Михаил Васильевич Остроградский. Остроградский михаил васильевич реферат


Реферат: Остроградский

Жизнь М. В. Остроградского.

Математическая жизнь в академии наук в середине десятых годов почти замерла и возродилась в конце двадцатых с приходом в Академию Остроградского и Буняковского, особенно первого из них.

Михаил Васильевич Остроградский родился 26 сентября 1801г. на Украине, в деревне Пашенной Кобелякского уезда Полтавской губернии в семье помещика. В 1816 г. он поступил в Харьковский университет. Остроградский успешно сдал кандидатские экзамены, и перед ним, казалось, открывалась прямая дорога к университетской профессуре. Однако острая идейная борьба, которая в те годы велась в Харьковском университете, помешала спокойному течению научной карьеры Остроградского.

Осиповский подверг критике идеалистическую немецкую философию, сторонники которой имелись и среди работавших в Харьковском университете иностранцев. В устных выступлениях Осиповский разоблачал и высмеивал мистиков, стоявших во главе министерства просвещения и учебных округов. Свое враждебное отношение к Осиповскому реакционная часть харьковской профессуры перенесла и на его лучшего ученика, также не любившего ни метафизики, ни мистики и бывшего, надо полагать, уже тогда “полным материалистом и атеистом”.

Когда ректор университета Осиповский предложил присвоить Остроградскому заслуженную им степень кандидата, в Совете университета произошли резкие столкновения. Один из реакционных профессоров, А. И. Дудрович, письменно донес попечителю округа З. Я. Корнееву, что по вине Осиповского студенты-математики не занимаются богословием, а Остроградского обвинил в том, что он, несмотря на предписание начальства, не слушал богопознания и христианского учения. Дело дошло до министра “духовных дел и народного просвещения” А. Н. Голицына, по указанию которого Осиповский был уволен из университета, Остроградскаму отказали в присуждении степени кандидата, издевательски предложив заново сдать экзамены, якобы сданные им раньше в неправильном порядке.

Остроградский мужественно перенес эти испытания и решил, несмотря ни на что, посвятить свою жизнь науке. Еще в Харьковском университете его особенно увлекали вопросы прикладной математики и в 1922 г. он отправился в Париж, где работали Лаплас и Фурье, Лежандр и Пуассон, Бине и Коши и другие первоклассные ученые, пролагавшие новые пути в математике, математической физике и механике. Курсы, читавшиеся в Политехнической школе, Сорбонне, Коллеж де Франс были образцовыми и привлекали молодежь из многих стран.

Быстрые успехи Остроградского завоевали ему дружбу и уважение многих французских математиков, как старших поколений, так и сверстников. Время парижской жизни явилось для Остроградского не только “годами странствий и учения”, но и интенсивного творчества. В 1824-1827 гг. он представил Академии наук в Париже несколько замечательных мемуаров на французском языке. В “Замечаниях об определенных интегралах” (1824) он дал вывод незадолго перед тем опубликованной Коши формулы для вычета функции относительно полюсап-го порядка, вывод, по сути дела совпадающий с принятым ныне. В “Доказательстве одной теоремы интегрального исчисления” (1826) он разработал весьма важную составную часть общего метода разделения переменных для интегрирования уравнений математической физики. В том же году Остроградский подготовил “Мемуар о распространении волн в цилиндрическом бассейне”, где развил исследования Коши и Пуассона, изучивших движение малых волн в бассейне бесконечной глубины и не ограниченном стенками, а год спустя “Мемуар о распространении тепла внутри твердых тел”, содержавший новое сжатое изложение метода разделения и решения новой задачи о распространении тепла в некоторой треугольной призме. Из них только работа по гидродинамике увидела свет в издании Парижской Академии, другие же остались в ее архиве. Но и не опубликованные тогда его открытия по математической физике оказали существенное влияние на развитие математики. Основные результаты вошли в последующие печатные труды самого Остроградского; кроме того, в рукописи или в устном изложении самого Остроградского с ними ознакомились тогда же или вскоре Коши, Пуассон и другие.

Перечисленные работы показывают, что Остроградский в первые же годы парижской жизни не только полностью овладел новейшим аппаратом анализа и механики, но существенно развил его и мастерски применил к решению как весьма общих актуальных проблем, так и частных трудных задач. Коши с высокой похвалой отзывался о работах своего молодого ученика и сотрудника. Например, в основоположном мемуаре по теории интегралов в комплексной области 1825 г., Коши, рассказывая о своих предыдущих результатах писал:”Наконец, один молодой русский, одаренный большой проницательностью и весьма искусный в анализе бесконечно малых, г. Остроградский, также прибегнув к употреблению этих интегралов и их преобразованию в обыкновенные, дал новое доказательство формул, мною выше упомянутых, и обобщил другие формулы, которые я представил в 19-й тетради “Журнала Политехнической школы”. Г. Остроградский любезно сообщил нам главные результаты своей работы”. Столь же уважительны отзывы Коши об Остроградском в статьях по теории вычетов. Много позднее, в работе, в которой установлен ряд общих свойств интегралов линейных уравнений с частными производными, Коши вспоминал о парижских открытиях Остроградского:”Я хотел бы иметь возможность сравнить полученные мною здесь результаты с результатами, полученными г. Остроградским в мемуаре, в котором он установил несколько общих предложений относительно интегрирования линейных уравнений в частных производных.Но я только смутно помню этот мемуар и, так как не знаю, был ли он где-либо опубликован, я лишен возможности произвести это сравнение”.

Весной 1828 г. Остроградский приехал в Петербург и здесь на протяжении нескольких месяцев представил Академии наук три работы. Первая содержала оригинальный, основанный на новой концепции интеграла (Коши), вывод уравнения Пуассона, которому удовлетворяет объемный потенциал поля тяготения в точке, лежащей внутри притягиваемой массы или на ее границе. Следующая посвящена вопросу о перестановке порядка интегрирования в двойном интеграле в случае бесконечного разрыва подынтегральной функции и примыкает к аналогичным исследованиям Коши. Третьей был уже упомянутый мемуар “Доказательство одной теоремы интегрального исчисления”, который автор вскоре взял обратно для переработки и затем опубликовал для переработки и затем опубликовал под названием “Заметки по теории теплоты”. Коллинс представил о трудах Остроградского блестящий отзыв и 29 декабря 1828 г. молодой ученый был избран адъюнктом по прикладной математике. Два года спустя он был выбран экстраординарным академиком и в 1831 г. – ординарным.

Деятельность Остроградского в Академии была весьма разносторонней. Он сделал более 85 научных сообщений, частью неопубликованных; читал публичные лекции; писал подробные отзывы на поступавшие в Академию работы, участвовал в комиссиях по введению григорианского календаря и десятичных мер (что было сделано лишь после великой Октябрьской социалистической революции), по водоснабжению Петербурга и т. д., занимался по поручению правительства изысканиями по внешней баллистике, и т. д. Вместе с тем Остроградский много времени уделял преподаванию. С 1828 г. он начал читать лекции в Морском корпусе (впоследствии Морской академии), где преемниками его последовательно были В.Я. Буняковский, А.Н. Коркин, А.Н. Крылов. С годами педагогическая деятельность Остроградского становилась все более интенсивной. Он вел занятия по математике и механике в Институте инженеров путей сообщения, Главном инженерном и Главном артиллерийском училищах, Главном педагогическом институте. С 1847 г. и до своей смерти он работал на посту главного наблюдателя по преподаванию математических наук во всех военных заведениях страны. Ему принадлежат несколько руководств по элементарной и высшей математике.

