Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Нанотехнологии в энергетике. На этот раз при помощи нанотехнологий совершен прорыв в области прямого. Нанотехнологии в электроэнергетике реферат


Нанотехнологии в современной энергетике и в энергетике будущего

Аналитический материал представленный Германом Евсеевичем Кричевским, профессором, доктором технических наук, вице-президентом НОР: Основные проблемы энергетики, реальные и потенциальные возможности нанотехнологии для их решения.

img {max-width:800px}

Введение.

Значимость энергетики в современном мире понимают все, её трудно переоценить. Поэтому более эффективное использование традиционных источников, переход от невозобновляемых к возобновляемым источникам энергии является одной из главенствующих планетарных задач, напрямую или опосредованно связанных с устойчивостью глобальной и региональных систем обеспечения энергией всех областей деятельности современного человека. Кроме того, эффективное, разумное использование энергии и её невозобновляемых источников напрямую или опосредованно связано с состоянием глобальной и региональной экологии.

Решить планетарные проблемы энергетики при ограниченности и всё менее недоступных и невозобновляемых традиционных источников энергии, можно только поставив на службу экономической эффективности энергетики комплекс конвергентных NBIC-технологий и примыкающей к ним бионики.

Хотя разделить возможный вклад на количественном уровне в эффективность энергетики настоящего и будущего всех этих технологий непросто, всё же большинство экспертов отдают пальму первенства нанотехнологиям. Поэтому в этом обзоре, в первую очередь, будем рассматривать использование нанотехнологий во всем широком спектре проблем энергетики.

Основные проблемы энергетики, реальные и потенциальные возможности нанотехнологии для их решения.

Основные задачи современный энергетики решаются в следующих областях:

  • Первичные источники энергии.
  • Производство и преобразование энергии.
  • Распространение энергии.
  • Хранение энергии.
  • Использование энергии.

Эти проблемы энергетики связаны сложными прямыми и опосредованными связями. На схеме рис.1 показано неразрывная цепочка этих связей (прямых и обратных).

krichevskiy-1.jpgРисунок 1.

В каждой из этих пяти фаз энергетики, в их решении, в повышении их эффективности находит в настоящее время, и будет находить еще более широкое использование в будущем применение нанотехнологий, как это показано в данном обзоре на наиболее ярких примерах.

Первичные источники энергии.

Фотовольтаика: нанооптимизация (эффективность) солнечных панелей (полимеры, красители, квантовые точки, нанотонкие пленки, антиотражающие покрытия, многослойные фотоэлементы с мультипереходами).

Энергия ветра: легкие и прочные полости пропеллера (лопасти винта) оптимальной геометрии из нанокомпозитов нового поколения, антикоррозионные покрытия.

Геотермальные источники: нанопокрытия и нанокомпозиты в износостойких устройствах бурильных установок.

Использование энергии волн прилива: коррозиестойкие покрытия.

Энергия биомассы: нанооптимизация (концентрация пестицидов, питание) режима выращивания биомассы (наносенсоры, актуаторы, процессоры).

Невозобновляемые источники (ископаемые), уголь, нефть, газ: погодостойкие и коррозиестойкие покрытия износостойких бурильных установок; добавки наночастиц, наноколлоидных систем для повышения эффективности бурения.

Атомная энергия: нанокомпозиты для защиты персонала от радиации, капсулирование источников радиации.

Производство энергии.

Газовые турбины: защита от коррозии и термодеструкции лопаток турбины (нанокерамика, интерметаллические нанопокрытия, повышение эффективности работы электростанций).

Термоэлектричество: наноструктурированные компаунды, наностержни, использование вторичного тепла для персонального пользования.

Топливные элементы: нанооптимизированные мембраны и электроды для повышения эффективности топливных элементов в автомобилях и в мобильной электроники.

Производство водорода: нанокатализаторы, нанофотоника, новые нанотехнологии, фотоэлектрика.

Двигатели внутреннего сгорания: износо- и коррозиестойкие нанопокрытия для защиты деталей двигателя, нанодобавки в топливо и масло.

