту, производимого в начале тренировки, потребует гораздо меньших усилий со стороны спортсмена, чем выполнение аналогичного подхода в самом конце тренировки, на фоне сильной усталости.

Рисунок 3.1 Реакция организма спортсменов различной квалификации

на одинаковую по объёму и интенсивности нагрузку (А)

и на предельную нагрузку (Б) (по Платонову В.Н., 1986)

1 – спортсмены II разряда;

2– спортсмены I разряда;

3 – мастера спорта.

Кроме того, одна и та же по объёму и интенсивности (стандартная) работа вызывает различную реакцию у спортсменов разной квалификации. Чем выше квалификация спортсмена, тем, как правило, ниже физиологическая стоимость стандартной нагрузки. У более квалифицированных спортсменов в процессе работы наблюдается менее высокий уровень физиологических процессов, а восстановление заканчивается относительно быстрее (рисунок 3.1А). Реакция спортсменов более высокого класса на предельную нагрузку носит более выраженный характер: наряду с бо́льшими по величине физиологическими сдвигами, восстановительные процессы протекают у них более интенсивно (рисунок 3.1Б).

3.2 Параметры нагрузки.

3.2.1 Объём нагрузки.

Под объёмом тренировочной нагрузки в общем случае понимается произведение мощности выполняемой работы на длительность её выполнения. Другими словами, объём нагрузки – это количество работы с определённой мощностью в течение заданного времени. Когда мощность работы спортсмена (например, темп выполнения подтягиваний) постоянна, то объём работы пропорционален длительности её выполнения. Если же темп выполнения подтягиваний изменяется в ходе выполнения нагрузки, то объём тренировочной работы (той же длительности) будет тем больше, чем больше величина темпа подтягиваний. Именно поэтому оценке объёма нагрузки при подтягивании на перекладине нужно учитывать не только количество подтягиваний, произведённых в течение определённого периода (подхода, серии, тренировочного занятия и т.д.), но и длительность подтягиваний. Понятно, что 300 подтягиваний, выполненные в течение двух часов в виде 15 подходов по 20 раз и те же 300 подтягиваний, выполненные за 6 подходов по 50 раз – это по величине физиологических сдвигов далеко не одно и то же.

3.2.2 Интенсивность нагрузки.

Интенсивность нагрузки – это сила воздействия физической работы на организм человека в данный момент, её напряжённость и степень концентрации объёма нагрузки во времени [5]. Как «степень концентрации объёма нагрузки во времени» интенсивность характеризует внешнюю сторону нагрузки, как «силу воздействия физической работы на организм человека в данный момент» интенсивность отражает степень изменения функциональных систем организма непосредственно во время выполнения нагрузки, а когда говорят об интенсивности как о «напряжённости», учитывают степень воздействия нагрузки на организм человека не только во время её выполнения, но и в период восстановления.

В некоторых циклических видах спорта, например, в беге или гребле, требуется преодолеть определённую дистанцию (т.е. совершить определённую работу) за минимально возможное время. В такой ситуации интенсивность передвижения на тренировке принято выражать в процентах по отношению к соревновательной скорости на той дистанции, к которой производится подготовка. В отличие от бега, при подтягивании на перекладине спортсмену требуется подтянуться не определённое количество раз за минимально возможное время, а максимальное количество раз за ограниченное время.

В качестве меры интенсивности для динамической работы проще всего было бы использовать темп выполнения подтягиваний, который пропорционален как мощности механической работы, так и мощности процессов энергообеспечения этой работы. Так и нужно делать, когда спортсмен на тренировке в каждом подходе подтягивается одинаковое количество раз, но в разном темпе. А вот в ситуации, когда темп выполнения подтягиваний на тренировке совпадает с темпом выполнения подтягиваний на соревнованиях, интенсивность подтягиваний в тренировочном подходе целесообразно выражать в процентах от максимально возможного их количества (т.е. в процентах от соревновательного результата).

Так, если спортсмен на соревнованиях подтянулся 50 раз (интенсивность подхода равна 100%), а на тренировке в таком же темпе он выполнил 40 подтягиваний, интенсивность тренировочного подхода составит 40/50*100%=80%.

Результат при выполнении подтягиваний зависит от слаженной работы мышц, выполняющих подъём/опускание туловища в динамическом режиме и мышц, осуществляющих фиксацию хвата и укрепление суставов в статическом режиме. Статическая работа по удержанию хвата, к сожалению, не имеет механического эквивалента, аналогичного темпу подтягиваний при динамической работе, поэтому под интенсивностью статической работы следует понимать относительную мощность (т.е. мощность, выраженную в % от максимальной) метаболических процессов, обеспечивающих статическое сокращение мышц при выполнении подтягиваний. Правда, следует заметить, что получить значение метаболической мощности при статическом сокращении мышц весьма непросто, так как для этого потребуется проводить специальный эксперимент с использованием оборудования для определения величин потребления кислорода в единицу времени при различных углах сгибания рук. Тем не менее, если величины метаболической мощности статического напряжения мышц всё же станут известны, то и объём статической работы (вернее физиологическую стоимость статической работы) будет нетрудно рассчитать. Так, для виса в ИП величина работы при статическом напряжении мышц будет равна просто произведению метаболической мощности энергообеспечения на длительность виса.