Педагогические взгляды Остроградского были весьма прогрессивными. Он считал, что в гимназиях и кадетских корпусах нужны лаборатории и мастерские, где учащиеся приобретали бы трудовые навыки, производили опыты и наблюдения. Он выступал за наглядность обучения математике, особенно в раннем возрасте, и критиковал сухое и формальное изложение этого предмета в современной ему школе. Он был сторонником введения в специальных старших классах средних военных учебных заведений идеи функции и начал анализа; курс математики, с его точки зрения, должен быть связан с другими предметами, как физика, в которых применяются математические методы. Как видно, в ряде пунктов Остроградский предвосхитил идеи так называемого движения за реформу преподавания, возникшего в начале XX века. Кое-чего Остроградский достиг в этом направлении в кадетских корпусах. Однако более широкая реализация педагогических установок Остроградского стала возможной лишь много позднее. Свое общее педагогическое credo Остроградский изложил в написанной совместно с парижским математиком и инженером И.-О. Блюмом (1812-1877) брошюре “Размышления о преподавании”, вышедшей на французском языке. Чтение этого блестящего по изложению и глубокого по содержанию сочинения интересно и в наши дни. Школьное преподавание арифметики, алгебры и геометрии, - писали авторы, - ничем “не напоминает о насущной необходимости изучения этих предметов для насущной жизни” и на деле дает “только тот результат, что их усваивает очень небольшое число учеников”. Этому в брошюре ярко противопоставлены принципы обучения, воспитывающего наблюдательность и любознательность, техническую сноровку и научное мышление. Для повышения интереса и привлечения внимания учеников Блюм и Остроградский рекомендовали использовать историю наук и биографии выдающихся людей, “принесших пользу наукам и искусству”:”Это в одно и то же время отличная разрядка и средство с помощью живого рассказа запечатлеть то или иное основное положение, либо удачное приложение теоретических принципов”.

Школьная математика должна учитывать особенности детского восприятия, но следует избегать общепринятой недооценки возможностей детей уже с семилетнего возраста. В брошюре разобран вопрос об обучении ребят до 12 лет, причем только в гимназиях или специальных учебных заведениях; более массовые школы, где учат началам чтения, письма и счета оставлены были в стороне.

Остроградский оказал значительное влияние на развитие математики и механики. Он, в частности, подготовлял условия для создания математической школы, организованной Чебышевым, и сам основал русскую школу механики. К его исследованиям примыкают многие последующие работы по математической физике, по теории интегрирования иррациональных функций, по теории кратных интегралов и даже по теории вероятностей, которыми он сам занимался немного. Прямыми учениками Остроградского были создатель теории автоматического регулирования И. А. Вышнеградский (1831-1895), автор классических исследований по теории трения и влияния на него смазки и по теории механизмов Н. П. Петров (1822-1889) и другие. Все перечисленные математики вышли из Главного педагогического института, где Остроградский преподавал с 1832 по 1859 г..

Научные заслуги Остроградского были высоко оценены и за рубежом. Он был избран членом-корреспондентом французской Академии наук в 1856 г., а еще ранее членом Американской академии наук и академий в Турине и в Риме. Скончался он 1 января 1862 г.

Кратные интегралы.

Остановимся несколько подробнее на работах Остроградского по кратным интегралам.

Формула Остроградского для преобразования тройного интеграла в двойной, которую мы пишем обычно в виде

(1)

или

,

где divA– дивергенция поля вектораА, Аn–скалярное произведение вектораАна единичный вектор внешней нормали n граничной поверхности, в математической литературе нередко связывалась ранее с именами Гаусса и Грина. На самом деле в работе Гаусса о притяжении сфероидов можно усмотреть только весьма частные случаи формулы (1), например при P=x, Q=R=0 и т. п. Что касается Дж. Грина, то в его труде по теории электричества и магнетизма формулы (1) вовсе нет; в нем выведено другое соотношение между тройным и двойным интегралами, именно, формула Грина для оператора Лапласа, которую можно записать в виде

(2)

Конечно, можно вывести формулу (1) и из (2), полагая

и точно так же можно получить формулу (2) из формулы (1), но Грин этого и не думал делать.

Все же вопрос об авторе интегральной формулы (1) оставался не вполне ясным. Дело в том, что, как было недавно замечено, в мемуаре Пуассона по теории упругости, выводится формула

где слева стоит интеграл по объему, а справа интеграл по граничной поверхности, причемсуть направляющие косинусы внешней нормали.

Парижские рукописи Остроградского свидетельствуют, с полной несомненностью, что ему принадлежит и открытие, и первое сообщение интегральной теоремы (1). Впервые она была высказана и доказана, точно так, как это делают теперь в “Доказательстве одной теоремы интегрального исчисления”, представленном Парижской Академии наук 13 февраля 1826 г., после чего еще раз была сформулирована в той части “Мемуара о распространении тепла внутри твердых тел ”, которую Остроградский представил 6 августа 1827 г. “Мемуар” был дан на отзыв Фурье и Пуассону, причем последний его, безусловно читал, как свидетельствует запись на первых страницах обеих частей рукописи. Разумеется, Пуассону и не приходила мысль приписывать себе теорему, с которой он познакомился в сочинении Остроградского за два года до представления своей работы на теории упругости.

Что касается взаимоотношения работ по кратным интегралам Остроградского и Грина, напомним, что в “Заметке по теории теплоты” выведена формула, обнимающая собственную формулу Грина, как весьма частный случай. Непривычная теперь символика Коши, употребленная Остроградским в “Заметке”, до недавнего времени скрывала от исследователей это важное открытие. Разумеется, за Грином остается честь открытия и первой публикации в 1828 г. носящей его имя формулы для операторов Лапласа.

Открытие формулы преобразования тройного интеграла в двойной помогло Остроградскому решить проблему варьированияп-кратного интеграла, именно, вывести понадобившуюся там общую формулу преобразования интеграла от выражения типа дивергенции поп-мерной области и интеграл по ограничивающей ее сверхповерхности S с уравнением L(x,y,z,…)=0. Если придерживаться прежних обозначений, то формула имеет вид

(3)

Впрочем, Остроградский не применял геометрических образов и терминов, которыми пользуемся мы: геометрия многомерных пространств в то время еще не существовала.

В “Мемуаре об исчислении вариаций кратных интегралов” рассмотрены еще два важных вопроса теории таких интегралов. Во-первых, Остроградский выводит формулу замены переменных в многомерном интеграле; во-вторых, впервые дает полное и точное описание приема вычисленияп-кратного интеграла с помощьюппоследовательных интеграций по каждой из переменных в соответствующих пределах. Наконец, из формул, содержащихся в этом мемуаре, легко выводится общее правило дифференцирования по параметру многомерного интеграла, когда от этого параметра зависит не только подынтегральная функция, но и граница области интегрирования. Названное правило вытекает из наличных в мемуаре формул настолько естественным образом, что позднейшие математики даже отождествляли его с одною из формул этого мемуара.

Замене переменных в кратных интегралах Остроградский посвятил специальную работу. Для двойного интеграла соответствующее правило вывел с помощью формальных преобразований Эйлер, для тройного – Лагранж. Однако, хотя результат Лагранжа верен, рассуждения его были не точными: он как бы исходил из того, что элементы объемов в старых и новых переменных – координатах – между собою равны. Аналогичную ошибку допустил вначале в только что упомянутом выводе правила замены переменных Остроградский. В статье “О преобразовании переменных в кратных интегралах” Остроградский раскрыл ошибку Лагранжа, а также впервые изложил тот наглядный геометрический метод преобразования переменных в двойном интеграле, который, в несколько более строгом оформлении, излагается и в наших руководствах. Именно, при замене переменных в интегралепо формулам,, область интегрирования разбивается координатными линиями двух системu=const, v=constна бесконечно малые криволинейные четырехугольники. Тогда интеграл можно получить, складывая сначала те его элементы, которые отвечают бесконечно узкой криволинейной полосе, а затем, продолжая суммировать элементы полосами, пока они все не будут исчерпаны. Несложный подсчет дает для площади, которая с точностью до малых высшего порядка может рассматриваться как параллелограмм, выражение, где, выбирается так, чтобы площадь была положительной. В итоге получается известная формула

.

Так дифференциальное выражение, которое Эйлер формально подставлял вместоdydx,а следуя рассуждениям Лагранжа для трехмерного случая, нужно было бы считать равнымdydx,приобрело у Остроградского простой и ясный геометрический смысл.

Дифференциальные уравнения.