Электромоторы: нанокомпозиты для сверхпроводимости компонентов в электромоторах, например электродвигателей кораблей.

Распространение энергии.

Передача энергии: высоковольтные линии с нанонаполнителями для электроизоляторов, мягкие магнитные наноматериалы для эффективной передачи энергии.

Сверхпроводимость: оптимизация высокотемпературной сверхпроводимости, основанной на наноразмерном интерфейсе с целью уменьшения потери электричества при его передаче.

Линии передач на основе углеродных трубок: сверхпроводимые кабели на основе углеродных трубок.

Беспроводная передача энергии: с помощью лазеров, микроволн и электромагнитного резонанса на основе нанооптимизации компонентов.

Умные линии передач: наносенсоры (магниточувствительные) для умных гибких передач с умным экономичным управлением сетей, в том числе

Теплопередача: оптимизация передачи (углеродные нанотрубки и композиты на их основе) в промышленности, сельском хозяйстве и домохозяйствах.

Хранение энергии.

Электрическая энергия: оптимизация устройства и работы Li-ионных батарей на основе наноструктурированных электродов и гибких керамических разделительных нанопленок в мобильных устройствах, в линиях передач.

Сверхнакопители (конденсаторы): наноматериалы для электродов (углеродный аэрогель, углеродные нанотрубки, наночастицы оксидов металлов, электролиты для повышения плотности электроэнергии).

Химическая энергия: водород, нанопористые материалы, металлорганика, гидриды металлов для микротепловых панелей в мобильной электронике, в автомобилях.

Трансформация (модификация) и очистка топлива: нанокатализаторы для повышения эффективности добычи, перегонки нефти, десульфуризации нефти, сжижения угля.

Резервуары для топлива: нанокомпозитные материалы для снижения улетучиваемости углеводородов.

Тепловая энергия: материалы с «памятью» формы для кондиционирования зданий.

Адсорбционное хранение: нанопористые материалы (цеолиты) для обратимого хранения тепла в зданиях и тепловых сетях.

Использование энергии.

Теплоизоляция: нанопористые пены и гели, аэрогели, полимерные пены для теплоизоляции зданий и в промышленных технологиях.

Кондиционирование воздуха: умное управление световыми и тепловыми потоками в зданиях с помощью наноэлектрохромных окон, микрозеркал и ИК-рефлекторов.

Легкие конструкции: материалы на основе нанокомпозитов, углеродные нанотрубки, металлополимерные композиции, легкие металлические изделия с нанопокрытием.

Промышленные процессы: замена энергозатратных процессов на нанотехнологии (нанокатализаторы, самосборка).

Освещение: энергосберегающие системы (лампы, светодиоды, квантовые точки).

Из предыдущего краткого изложения возможных вариантов использования нанотехнологий в энергетике в настоящее время и в будущем, следует, что это возможно во всех областях производства, распространения, хранения и использования всех видов энергии, произведенной из невозобновляемых и возобновляемых источников. В традиционных источниках энергии (полезные ископаемые, атомная энергетика) и в альтернативных возобновляемых источниках (фотовольтаика, геотермальная энергия солнца, ветра, воды и приливов, биомассы) начинают использовать нанотехнологии в различной форме.

Можно будет прогнозировать практическое расширение нанотехнологии в будущем. Так нанопокрытия для погодостойких бурильных установок позволяют оптимизировать и повышать эффективность при добыче нефти, газа и в геотермальной энергетике. Нанопокрытия можно применять для защиты от погоды и коррозии различных устройств во всех случаях эксплуатации установок на открытом воздухе и в воде. Обеспечение конструкций при одновременном повышении их прочности достигается с помощью легких и прочных нанокомпозитов, в которых полимерная матрица наполнена наночастицами, нановолокнами, нанотрубками различной химической природы.