Приблизительно интенсивность статических усилий при выполнении тренировочного подхода в привычном темпе можно оценить по отношению времени выполнения подтягиваний к максимальному времени выполнения подтягиваний, производимых в том же темпе до отказа.

3.2.3 Длительность выполнения нагрузки

Предельная длительность нагрузки зависит от мощности выполняемой работы (темпа подтягиваний). Чем больше темп подтягиваний, тем меньше время его поддержания. При этом максимальное количество подтягиваний спортсмену удаётся выполнить при некотором среднем значении темпа.

Предельная длительность выполнения нагрузки зависит от её величины. Чем больше величина нагрузки (равная суммарному весу спортсмена и отягощения), тем меньше предельное время работы до отказа.

Время, отведённое на выполнение подтягиваний, влияет на спортивный результат. Чем больше времени отводится на выполнение упражнения, тем большее количество подтягиваний сможет выполнить спортсмен. Но это утверждение справедливо лишь до тех пор, пока время, отведённое на подтягивание, не превышает возможностей спортсмена по удержанию хвата.

Большинство нагрузок, используемых в тренировке по подтягиванию, являются нагрузками непредельной длительности.

Изменением продолжительности отдельных упражнений можно не только вызвать преимущественную мобилизацию тех или иных путей ресинтеза АТФ, но и способствовать избирательному развитию различных качеств [23]. Серия непредельных нагрузок, состоящая из нескольких подходов оказывает более сильное тренировочное воздействие по сравнению с одиночным подходом; соотношение работы и отдыха между подходами определяет преимущественную направленность нагрузки, стимулируя развитие тех или иных способностей спортсмена.

3.2.4 Величина нагрузки.

Понятие "величина нагрузки" неоднозначно и многогранно. Тренировочные нагрузки могут подразделяться по величине в зависимости от степени вызываемого утомления, от характера и величины адаптационных сдвигов, а в подтягивании кроме того величину нагрузки удобно выражать по отношению к собственному весу спортсмена.

В зависимости от степени вызываемого утомления нагрузки подразделяются на большие, значительные, средние и малые [23]. Если признаки утомления после выполнения нагрузки отсутствуют, была применена нагрузка малой или средней величины; наличие признаков скрытого (преодолеваемого) утомления говорит об использовании значительной по величине нагрузки; когда наблюдается явное утомление спортсмена – считается, что нагрузка была большой по величине.

По эффекту воздействия тренировочные нагрузки могут быть развивающими, поддерживающими, восстанавливающими. Нагрузку (также как и тренировку) будем считать развивающей, если в результате её выполнения уровень развития физического качества (на который была направлена нагрузка) в период отдыха между однотипными тренировками превысит ранее достигнутое значение. Поддерживающая нагрузка будет отличаться от развивающей меньшим объёмом выполняемой работы при сохранении интенсивности (напряжённости) и направленности. Целью при проведении тренировки в поддерживающем режиме является уже не развитие какого либо физического качества или способности, а лишь удержание его на ранее достигнутом уровне. Восстанавливающая нагрузка отличается от развивающей как по объёму, так и по интенсивности (в меньшую сторону) и обычно используется для ускорения восстановительных процессов и сокращения восстановительного периода после одной или нескольких развивающих нагрузок.

Допустим, что для развития статической выносливости спортсмен использовал нагрузку, состоящую из 5 подходов по 3 минуты каждый, выполняемых в темпе 10подтягиваний в минуту. Тогда в качестве восстановительной можно использовать нагрузку, включающую 4-5 подходов по 1,5 минут в том же темпе (уменьшается как объём, так и интенсивность нагрузки), а в качестве поддерживающей – 2-3 подхода по 3 минуты в указанном темпе (при этом снижается только объём нагрузки).

Величина нагрузки (как сила сопротивления, противодействующая силе тяги мышц) при подтягивании на перекладине обычно определяется по отношению к собственному весу спортсмена. Если величина нагрузки превышает вес спортсмена, говорят о подтягивании с отягощением. Когда нагрузка на мышцы меньше собственного веса спортсмена, подтягивание выполняемся в облегчённых условиях. Отягощение и облегчение может создаваться как для всех участвующих в подтягивании мышц, так и для их части. В некоторых случаях подтягивание производится в комбинированном режиме – когда одни мышцы работают в облегчённых условиях, а другие – в отягощённых. Величина отягощения или облегчения может быть постоянной или переменной. Во втором случае она изменяется в зависимости от высоты подъёма в фазе подъёма туловища.