В теории обыкновенных дифференциальных уравнений заслуживают внимания два результата Остроградского. В «Заметке о методе последовательных приближений», предложен метод решения нелинейных уравнений с помощью разложения в ряд по малому параметру, позволяющей избегать так называемых вековых членов, содержащих аргумент вне тригонометрических функций. Такие члены нередко появляются при употреблении обыкновенных приемов интегрирования с помощью степенных рядов; неограниченно возрастая вместе с аргументом, они порождают ошибочные приближения, а содержащее их решение оказывается неподходящим.С этим явлением встречались еще астрономы XVIII в. и задачей уничтожения вековых членов занимались Лаплас, Лагранж и другие. Свой метод, основанный на одновременном разложении по параметру как самого решения, так и периода входящих в него периодических функций, Остроградский кратко пояснил на примере:

,,

который записал в несколько иной форме:

,

совпадающей с данным уравнением при. Решение с точностью до величин первого порядка относительно, найденное обычным способом, содержит вековой член:

;

решение по способу Остроградского от него свободно:

,.

Найденное приближение Остроградский сопоставил с точным решением уравнения в эллиптических функциях Якоби. Остроградский ограничился получением первого приближения; в конце статьи он высказал намерение приложить этот метод к движению планет вокруг Солнца. Намерение это, видимо, не осуществилось, но как раз в работах по определению орбит небесных тел идея Остроградского получила дальнейшее развитие. Одним из первых таких трудов явилось исследование по теории возмущений шведского ученого А. Линдстедта, работавшего в 1879 – 1886 гг. в Дерптском университете. За этим последовали глубокие исследования А. Пуанкаре и А. М. Ляпунова и, уже в советский период, Н. М. Крылова, который применил к нему и другим, более общим классам линейных неоднородных уравнений второго порядка, содержащих малый параметр, несколько модифицированный им метод Ляпунова. В настоящее время метод малого параметра широко применяется к исследованию нелинейных задач механики, физики и техники.

Небольшая “Заметка о линейных дифференциальных уравнениях” Остроградского (1839) содержит классическую теорему, которая излагается теперь в любом курсе дифференциальных уравнений. Дано уравнение

.

ипего решений, которые предполагаются линейно независимыми. Согласно теореме Остроградского определитель

выражается через коэффициент при(п-1)-й производной:

,

гдеа –постоянная. Мы называем определительпо имени впервые рассмотревшего его (в другой связи и более общей форме) польского математика Г. Вронского (1812). Та же теорема была одновременно получена из несколько иных соображений Ж. Лиувиллем (1838).

Некоторые работы Остроградского были связаны с конкретными задачами современной ему военной техники. Так, например, в 1839-1842 гг. он по поручению артиллерийского ведомства занимался изучением стрельбы эксцентрическими сферическими снарядами, у которых центр фигуры отличен от центра инерции. Этому вопросу Остроградский посвятил три небольшие статьи, из которых одна содержала таблицы интегралов, нужных для решения задачи о движении снаряда в воздухе при квадратичном законе сопротивления. К работам по баллистике в свою очередь примыкали исследования Остроградского по приближенным вычислениям, в том числе и упоминавшаяся работа 1839 г., содержащая вывод остаточного члена формулы суммирования Эйлера-Маклорена.

План:

1. Жизненный путь М. В. Остроградского.

2. Кратные интегралы.

3. Дифференциальные уравнения.

4. Заключение.

МОГИЛЕВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИМ. А. А. КУЛЕШОВА

Реферат

на тему:

М. В. Остроградский

Выполнила

студентка

физико-математического

факультета

Vкурса, группы“B”

Семерикова Юлия

МОГИЛЕВ

2002.

superbotanik.net

Реферат: Остроградский

Жизнь М. В. Остроградского.

Математическая жизнь в академии наук в середине десятых годов почти замерла и возродилась в конце двадцатых с приходом в Академию Остроградского и Буняковского, особенно первого из них.

Михаил Васильевич Остроградский родился 26 сентября 1801г. на Украине, в деревне Пашенной Кобелякского уезда Полтавской губернии в семье помещика. В 1816 г. он поступил в Харьковский университет. Остроградский успешно сдал кандидатские экзамены, и перед ним, казалось, открывалась прямая дорога к университетской профессуре. Однако острая идейная борьба, которая в те годы велась в Харьковском университете, помешала спокойному течению научной карьеры Остроградского.

Осиповский подверг критике идеалистическую немецкую философию, сторонники которой имелись и среди работавших в Харьковском университете иностранцев. В устных выступлениях Осиповский разоблачал и высмеивал мистиков, стоявших во главе министерства просвещения и учебных округов. Свое враждебное отношение к Осиповскому реакционная часть харьковской профессуры перенесла и на его лучшего ученика, также не любившего ни метафизики, ни мистики и бывшего, надо полагать, уже тогда “полным материалистом и атеистом”.

Когда ректор университета Осиповский предложил присвоить Остроградскому заслуженную им степень кандидата, в Совете университета произошли резкие столкновения. Один из реакционных профессоров, А. И. Дудрович, письменно донес попечителю округа З. Я. Корнееву, что по вине Осиповского студенты-математики не занимаются богословием, а Остроградского обвинил в том, что он, несмотря на предписание начальства, не слушал богопознания и христианского учения. Дело дошло до министра “духовных дел и народного просвещения” А. Н. Голицына, по указанию которого Осиповский был уволен из университета, Остроградскаму отказали в присуждении степени кандидата, издевательски предложив заново сдать экзамены, якобы сданные им раньше в неправильном порядке.

Возможно вы искали - Реферат: Оценивание параметров и проверка гипотез о нормальном распределении

Остроградский мужественно перенес эти испытания и решил, несмотря ни на что, посвятить свою жизнь науке. Еще в Харьковском университете его особенно увлекали вопросы прикладной математики и в 1922 г. он отправился в Париж, где работали Лаплас и Фурье, Лежандр и Пуассон, Бине и Коши и другие первоклассные ученые, пролагавшие новые пути в математике, математической физике и механике. Курсы, читавшиеся в Политехнической школе, Сорбонне, Коллеж де Франс были образцовыми и привлекали молодежь из многих стран.

Быстрые успехи Остроградского завоевали ему дружбу и уважение многих французских математиков, как старших поколений, так и сверстников. Время парижской жизни явилось для Остроградского не только “годами странствий и учения”, но и интенсивного творчества. В 1824-1827 гг. он представил Академии наук в Париже несколько замечательных мемуаров на французском языке. В “Замечаниях об определенных интегралах” (1824) он дал вывод незадолго перед тем опубликованной Коши формулы для вычета функции относительно полюса п- го порядка, вывод, по сути дела совпадающий с принятым ныне. В “Доказательстве одной теоремы интегрального исчисления” (1826) он разработал весьма важную составную часть общего метода разделения переменных для интегрирования уравнений математической физики. В том же году Остроградский подготовил “Мемуар о распространении волн в цилиндрическом бассейне”, где развил исследования Коши и Пуассона, изучивших движение малых волн в бассейне бесконечной глубины и не ограниченном стенками, а год спустя “Мемуар о распространении тепла внутри твердых тел”, содержавший новое сжатое изложение метода разделения и решения новой задачи о распространении тепла в некоторой треугольной призме. Из них только работа по гидродинамике увидела свет в издании Парижской Академии, другие же остались в ее архиве. Но и не опубликованные тогда его открытия по математической физике оказали существенное влияние на развитие математики. Основные результаты вошли в последующие печатные труды самого Остроградского; кроме того, в рукописи или в устном изложении самого Остроградского с ними ознакомились тогда же или вскоре Коши, Пуассон и другие.