Нанотехнологии играют важную роль во всех направлениях энергетики, использующей солнечную энергию (гибкая фотовольтаика с антирефлекторным нанопокрытием на основе кремния, красителей, полимеров). Среднесрочный прогноз повышения эффективности использования нанотехнологий в совершенствовании первичных источников энергии на 10%, долгосрочный – на 60%.

Превращение первичных источников в различные виды энергии.

Превращение первичных источников энергии в электрическую, тепловую и кинетическую требует повышения эффективности, которая далеко не всегда высокая. При этом необходимо еще и не увеличить выброс углекислого газа в атмосферу, что наиболее актуально при сжигании газа и на паровых электростанциях. Повышение эффективности превращений энергии требует существенного повышения температуры и, следовательно, повышения термостойкости лопаток турбин, снижение веса частей турбин (материал из сплава титана и алюминия). Снижение выброса углекислого газа достигается использованием наноразмерных мембран для улавливания углекислого газа при сжигании угля на электростанциях.

При выработке электрической энергии за счет химической в топливных элементах, используют наноструктурированные электроды, катализаторы и мембраны, что очень важно для повышения эффективности топливных ячеек в электромобилях, при обогреве зданий, в мобильной электронике. В термоэлектрических превращениях используют те же подходы. Наноструктурированные полупроводники с оптимальными пограничными слоями повышают эффективность при утилизации тепла в автомобилях, при использовании тепла тела человека для выработки электричества для зарядки мобильной электроники, встроенной в одежду.

Снижение потерь при передаче энергии и умные линии передач.

Эта задача может быть решена за счет сверхпроводимых наноматериалов (углеродные нанотрубки) при изготовлении электрокабелей и линий электропередач. В долгосрочной перспективе – беспроводная передача энергии с помощью лазеров, микроволновых устройств или электромагнитного резонанса. Использование нанотехнологий для оптимизации распределения электроэнергии с целью ее большей доступности и дешевизны (сенсорные устройства, мониторящие распределение электричества в цепях).

Хранение энергии.

Нанотехнологии с успехом могут быть использованы в повышении эффективности хранения энергии (Li-ионные батареи с нанокерамическими элементами, теплостойкие, гибкие, фильтрующие наноматериалы, высокоэффективные электроды). Эти элементы нанотехнологий используются в электро- и гибридных автомобилях, также и в стационарных условиях хранения энергии.

Очень перспективным является хранение водорода в нанопористых материалах, поскольку водород в будущем займет одно из ведущих мест среди других носителей энергии.

Нанопористые металлоорганические материалы используются для портативной, мобильной электроники. Для хранения тепла в зданиях используют наноматериалы с «памятью» формы, как латентные хранители тепла. С этой же целью используют адсорбционный способ хранения тепла с помощью природных наноматериалов из цеолита. Сорбция влаги в порах цеолита обеспечивает реверсивное хранение тепла.

Использование энергии.

Помимо стабильного, устойчивого снабжения энергией и одновременной оптимизации развития эффективных источников энергии, необходимо обеспечить эффективность использования энергии, снизить потери энергии при ее использовании. Этот системный подход решается с помощью нанотехнологий. Пример снижения расхода топлива в транспорте всех видов – снижение общего веса транспорта за счет использования легких и прочных нанокомпозитных материалов, составляющих значительную часть в современном транспорте, оптимизация работы двигателей за счет нанопокрытий, добавки в топливо наноприсадок, за счет конструкции экономических легких шин колес с высоким сроком эксплуатации.

Рисунок 2. Дорожная карта использования НТ в энергетике.

На рисунке 2 показаны сценарий и примеры использования нанотехнологий во всех ипостасях энергетики настоящего и будущего.

Из краткого изложения возможностей нанотехнологий в решении проблем энергетики настоящего и будущего следует, что этот путь позволит решать глобальные и локальные проблемы энергетики за счет разнообразных наноматериалов нового поколения, создания и развития новых видов производства и хранения энергии при одновременном улучшении глобальной и локальной экологии за счет снижения выброса углекислого газа в атмосферу, особенно за счет производства энергии путем снижения использования углеводородного топлива.