3.2.6 Способы изменения величины нагрузки.

3.2.6.1 Некоторые способы создания отягощений.

Пояс с грузами. Отягощение при подтягивании на перекладине проще всего размещать на поясе спортсмена.

Можно сделать своеобразный «патронташ» - пояс с карманами, в которые вставляются грузы известной величины. В простейшем случае грузы можно просто приматывать скотчем или изолентой к широкому ремню. При расположении грузов на поясе, они не мешают выполнять подтягивания, как это бывает, если располагать грузы, скажем, в карманах специальной жилетки.

Отягощение, размещённое на поясе, одновременно воздействует как на динамически работающие мышцы, так и на мышцы, поддерживающие статическое напряжение.

Груз на предплечье. Для того чтобы добиться увеличения нагрузки только на статически работающие мышцы, грузы нужно располагать на таком участке тела спортсмена, которое не участвует в движении при подъёме туловища, т.е. на руке в области предплечья. Для этого набор специальных утяжелителей на запястья нужно купить в магазине спорттоваров, или изготовить самостоятельно. Одна из возможных конструкций манжет с изменяемой величиной груза описана в [20]. Комбинируя грузы на поясе и предплечьях, можно скорректировать нагрузку, приходящуюся на одну руку. Это иногда бывает нужно делать, т.к. мышцы рук обладают разными силовыми возможностями.

Диаметр грифа. Чем больше диаметр грифа перекладины, тем больше момент силы тяжести, разгибающий пальцы в месте хвата. Использование грифа, диаметр которого несколько больше, чем это предусмотрено правилами, можно рассматривать, как дополнительное отягощение, действующее на статически работающие мышцы-сгибатели пальцев.

«Скользкая» перекладина. Чем больше будет трение в месте хвата, тем меньшими мышечными усилиями может поддерживаться такой хват. Обработкой грифа перекладины наждачной бумагой и нанесением магнезии на ладони и гриф как раз и добиваются увеличения силы трения и облегчения для мышц-сгибателей пальцев. Тогда подтягивание на неподготовленной – «скользкой» - перекладине можно рассматривать как отягощение для статически работающих мышц-сгибателей пальцев. Но поскольку практически нереально на каждой тренировке добиться одинаковых условий в месте хвата, то получается, что для «скользкой» перекладины невозможно создать статическое облегчение нужной величины. А вот использование одного и того же более толстого грифа в сочетании со стандартной (однотипной) процедурой обработки ладоней и грифа даёт практически одинаковую величину отягощения для статически работающих мышц. Оценить величину такого отягощения можно путём сравнения результатов двух контрольных подходов, один из которых выполнен на обычной, а другой – на толстой перекладине

Подтягивание на кончиках пальцев или на перекладине со свободно вращающимся грифом не позволяет спортсмену выполнить глубокий хват, затрудняя подтягивания и моделируя условия работы на сползающих кистях уже на первой минуте выполнения упражнения.

Создание отягощения переменной величины с помощью цепи. Отягощение переменной величины полезно, например, в том случае, если у спортсмена возникают проблемы с прохождением верхнего участка траектории. «Зависание» в верхней части фазы подъёма туловища приводит к резкому увеличению времени энегроёмкого виса на согнутых руках, что в дальнейшем в лучшем случае ведёт к увеличению интервала отдыха в висе, а в худшем – к резкой потере силовых способностей и прекращению выполнения подтягиваний. Для предотвращения «зависаний» требуется увеличить силовые способности мышц, выполняющих подъём туловища, именно при тех суставных углах, при которых и возникают проблемы с тягой. Чтобы увеличить силу мышц в нужной части траектории движения, нужно использовать тренировочные нагрузки, величина которых в фазе подъёма туловища меняется по ходу движения. Проще всего для достижения этой цели использовать отрезок цепи, один конец которого закреплён на поясе спортсмена (например, с помощью карабина, защёлкнутого на ремне), а другой конец свободно лежит на полу до тех пор, пока спортсмен находится в фазе виса в ИП. По мере выполнения подъёма всё большее число звеньев цепи будет подниматься с поверхности пола и включаться в отягощение. Характер изменения и величину нагрузки можно задавать количеством и длиной кусков цепи, поднимающихся с пола. При использовании одного отрезка цепи вес отягощения будет увеличиваться равномерно, ну а если цепей будет несколько, а их длина различна, характер и величина отягощения будут определяться исключительно фантазией его создателя.

В простейшем случае вместо цепи можно использовать пружины от эспандера или куски резины, одним концом закреплённые на поясе спортсмена, а другим – каким-либо образом прикреплённые к полу. Но при использовании цепи имеется одно неоспоримое преимущество – лёгкость дозирования нагрузки путём добавления или удаления кусков цепи известного веса.

refdb.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.