Перечисленные работы показывают, что Остроградский в первые же годы парижской жизни не только полностью овладел новейшим аппаратом анализа и механики, но существенно развил его и мастерски применил к решению как весьма общих актуальных проблем, так и частных трудных задач. Коши с высокой похвалой отзывался о работах своего молодого ученика и сотрудника. Например, в основоположном мемуаре по теории интегралов в комплексной области 1825 г., Коши, рассказывая о своих предыдущих результатах писал:”Наконец, один молодой русский, одаренный большой проницательностью и весьма искусный в анализе бесконечно малых, г. Остроградский, также прибегнув к употреблению этих интегралов и их преобразованию в обыкновенные, дал новое доказательство формул, мною выше упомянутых, и обобщил другие формулы, которые я представил в 19-й тетради “Журнала Политехнической школы”. Г. Остроградский любезно сообщил нам главные результаты своей работы”. Столь же уважительны отзывы Коши об Остроградском в статьях по теории вычетов. Много позднее, в работе, в которой установлен ряд общих свойств интегралов линейных уравнений с частными производными, Коши вспоминал о парижских открытиях Остроградского:”Я хотел бы иметь возможность сравнить полученные мною здесь результаты с результатами, полученными г. Остроградским в мемуаре, в котором он установил несколько общих предложений относительно интегрирования линейных уравнений в частных производных.Но я только смутно помню этот мемуар и, так как не знаю, был ли он где-либо опубликован, я лишен возможности произвести это сравнение”.

Весной 1828 г. Остроградский приехал в Петербург и здесь на протяжении нескольких месяцев представил Академии наук три работы. Первая содержала оригинальный, основанный на новой концепции интеграла (Коши), вывод уравнения Пуассона, которому удовлетворяет объемный потенциал поля тяготения в точке, лежащей внутри притягиваемой массы или на ее границе. Следующая посвящена вопросу о перестановке порядка интегрирования в двойном интеграле в случае бесконечного разрыва подынтегральной функции и примыкает к аналогичным исследованиям Коши. Третьей был уже упомянутый мемуар “Доказательство одной теоремы интегрального исчисления”, который автор вскоре взял обратно для переработки и затем опубликовал для переработки и затем опубликовал под названием “Заметки по теории теплоты”. Коллинс представил о трудах Остроградского блестящий отзыв и 29 декабря 1828 г. молодой ученый был избран адъюнктом по прикладной математике. Два года спустя он был выбран экстраординарным академиком и в 1831 г. – ординарным.

Деятельность Остроградского в Академии была весьма разносторонней. Он сделал более 85 научных сообщений, частью неопубликованных; читал публичные лекции; писал подробные отзывы на поступавшие в Академию работы, участвовал в комиссиях по введению григорианского календаря и десятичных мер (что было сделано лишь после великой Октябрьской социалистической революции), по водоснабжению Петербурга и т. д., занимался по поручению правительства изысканиями по внешней баллистике, и т. д. Вместе с тем Остроградский много времени уделял преподаванию. С 1828 г. он начал читать лекции в Морском корпусе (впоследствии Морской академии), где преемниками его последовательно были В.Я. Буняковский, А.Н. Коркин, А.Н. Крылов. С годами педагогическая деятельность Остроградского становилась все более интенсивной. Он вел занятия по математике и механике в Институте инженеров путей сообщения, Главном инженерном и Главном артиллерийском училищах, Главном педагогическом институте. С 1847 г. и до своей смерти он работал на посту главного наблюдателя по преподаванию математических наук во всех военных заведениях страны. Ему принадлежат несколько руководств по элементарной и высшей математике.

Похожий материал - Реферат: Оценка надежности

Педагогические взгляды Остроградского были весьма прогрессивными. Он считал, что в гимназиях и кадетских корпусах нужны лаборатории и мастерские, где учащиеся приобретали бы трудовые навыки, производили опыты и наблюдения. Он выступал за наглядность обучения математике, особенно в раннем возрасте, и критиковал сухое и формальное изложение этого предмета в современной ему школе. Он был сторонником введения в специальных старших классах средних военных учебных заведений идеи функции и начал анализа; курс математики, с его точки зрения, должен быть связан с другими предметами, как физика, в которых применяются математические методы. Как видно, в ряде пунктов Остроградский предвосхитил идеи так называемого движения за реформу преподавания, возникшего в начале XX века. Кое-чего Остроградский достиг в этом направлении в кадетских корпусах. Однако более широкая реализация педагогических установок Остроградского стала возможной лишь много позднее. Свое общее педагогическое credo Остроградский изложил в написанной совместно с парижским математиком и инженером И.-О. Блюмом (1812-1877) брошюре “Размышления о преподавании”, вышедшей на французском языке. Чтение этого блестящего по изложению и глубокого по содержанию сочинения интересно и в наши дни. Школьное преподавание арифметики, алгебры и геометрии, - писали авторы, - ничем “не напоминает о насущной необходимости изучения этих предметов для насущной жизни” и на деле дает “только тот результат, что их усваивает очень небольшое число учеников”. Этому в брошюре ярко противопоставлены принципы обучения, воспитывающего наблюдательность и любознательность, техническую сноровку и научное мышление. Для повышения интереса и привлечения внимания учеников Блюм и Остроградский рекомендовали использовать историю наук и биографии выдающихся людей, “принесших пользу наукам и искусству”:”Это в одно и то же время отличная разрядка и средство с помощью живого рассказа запечатлеть то или иное основное положение, либо удачное приложение теоретических принципов”.

Школьная математика должна учитывать особенности детского восприятия, но следует избегать общепринятой недооценки возможностей детей уже с семилетнего возраста. В брошюре разобран вопрос об обучении ребят до 12 лет, причем только в гимназиях или специальных учебных заведениях; более массовые школы, где учат началам чтения, письма и счета оставлены были в стороне.

Остроградский оказал значительное влияние на развитие математики и механики. Он, в частности, подготовлял условия для создания математической школы, организованной Чебышевым, и сам основал русскую школу механики. К его исследованиям примыкают многие последующие работы по математической физике, по теории интегрирования иррациональных функций, по теории кратных интегралов и даже по теории вероятностей, которыми он сам занимался немного. Прямыми учениками Остроградского были создатель теории автоматического регулирования И. А. Вышнеградский (1831-1895), автор классических исследований по теории трения и влияния на него смазки и по теории механизмов Н. П. Петров (1822-1889) и другие. Все перечисленные математики вышли из Главного педагогического института, где Остроградский преподавал с 1832 по 1859 г..

Научные заслуги Остроградского были высоко оценены и за рубежом. Он был избран членом-корреспондентом французской Академии наук в 1856 г., а еще ранее членом Американской академии наук и академий в Турине и в Риме. Скончался он 1 января 1862 г.

Кратные интегралы.

Очень интересно - Реферат: Оценочный и сравнительный эксперимент

Остановимся несколько подробнее на работах Остроградского по кратным интегралам.

Формула Остроградского для преобразования тройного интеграла в двойной, которую мы пишем обычно в виде

(1)

или

,

Вам будет интересно - Реферат: Пафнутий Львович Чебышев

где div A – дивергенция поля вектора А, А n – скалярное произведение вектора А на единичный вектор внешней нормали n граничной поверхности, в математической литературе нередко связывалась ранее с именами Гаусса и Грина. На самом деле в работе Гаусса о притяжении сфероидов можно усмотреть только весьма частные случаи формулы (1), например при P=x, Q=R=0 и т. п. Что касается Дж. Грина, то в его труде по теории электричества и магнетизма формулы (1) вовсе нет; в нем выведено другое соотношение между тройным и двойным интегралами, именно, формула Грина для оператора Лапласа, которую можно записать в виде

(2)

Конечно, можно вывести формулу (1) и из (2), полагая

и точно так же можно получить формулу (2) из формулы (1), но Грин этого и не думал делать.

Похожий материал - Реферат: Первая краевая задача для уравнения теплопроводности в нецилиндрической неограниченной области

Все же вопрос об авторе интегральной формулы (1) оставался не вполне ясным. Дело в том, что, как было недавно замечено, в мемуаре Пуассона по теории упругости, выводится формула

где слева стоит интеграл по объему, а справа интеграл по граничной поверхности, причем суть направляющие косинусы внешней нормали.