Основные возможности нанотехнологии в решении проблем энергетики.

Химические средства:

  • Более эффективные нанокатализаторы в топливных элементах за счет увеличения общей поверхности катализатора и природы катализаторов.
  • Более мощные батареи, аккумуляторы и супернакопители за счет увеличения поверхности электродов из наноматериалов.
  • Оптимизация наноструктуры термо- и коррозиестойких мембран для использования электролитных топливных элементов на основе полимеров и в Li-ионных батареях.

Механика, конструкция:

  • Повышение прочности конструкционных материалов для лопаток роторов на ветряках.
  • Нанопокрытие для бурильных установок, для компонентов двигателей и их корпуса.
  • Разделительные наномембраны для сепарации газа (очистка выбросов углекислогогаза при сжигании угля на электростанциях).
  • Газонепроникающие полимерные наноматериалы для снижения выделения испарений углеводородов из хранилища топлива.

Оптика:

  • Оптимизация абсорбции света солнечными панелями за счет использования квантовых точек и нанослоев в панелях.
  • Антиотражательные свойства солнечных панелей для повышения выхода энергии.
  • Люминесцентные полимеры для производства светодиодов с высоким выходом энергии.

Электроника:

  • Оптимизация проводимости электронов с помощью использования углеродных нанотрубок и наноструктурированных сверхпроводников.
  • Электроизоляция за счет наноструктурированных наполнителей в компонентах высоковольтных линий.
  • Использование наноструктурированных многослойных пленок в термоэлектрических установках.

Термические процессы:

  • Наноструктурированные теплоизоляционные материалы лопаток газовых турбин авиадвигателей.
  • Повышение теплопроводности углеродных нанотрубок для оптимизации теплообмена.
  • Оптимизация хранения тепла на основе нанопористых материалов (цеолиты) или микрокапсулированных материалов с изменяющимся фазовым состоянием.
  • Использование нанопен, как суперизоляции в зданиях старого типа и транспорта.

Инновационный потенциал нанотехнологии.

Значимость энергетики во всех ее проявлениях абсолютна, она занимает ведущее место в жизни современного человека, как индивидуума, так и всего сообщества. Так было всегда, когда человек на заре цивилизации научился пользоваться огнем, подаренным полубогом, получеловеком Прометеем (выкрал огонь у богов, заседавших на Олимпе). Сегодня энергетика всегда и везде (обогрев в зданиях, все промышленные процессы, информатика, транспорт и т.д.). Без энергетики и различных ее форм современный человек немыслим.

В дальнейшем потребности в энергии будут только возрастать, а меняться будет только баланс, соотношение традиционных невозобновляемых и альтернативных возобновляемых источников энергии. Очевидно, что уже сейчас, а в дальнейшем в еще большей степени придется экономить расходы всех видов энергии, решая одновременно и экономические проблемы выброса продуктов сгорания традиционного топлива. Эти задачи можно решить только за счет инноваций всех форм, и, прежде всего, за счет достижения нанотехнологий, всего комплекса технологий и, безусловно, бионики.

В настоящее время мировое потребление энергии составляет 12000 (МТОЕ) миллион тонн (в эквиваленте тонн нефти) и возрастет к 2030 году до 18000 МТОЕ. Основной вклад в столь высокий (~ 50 %) рост потребления обусловлен ростом экономики развивающихся стран (Китай, Индия), в которых не особенно пока озабочены экономией энергии.

Наибольшая потребность и расход энергии происходят во всех промышленных процессах, на транспорте, в обслуживании зданий, в других секторах бизнеса (торговля, сервис). Однако, наблюдается определенное различие в структуре потребления энергии в разных странах и регионах. Так, в индустриально развитых странах (Западная Европа, США, Япония), транспорт занимает ведущие позиции в расходе энергии, на вторые позиции выходит промышленность, в которую интенсивно внедряются новые энергосберегающие технологии.