Парижские рукописи Остроградского свидетельствуют, с полной несомненностью, что ему принадлежит и открытие, и первое сообщение интегральной теоремы (1). Впервые она была высказана и доказана, точно так, как это делают теперь в “Доказательстве одной теоремы интегрального исчисления”, представленном Парижской Академии наук 13 февраля 1826 г., после чего еще раз была сформулирована в той части “Мемуара о распространении тепла внутри твердых тел ”, которую Остроградский представил 6 августа 1827 г. “Мемуар” был дан на отзыв Фурье и Пуассону, причем последний его, безусловно читал, как свидетельствует запись на первых страницах обеих частей рукописи. Разумеется, Пуассону и не приходила мысль приписывать себе теорему, с которой он познакомился в сочинении Остроградского за два года до представления своей работы на теории упругости.

cwetochki.ru

Михаил Васильевич Остроградский — реферат



Министерство образования и науки Российской Федерации

ФГАОУ ВПО Северо-Восточный Федеральный Университет

Институт математики и информатики

Кафедра теории и методики обучения информатике

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Реферат по дисциплине: Внеклассная работа по математике

Тема: Михаил Васильевич Остроградский

 

 

 

 

 

 

 

 

Выполнила: студентка 4 курса

группы ИНФ-08

Проверил:

 

 

 

 

 

 

 

 

 

 

Содержание

 

 

Биография  м. В. Остроградского              1

Воспоминания              2

Научные достижения              4

Кратные интегралы.              5

Дифференциальные уравнения.              6

                                                                                                                                           

Список литературы.              14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Биография  М. В. Остроградского.

 

Михаил Васильевич Остроградский родился 26 сентября 1801г. на Украине, в деревне Пашенной Кобелякского уезда Полтавской губернии в семье помещика. В 1816 г. он поступил в Харьковский университет. Остроградский успешно сдал кандидатские экзамены, и перед ним, казалось, открывалась прямая дорога к университетской профессуре. Однако острая идейная борьба, которая в те годы велась в Харьковском университете, помешала спокойному течению научной карьеры Остроградского.

Осиповский подверг критике идеалистическую немецкую философию, сторонники которой имелись и среди работавших в Харьковском университете иностранцев. В устных выступлениях Осиповский разоблачал и высмеивал мистиков, стоявших во главе министерства просвещения и учебных округов. Свое враждебное отношение к Осиповскому реакционная часть харьковской профессуры перенесла и на его лучшего ученика, также не любившего ни метафизики, ни мистики и бывшего, надо полагать, уже тогда “полным материалистом и атеистом”.

Когда ректор университета Осиповский предложил присвоить Остроградскому заслуженную им степень кандидата, в Совете университета произошли резкие столкновения. Один из реакционных профессоров, А. И. Дудрович, письменно донес попечителю округа З. Я. Корнееву, что по вине Осиповского  студенты-математики не занимаются богословием, а Остроградского обвинил в том, что он, несмотря на предписание начальства, не слушал богопознания и христианского учения. Дело дошло до министра “духовных дел и народного просвещения” А. Н. Голицына, по указанию которого Осиповский был уволен из университета, Остроградскаму отказали в присуждении степени кандидата, издевательски предложив заново сдать  экзамены, якобы сданные им раньше в неправильном порядке.

Остроградский мужественно перенес эти испытания и решил, несмотря ни на что, посвятить свою жизнь науке. Еще в Харьковском университете его особенно увлекали вопросы прикладной математики и в 1922 г. он отправился в Париж, где работали Лаплас и Фурье, Лежандр и Пуассон, Бине и Коши и другие первоклассные ученые, пролагавшие новые пути в математике, математической физике и механике. Курсы, читавшиеся в Политехнической школе, Сорбонне, Коллеж де Франс были образцовыми и привлекали молодежь из многих стран.

Быстрые успехи Остроградского завоевали ему дружбу и уважение многих французских математиков, как старших поколений, так и сверстников. Время парижской жизни явилось для Остроградского не только “годами странствий и учения”, но и интенсивного творчества. В 1824-1827 гг. он представил Академии наук в Париже несколько замечательных мемуаров на французском языке. В “Замечаниях об определенных интегралах” (1824) он дал вывод незадолго перед тем опубликованной Коши формулы для вычета функции относительно полюса п-го порядка, вывод, по сути дела совпадающий с принятым ныне. В “Доказательстве одной теоремы интегрального исчисления” (1826) он разработал весьма важную составную часть общего метода разделения переменных для интегрирования уравнений математической физики. В том же году Остроградский подготовил “Мемуар о распространении волн в цилиндрическом бассейне”, где развил исследования Коши и Пуассона, изучивших движение малых волн в бассейне бесконечной глубины и не ограниченном стенками, а год спустя “Мемуар о распространении тепла внутри твердых тел”, содержавший новое сжатое изложение метода разделения и решения новой задачи о распространении тепла в некоторой треугольной призме. Из них только работа по гидродинамике увидела свет в издании Парижской Академии, другие же остались в ее архиве. Но и не опубликованные тогда его открытия по математической физике оказали существенное влияние на развитие математики. Основные результаты вошли в последующие печатные труды самого Остроградского; кроме того, в рукописи или в устном изложении самого Остроградского с ними ознакомились тогда же или вскоре  Коши, Пуассон и другие.

Перечисленные работы показывают, что Остроградский в первые  же годы парижской жизни не только полностью овладел новейшим аппаратом анализа и механики, но существенно развил его и мастерски применил к решению как весьма общих актуальных проблем, так и частных трудных задач. Коши с высокой похвалой отзывался о работах своего молодого ученика и сотрудника. Например, в основоположном мемуаре по теории интегралов в комплексной области 1825 г., Коши, рассказывая о своих предыдущих результатах писал:”Наконец, один молодой русский, одаренный большой проницательностью и весьма искусный в анализе бесконечно малых, г. Остроградский, также прибегнув к употреблению этих интегралов и их преобразованию в обыкновенные, дал новое доказательство формул, мною выше упомянутых, и обобщил другие формулы, которые я представил в 19-й тетради “Журнала Политехнической школы”. Г. Остроградский любезно сообщил нам главные результаты своей работы”. Столь же уважительны отзывы Коши об Остроградском в статьях по теории вычетов. Много позднее, в работе, в которой установлен ряд общих свойств интегралов линейных уравнений с частными производными, Коши вспоминал о парижских открытиях Остроградского:”Я хотел бы иметь возможность сравнить полученные мною здесь результаты с результатами, полученными г. Остроградским в мемуаре, в котором он установил несколько общих предложений относительно интегрирования линейных уравнений в частных производных. Но я только смутно помню этот мемуар и, так как не знаю, был ли он где-либо опубликован, я лишен возможности произвести это сравнение”.

   Весной 1828 г. Остроградский приехал в Петербург и здесь на протяжении нескольких месяцев представил Академии наук три работы. Первая содержала оригинальный, основанный на новой концепции интеграла (Коши), вывод уравнения Пуассона, которому удовлетворяет объемный потенциал поля тяготения в точке, лежащей внутри притягиваемой массы или на ее границе. Следующая посвящена вопросу  о перестановке порядка интегрирования в двойном интеграле в случае бесконечного разрыва подынтегральной функции и примыкает к аналогичным исследованиям Коши. Третьей был уже упомянутый мемуар “Доказательство одной теоремы интегрального исчисления”, который автор вскоре взял обратно для переработки и затем опубликовал для переработки и затем опубликовал под названием “Заметки по теории теплоты”. Коллинс представил о трудах Остроградского блестящий отзыв и 29 декабря 1828 г. молодой ученый был избран адъюнктом по прикладной математике. Два года спустя  он был выбран экстраординарным академиком и в 1831 г. – ординарным.

Деятельность Остроградского в Академии была весьма разносторонней. Он сделал более 85 научных сообщений, частью неопубликованных; читал публичные лекции; писал подробные отзывы на поступавшие в Академию работы, участвовал  в комиссиях по введению григорианского календаря и десятичных мер (что было сделано лишь после великой Октябрьской социалистической революции), по водоснабжению Петербурга и т. д., занимался по поручению правительства изысканиями по внешней баллистике, и т. д. Вместе с тем Остроградский много времени уделял преподаванию. С 1828 г. он начал читать лекции в Морском корпусе (впоследствии Морской академии), где преемниками его последовательно были В.Я. Буняковский, А.Н. Коркин, А.Н. Крылов. С годами педагогическая деятельность Остроградского становилась все более интенсивной. Он вел занятия по математике и механике в Институте инженеров путей сообщения,  Главном инженерном и Главном артиллерийском училищах, Главном педагогическом институте. С 1847 г. и до своей смерти он работал на посту главного наблюдателя по преподаванию математических наук во всех военных заведениях страны. Ему принадлежат несколько руководств по элементарной и высшей математике.