Можно ожидать, что развивающиеся страны пойдут (уже начинают) по пути экономии энергии, замены традиционных источников энергии (тем более они их не имеют) на возобновляемые.

На рисунке 3 показана диаграмма структуры мирового расхода энергии по видам потребителей до 2030 года.

Рисунок 3. Потребление энергии различными видами потребителей.

Как можно видеть, в мировом потреблении энергии доля промышленности падает, а доля транспорта и домовых хозяйств возрастает.

В настоящее время примерно 80 % мирового потребления энергии приходится на ископаемые углеводороды (нефть, газ, уголь). Эксперты прогнозируют, что до 2030 года их доля существенно не изменится.

Разные страны и регионы, в зависимости от того имеется ли у них ископаемые углеводороды, ставят задачу их замены в той или иной степени. Так ЕС ставит такую амбициозную задачу – добиться увеличения доли альтернативных источников энергии на 20%, расход газа в домохозяйствах на 20% и повышение эффективности использования энергии на 20% к 2030 году. Германия в своих планах идет дальше и наметила заменить на 50% расход углеводородных источников к 2050 году.

Эксперты обозначили временный рубеж исчерпания невозобновляемых источников энергии: нефти, газа, урана хватит на 40–60 лет, угля на 200 лет. Правда запасы нефти увеличиваются за счет тяжелой нефти и сланцевой нефти, но добыча такой нефти дороже, и сама нефть будет дорогой.

На рисунке 3 показан прогноз потребления энергии различных видов и различных источников вплоть до 2100 года.

Рисунок 3. Потребление энергии различными видами потребителей.

Инновационный потенциал нанотехнологий применительно к энергетике во всех ее секторах.

Для обеспечения надежности, экономичности, эффективности глобальных и локальных систем обеспечения энергии необходимо не только развивать традиционные и новые источники энергии, по возможности дружественные к окружающей среде, но и минимизировать потери энергии при ее передаче пользователям, производить и эффективно распределять конечные (электромеханическая, тепловая и др.) виды энергии для различных областей потребления и гибко и эффективно использовать энергию у конечного потребителя (промышленность, транспорт, сервис, домохозяйство).

Все перечисленные этапы можно оптимизировать, в том числе и с помощью нанотехнологий. Последнее определяется в значительной степени от политических, экономических, экологических и общих условий в странах, регионах и на глобальном уровне. Но очень многое зависит от уровня развития и возможностей нанотехнологий.

Развитие с помощью нанотехнологий первичных источников энергии.

Фотовольтаика.

Мировой рынок устройств использования солнечной энергии быстро развивается. Так в 2007 году он составлял 16 миллиардов DS, а в 2010 году уже 30 миллиардов DS, т.е. увеличился почти в два раза. Этот очень бурный рост характерен для стран с развитой экономикой (Япония, Германия, США). Эксперты ожидают, что в течение 2–3-х десятилетий фотовольтаика обеспечит 20–30% от всей мировой потребности в энергетике. В Германии по данному направлению ведут разработки 150 компаний, где работает 50 тысяч сотрудников, годовой оборот насчитывает 4 миллиарда евро.

Однако, в настоящее время энергия, вырабатываемая с помощью продукции фотовольтаики неконкурентна по цене (~ в 3 раза дороже) с энергией, полученной на электростанциях (дорогой материал, низкий КПД и т.д.). Эти проблемы фотовольтаики решаются за счет использования нанотехнологий (полимерная, тонкопленочная, на основе фотоактивных красителей в фотовольтаике).

Фотовольтаика находит применение в портативной электронике, для контроля движения транспорта, в телекоммуникационных системах, в производстве нового поколения электродов. Среднесрочный прогноз по фотовольтаике на основе нового поколения полимеров – 10% от всей фотовольтаики.

На рисунке 5а показана динамика роста на мировом рынке фотовольтаики в период 2004–2010 года, а на рисунке 5б схематично показаны различные виды фотовольтаики и вклад каждой в рыночную продукцию в 2007 году. А на рисунке 5в представлены различные виды материалов для солнечных батарей.