Педагогические взгляды Остроградского были весьма прогрессивными. Он считал, что в гимназиях и кадетских корпусах нужны лаборатории и мастерские, где учащиеся приобретали бы трудовые навыки, производили опыты и наблюдения. Он выступал за наглядность обучения математике, особенно в раннем возрасте, и критиковал сухое и формальное изложение этого предмета в современной ему школе. Он был сторонником введения в специальных старших классах средних военных учебных заведений идеи функции и начал анализа; курс математики, с его точки зрения, должен быть связан с другими предметами, как физика, в которых применяются математические методы. Как видно, в ряде пунктов Остроградский предвосхитил идеи так называемого движения за реформу преподавания, возникшего в начале XX века. Кое-чего Остроградский достиг в этом направлении в кадетских корпусах. Однако более широкая реализация педагогических установок Остроградского стала возможной лишь много позднее. Свое общее педагогическое credo Остроградский  изложил в написанной совместно с парижским математиком и инженером И.-О. Блюмом (1812-1877) брошюре “Размышления о преподавании”, вышедшей на французском языке.  Чтение этого блестящего по изложению и глубокого по содержанию сочинения интересно и в наши дни. Школьное преподавание арифметики, алгебры и геометрии, - писали авторы, - ничем “не напоминает о насущной необходимости изучения этих предметов для насущной жизни” и на деле дает “только тот результат, что их усваивает очень небольшое число учеников”. Этому в брошюре ярко противопоставлены принципы обучения,  воспитывающего наблюдательность и любознательность, техническую сноровку  и научное мышление. Для повышения интереса и привлечения внимания учеников Блюм и Остроградский рекомендовали использовать историю наук и биографии выдающихся людей, “принесших пользу наукам и искусству”:”Это в одно и то же время отличная разрядка и средство с помощью живого рассказа запечатлеть то или иное основное положение, либо удачное приложение теоретических принципов”.

Школьная математика должна учитывать особенности детского восприятия, но следует избегать общепринятой недооценки возможностей детей уже с семилетнего возраста. В брошюре разобран вопрос об обучении ребят до 12 лет, причем только в гимназиях или специальных учебных заведениях; более массовые школы, где учат началам чтения, письма и счета оставлены были в стороне. 

Остроградский оказал значительное влияние на развитие математики и механики. Он, в частности, подготовлял условия для создания математической школы, организованной Чебышевым, и сам основал русскую школу механики. К его исследованиям примыкают многие последующие работы по математической физике, по теории интегрирования иррациональных функций, по теории кратных интегралов и даже по теории вероятностей, которыми он сам занимался немного. Прямыми учениками Остроградского были создатель теории автоматического регулирования И. А. Вышнеградский (1831-1895), автор классических исследований по теории трения и влияния на него смазки и по теории механизмов Н. П. Петров (1822-1889) и другие. Все перечисленные математики вышли из Главного педагогического института, где Остроградский преподавал с 1832 по 1859 г..

Научные заслуги Остроградского были высоко оценены и за рубежом. Он был избран членом-корреспондентом французской Академии наук в 1856 г., а еще ранее членом Американской академии наук и академий в Турине и в Риме. Скончался он 1 января 1862 г. 

Большую научную работу М. В. Остроградский сочетал с интенсивной педагогической деятельностью. Он читал лекция в Морском кадетском корпусе, в Главном педагогическом институте, в Институте корпуса инженеров путей сообщения и других учебных заведениях, в течение 15 лет вел большую работу, направленную на улучшение преподавания математики в военных учебных заведениях России. Ученик акад. Остроградского К. А. Яниш писал: «Центром всей математической деятельности в России вполне можно назвать Остроградского. Его ученые труды, его уроки, его советы, может быть, служат основанием всему, что по части математических наук делается у нас несколько замечательного».

В сферу своей кипучей научно-методической деятельности М. В. Остроградский вовлек виднейших математиков того времени: В. Я. Буняковского, И. И. Сомова, П. Л. Чебышева, Д. М. Перевощикова.

Для военно-учебных заведений М. В. Остроградский написал учебник «Руководство начальной геометрии». Как замечал сам автор, это сочинение отличается от других руководств по той же науке развитием основных начал, порядком теорем и способом доказательств. Автор не склонен был в изложении элементарной геометрии придерживаться какого-нибудь методического трафарета, тем более традиционного следования Евклиду, а старался отыскать новые пути в этом направлении. В своем учебнике М. В. Остроградский выдвинул следующие принципы:

1.   Изложение геометрии необходимо начинать с подробных объяснений оснований, на которых она строится (анализ предложений и начальных истин).

2.   При рассмотрении каждого вопроса надо исходить из более общей его постановки, из которой он вытекал бы как частный случай.

3.   Запрещается подменять доказательство какого бы то ни было предложения ссылкой на чертеж. Всякое доказательство в геометрии должно состоять из логических рассуждений, в которых роль наших наглядных представлений исключительно вспомогательная.

4.   Изложение метрической геометрии, по возможности, должно быть аналитическим (алгебраическим), в котором чертежи не обязательны.

Учебник геометрии М. В. Остроградского и выдвинутые им положения были предметом горячей дискуссии и тем самым способствовали нахождению правильных путей к построению учебника, отвечающего всем необходимым научным и педагогическим требованиям.

«Имея счастье быть его учеником, я не иначе могу вспомнить о его лекциях, как с глубокой признательностью к своему великому учителю. Михаил Васильевич читал лекции так, что увлекал всех; самые сложные и трудные вещи излагал с такой простотой и ясностью, что не понять было невозможно, но, заметив, что и тут могут (встретиться некоторые затруднения, он тотчас проводил другое доказательства, нисколько не задумываясь, как великий мастер своего дела, обладавший необыкновенным талантом совершенствовать и вести его вперед».

freepapers.ru

Остроградский Михаил Васильевич. Каталог рефератов

Остроградский Михаил Васильевич

(1801—1862) математик

Родился в селе Пашенная на Полтавщине. В 1816—1821 гг учился в Харьковском университете. В 1822—1827 гг совершенствовал математическое образование во Франции: слушал математические курсы на Парижском факультете наук и в Коллеж де Франс, что позволило ему называть своими учителями таких крупных французских ученых, как А. Л. Коши, Л. Пуансо, Ж.Ф М. Бине, Ж. Ш. Ф. Штурма, Г. Ламе. С 1828 г. М. В. Остроградский работал в Петербурге: в Морском кадетском корпусе, с 1830 г. — в Институте корпуса инженеров путей, с 1832 г. — профессор Главного педагогического института, с 1840 г. — профессор Главного инженерного училища, с 1841 г. — профессор Главного артиллерийского училища.Праци М. В. Остроградского посвящен аналитической механике, гидромеханике, теории упругости, небесной механике, математической физике, математическому анализу и теории дифференциальных уравнений. Развил теорию волн на поверхности тяжелой идеальной жидкости (1826). Исследовал малые колебания упругих тел (1829—1832).

На М. В. Остроградского большое влияние оказала французская математическая школа. Находясь во Франции, своим талантом он привлек внимание знаменитых ученых Лапласа, Фурье, Ампера, Пуассона, Коши, опубликовал во французских математических изданиях первые свои труды. Некоторое время преподавал математику в Коллегиуме Генриха IV. По просьбе отца вернулся в Россию и вскоре блестящим математическим талантом и глубоким ознакомлением с математической литературой привлек внимание Петербургской Академии наук, в 1828 г. избрала его адъюнктом, а через два года — академиком.

М. В. Остроградский — выдающийся педагог, преподавал во многих учебных заведениях Петербурга. Ряд его работ касается вопросов методики преподавания математики и механики в высшей и средней школах.

Из многочисленных и разнообразных его трудов в различных областях математических наук, сделавшие его имя известным во многих странах, следует особо отметить его мемуары в области чистой математики, в котором выводится общая формула вариации кратного интеграла (1834 г.), а также мемуары об интегрировании рациональных функций.

В области механики он удачно развил мысль Фурье о том, что условия возможных перемещений иногда следует выражать неровностями и вводить связи, зависящих от времени (1834 г.). Оригинальным образом решил вопрос гидромеханики о равновесии сферического слоя жидкости. Особенно ценным оказался его мемуары (1854), содержащий полную теорию ударов. В 1848 г. предложил оригинальный вывод канонических уравнений, исследовал интегралы общих уравнений динамики, а также решил изопериметричну задачу.

Прочитанные М. В. Остроградским курсы небесной механики (1829, 1830 гг.) Являются не только важными с педагогической точки зрения, но и глубоко научными. В них ему удалось упростить некоторые методы, которыми эта отрасль механики вскоре перед этим обогатилась. Первые пять лекций посвящены изложению общих теорий, семь следующих — применению этих теорий к движению планет. Лекции заканчивались составлением и интегрированием уравнений возрастных не-равенств и применением способа Пуассона для периодических неравенств. Во время своего пребывания в Париже в 1830 г. М. В. Остроградский подал эти лекции Парижской Академии наук и получил от нее очень благоприятные отзывы Араго и Пуассона.

В другом курсе — лекциях по алгебраического и трансцендентного анализа (1836, 1837 гг.) М. В. Остроградский ознакомил слушателей с новыми идеями и методами в области алгебраических уравнений, осуществленными Лагранжа, Коши, Штурмом, Гаусса, Абелем и др.

В области анализа бесконечно малых М. В. Остроградский нашел условия и способ для выражения алгебраической функцией как интеграла рационального дроби, так и интеграла от функции, содержащей квадратный корень из целого многочлена.

Начиная с 1830-х годов занимался внешней баллистикой. Вывел уравнение движения снаряда, изучал сопротивление воздуха, действие выстрела на лафет орудия. В теории потенциала решил некоторые задачи, касающиеся привлечения сферы и сфероид. Исследовал распространения тепла в твердых телах, получил уравнения распространения тепла в жидкостях.

В области математической физики он осуществил обобщение приема, применяемого при интегрировании уравнений с частными дифференциалами. Представляет также интерес его решение о распространении тепла в призме.

Имя М. В. Остроградского носит разработанный им средство выделения рациональной части неопределенного интеграла, позволивший алгебраическим путем представить его в виде суммы двух приложений, причем второе приложение рациональной части не содержит. Формула Грина-Остроградского (1828) выражает преобразования интеграла, исчисленного по объему, ограниченным определенной поверхностью, в интеграл, вычисленный по этой поверхности. Эту формулу он обобщил в 1834 г. на случай n-кратного интеграла.

М. В. Остроградский вывел формулу превращения двойных интегралов в тройные. В 1836 г. одновременно с К. Г. Я. Якоби и Э. Ш. Каталано он разработал способ замены переменных в кратных интегралов. Независимо от У. Р. Гамильтона открыл принцип наименьшего действия (принцип Гамильтона-Остроградского.

Другие работы посвящены проблемам вариационного исчисления, интегрированию алгебраических функций, теории чисел, алгебре, геометрии, теории вероятностей. М. В. Остроградский не понял идей неевклидовой геометрии, развитых Н. И. Лобачевским, и резко выступил против них.

М. В. Остроградского был избран иностранным членом Парижской, Туринской, Римской и Американской Академий наук.

М. В. Остроградский создал эффективную школу прикладной механики. Его учениками были выдающиеся ученые: академик И. А. Вышнеградский, профессора М. П. Петров, Д. И. Журавский, Г. Е. Паукер, М. Ф. Ястржембский, С. В. Кербедз и др.

referatop.ru

Михаил васильевич остроградский

МИХАИЛ ВАСИЛЬЕВИЧ ОСТРОГРАДСКИЙ

Родился 24 сентября 1801 г. в деревне Пашенной Кобелякского уезда Полтавской губернии в семье небогатого помещика.

В 1816 г. он поступил на физико-математическое отделение Харьковского университета и вскоре стал удивлять всех своими необыкновенными успехами в изучении математики. На Михаила обратил внимание ректор университета, профессор Т. Ф. Осиповский - талантливый математик и выдающийся педагог. Он расположил к себе многообещающего юношу и руководил его занятиями. В октябре 1818 г. Остроградский окончил Харьковский университет, а 1820 г. он успешно сдал экзамены на звание кандидата наук. Перед ним, казалось, открывалась прямая дорога к университетской профессуре.

Однако ученой степени Остроградский не получил, и причиной тому послужила острая идейная борьба, развернувшаяся в Харьковском и других университетах России, вызванная наступлением реакции в последние годы царствования Александра I. Первыми жертвами реакции стали просвещение и университеты.

Т. Ф. Осиповский, любимец передового студенчества, человек откровенно материалистических убеждений, пришелся не ко двору. Его уволили в отставку, одновременно нанеся удар и по его единомышленникам и поклонникам. Одному из первых досталось его лучшему ученику Остроградскому, на которого донесли, что он не посещал лекций по философии и по обязательному для всех студентов «богопознанию и христианскому учению». На этом ничтожном, надуманном основании ему не только отказали в присуждении степени кандидата наук, но и лишили его диплома об окончании университета. Это было неслыханным глумлением над будущим ученым, чей талант был замечен уже тогда.

К счастью, мракобесам не удалось погубить талант Остроградского. Наоборот, в нем сильно укрепилась любовь к математике, и он решает продолжить свои занятия в Париже под руководством выдающихся математиков Политехнической школы. Он приезжает туда в мае 1822 г. В Политехнической школе, Сорбонне, коллеж де Франс он слушает лекции знаменитых ученых Коши, Фурье, Лапласа, Монжа, Пуассона, Лежандра, Штурма, Понселе, Вине и других, пролагавших новые пути в математическом анализе, математической физике и механике. Изучив и усвоив результаты, достигнутые французской математической школой, Остроградский и сам стал заниматься важными и актуальными вопросами того времени, часто опережая своих парижских коллег.

Выдающиеся способности молодого ученого вскоре получили довольно широкое признание. Так, Коши в мемуаре, напечатанном в журнале Парижской академии наук в 1825 г., с похвалой отзывается о первых научных исследованиях Остроградского, посвященных вычислению интегралов. Коши писал: «...один русский молодой человек, одаренный большой проницательностью и весьма искусный в вычислении бесконечно малых, Остроградский, прибегнув также к употреблению тех же интегралов и к преобразованию их в обыкновенные, дал новое доказательство формул, мною выше упомянутых, и обобщил другие формулы, помещенные мной в 19-й тетради Политехнической школы. Господин Остроградский любезно сообщил мне главные результаты своей работы».

В 1826 г. русский ученый представил Парижской Академии наук свою первую научную работу - «Мемуар о распространении волн в цилиндрическом бассейне», высоко оцененную Коши и напечатанную в трудах Академии. О научном значении этой работы можно судить хотя бы по тому, что еще в 1816 г. Академия объявила специальный конкурс на ее решение.

В 1824-1827 гг. Остроградский представил еще несколько мемуаров. Эти работы укрепили научную репутацию молодого ученого и завоевали ему дружбу и уважение многих французских математиков.

Но Михаила Васильевича неумолимо тянет на родину, где об его успехах хорошо знали. Недаром молодых людей, отправлявшихся учиться за границу, родные и близкие напутствовали словами: «Становись Остроградским».

В 1828 г. он выехал в Россию. Тяжелой была эта поездка. В дороге его обокрали, и ему пришлось от Франкфурта-на-Майне до Петербурга добираться пешком. «Русский пешеход», пробирающийся к тому же из-за границы, выглядел весьма подозрительным, и мнительные власти, которым везде чудились восстания декабристов, установили за ним тайный полицейский надзор. Вероятно, об этом Остроградский не знал до конца своих дней.

Сразу же после приезда Остроградского в Петербург началась его плодотворная работа в Академии наук и кипучая педагогическая деятельность. Академия наук высоко оценила научную деятельность Остроградского: в августе 1830 г. его избрали экстраординарным, а через год - ординарным академиком по прикладной математике. С этого времени его жизнь была полна творческих удач, и деятельность его отмечалась присвоением ряда почетных ученых званий. Так, в 1834 г. он был избран членом Американской Академии наук, в 1841 г. - членом Туринской Академии, в 1853 г. - членом Римской Академии Линчей и в 1856 г. - членом-корреспондентом Парижской Академии.

Научные интересы Остроградского определились рано, еще до отъезда в Париж. В объяснении совету Харьковского университета Остроградский еще в 1820 г. писал, что желает «усовершенствовать себя по части наук, относящихся к прикладной математике». И действительно многие свои труды он посвятил математической физике и механике, став одним из тех, кто заложил фундамент этих наук.

По математической физике Остроградский написал пятнадцать работ. Большая часть их относится к задачам распространения тепла, теории упругости, гидродинамики. Наибольшее научное значение имеют его работы по теории теплоты. Эти исследования, помимо того, что содержат важнейшие результаты, относящиеся непосредственное к теории распространения тепла, имеют огромное общематематическое значение. В них, с одной стороны, заложены начала для ряда важных теорий, развивающихся в наше время, а с другой стороны, в них содержатся теоремы, являющиеся одними из центральных в математическом анализе.

Первым из русских ученых Остроградский стал заниматься аналитической механикой. Ему принадлежат первоклассные исследования по методам интегрирования уравнений аналитической механики и разработке обобщенных принципов статики и динамики.

Наиболее выдающиеся исследования Остроградского относятся к обобщениям основных принципов и методов механики. Он внес существенный вклад в развитие вариационных принципов. Вариационные принципы механики входят в круг вопросов, интересовавших ученого в течение всей его жизни. Постоянное возвращение к вариационному исчислению и вариационным принципам механики роднит его с Лагранжем, одним из создателей вариационного исчисления и творцом аналитической механики.

Остроградский изучал проблемы аналитической механики в самом общем виде. Такая постановка вопроса вела в свою очередь к изучению вариационного исчисления, в которое, как частный случай, входит динамика. Мемуар Остроградского «О дифференциальных уравнениях, относящихся к задаче изопериметров», напечатанной в «Трудах» Петербургской академии наук в 1850 г. принадлежит в равной мере механике и вариационному исчислению. В силу такого подхода исследования Остроградского по механике значительно обогатили и развили понимание вариационных принципов, прежде всего, с математической точки зрения. Поэтому интегрально-вариационный принцип, сформулированный Гамильтоном, справедливо называется принципом Гамильтона-Остроградского.

Его труды по механике, включая «Лекции по аналитической механике» и «Курс небесной механики», явились фундаментом, на котором строилась и развивалась русская школа в области механики. Работы Остроградского по математическому анализу в большинстве случаев вызваны его исследованиями по математической физике и механике: они дают решение математических вопросов, поставленных теоретическим естествознанием того времени. Так, в связи с исследованиями вопросов распространения тепла в твердом теле он получил знаменитую формулу, вошедшую теперь во все учебники математического анализа под именем формулы Остроградского-Грина. В настоящее время эта формула играет огромную роль в математической физике, векторном анализе и других разделах математики и ее приложений.

Не будет преувеличением сказать, что Остроградский внес выдающийся вклад и в область математического анализа. Его результаты вошли в современную математику в качестве существенной и неотъемлемой ее части и представляют собой то необходимое оружие, без которого математика уже не может обойтись.

В круг интересов Остроградского входили также и алгебра, и теория чисел, и теория вероятностей. По словам Н. Е. Жуковского, «в творениях М. В. Остроградского нас привлекает общность анализа, основная мысль, столь же широкая, как широк простор его родных полей».

Остроградский оказал неоценимую услугу русской науке, воспитав целую плеяду талантливых учеников, впоследствии выдающимися представителями русской науки. В их числе И. А. Вышнеградский - основоположник теории автоматического регулирования; Н. П. Петров - создатель гидродинамической теории смазки и автор классических исследований по теории механизмов, А. Н. Тихомандрицкий, Е. И. Бейер, Д. М. Деларю, Е. Ф. Сабинин - профессора математики и многие другие математики и выдающиеся инженеры.

В разные годы Остроградский преподавал в Офицерских классах при Морском кадетском корпусе, был профессором Института корпуса инженеров путей сообщения, лучшего в то время технического учебного заведения страны. Он читал курс лекций на физико-математическом отделении Главного педагогического института, в стенах которого учились Д. И. Менделеев, Н. А. Добролюбов, И. А. Вышнеградский. С 1841 г. преподавал в Офицерских классах Главного артиллерийского и Главного инженерного училищ. Остроградский до конца своей жизни оставался профессором всех этих учебных заведений.

На основе составленных при участии и под руководством Остроградского учебных планов, программ и конспектов были составлены учебные руководства по математическим наукам для военно-учебных заведений. В 1852 г. вышли в литографированном издании лекции по аналитической механике, читанные Остроградским в Главном педагогическом институте. Эти лекции имели большое значение для распространения физико-математических наук в России. Изложение Остроградского во многом оригинально. Он искал в механике наиболее простых и общих принципов, позволяющих доказывать ее теоремы наиболее изящно, кратко и просто.

Студенты с восторгом встретили новый курс Остроградского. Один из слушателей Института инженеров путей сообщения В. А. Панаев, впоследствии крупный инженер, вспоминал: «Сочинение, которым Остроградский обессмертил себя, разрешив основной вопрос самой высшей мировой науки о движении, не разрешенный до того ни одним из прежних великих геометров, чем и короновал эту науку окончательно, и такой-то классический труд в цельном виде, отдельным сочинением, которого ждал ученый мир с нетерпением, в печати не появился. Отчего же не появилось это сочинение? Все по той же причине; у Остроградского не было материальных средств».

Также Остроградский, написал несколько учебных пособий и трехтомное «Руководство начальной геометрии».

Он был решительным сторонником введения в старших классах средних школ идеи функции и начал анализа. По его инициативе в 1850 г. в кадетских корпусах были введены элементы высшей математики. Он шел еще дальше и утверждал, что основные понятия высшей математики должны стать достоянием широких кругов грамотных людей. Остроградский настойчиво добивался, чтобы преподавание математики и механики было увязано с физикой и естествознанием. Таким образом, есть все основания заключить, что в ряде пунктов Остроградский предвосхитил идеи известного международного движения за реформу преподавания, возникшего в XX веке.

Педагогические интересы Остроградского не ограничивались лишь вопросами методики преподавания математики. Его глубоко интересовали и общие проблемы воспитания и образования, которыми он особенно увлекался в последние годы своей жизни. Примечательно в этом отношении его сочинение «Размышления о преподавании», написанное совместно с французским, математиком А. Блумом. Высказанные в нем идеи настолько свежи, интересны, что, появись эта брошюра в наши дни, она была бы воспринята читателем как увлекательное педагогическое сочинение, толкующее о вполне современных педагогических проблемах.

Интенсивная деятельность Остроградского продолжалась в Академии наук свыше тридцати лет; за это время в каждом томе «Записок» Академии были помещены его мемуары. Содержание этих мемуаров предварительно докладывалось на собраниях Академии.

Он давал отзывы на присылавшиеся в Академию исследования, читал циклы публичных лекций. Ученый принимал деятельное участие в работе разнообразных комиссий Академии наук: по введению григорианского календаря и по астрономическому определению мест империи, по исследованию возможности применения электромагнетизма для движения судов по способу, предложенному Б. С. Якоби, по введению в России десятичной системы мер, весов и монет и других.

Михаил Васильевич Остроградский скончался 1 января 1862 г.

referat.znate.ru


Смотрите также