Рисунок 5.

Использование силы ветра.

Мировой рынок использования силы ветра для производства электроэнергии в 2011 году составил примерно 50 миллиардов DS, а динамика роста по годам в период 2006–2011 года показана на рисунке 6.

Рисунок 6.

В Европе лидирующее положение по использованию ветряков занимает Германия (64 тысячи пользователей), оборот ~ 5 миллиардов евро в год. Около половины всех ветряков в мире задействованы в Германии, при этом себестоимость этого вида производства энергии в Германии сопоставимо с традиционными (электростанции различных видов).

Нанотехнологии в случае использования силы ветра используются для облегчения всей прочности (нанокомпозиты) и оптимальной устойчивости к светопогодостойкости (нанопокрытия) лопастей ветряков, антикоррозионные нанопокрытия коробки передач, наноматериалы для электропроводников, нанооптимизация хранения энергии и передачи ее на линии передач.

Использование биомассы как источника энергии (биотопливо).

Это самый древний источник энергии, поскольку древесину (дрова) человек использует от начала цивилизации, когда он овладел огнем, и до настоящего времени. Целлюлоза как полисахарид – один из главнейших продуктов растительного мира замечательно горит, давая тепло до сих пор при обогреве домов и в кострах на природе.

Существуют теории, что уголь, торф, нефть, газ являются продуктами биологических и химических превращений погибших растений и животных, произошедших много миллионов лет тому назад в толще земли. При сгорании и крекинге всех видов ископаемого топлива и растительных материалов (древесина, соломы, водоросли, злаковые) образуются близкие по химическому составу продукты. В настоящее время под понятием биомассы как источника энергии понимают различные виды растений в различных формах: отходы деревообработки, различные непригодные или малопригодные злаковые, разные виды трав.

В странах ЕС до 6–8% энергии получает из биотоплива. Лидерами являются Финляндия и Швеция, в которых доля биотоплива составляет соответственно 16 и 20% от общего потребления энергии. Но в общем мировом потреблении энергии этот источник составляет только примерно 11%.

Очень важную роль в балансе источников энергии на основе биомассы начинают занимать водоросли различных видов (http://rusnor.org/…es/10690.htm http://rusnor.org/…es/10752.htm). Причем используются водоросли, произрастающие в естественных водоемах и разводимые на специальных биофермах промышленным способом. Лидерами в мире первом случае является Китай, а во втором США.

Различные виды биомассы используется как источники энергии. Как таковые их в качестве топлива (сжигают) или подвергают сложным термохимическим превращениям, получая из них жидкое биотопливо (биометанол, биоэтанол, биодизель, биогаз и др.), как в случае коксо-, нефте- и газохимии. В этих термохимических превращениях растительной биомассы нанотехнологии реализуются через интенсификацию этих технологий за счет нанокатализаторов (повышение выхода конечного продукта, управление процессом с помощью наносенсоров) (рис.7).

Рисунок 7. Схема трехуровневой переработки водорослей в биотопливо и другие полезные продукты.

В случае выращивания водорослей на биофермах используют нанокапсулированные добавки ферментов и питание водорослей.

Рисунок 8.

На рисунке 8 показана общая схема трехуровневой переработки биотоплива.

Солнечная тепловая энергия.

Это тепловая энергия солнца, используемая как таковая или для перевода ее в электрическую энергию. Широко используется в настоящее время в странах и регионах с теплым жарким климатом (США, Австрия, Австралия, Африка, южная Европа). Различают низко-, средне- и высокотемпературные тепловые коллекторы, собирающие тепловые лучи солнца.

Низкотемпературные чаще всего используют для нагрева бассейнов, среднетемпературные для обогрева жилых и промышленных зданий, высокотемпературные используют в качестве зеркал и линз для концентрации солнечных лучей, способных нагревать теплоноситель до 300°С для промышленных целей.

Среднетемпературные коллекторы используют для обогрева, охлаждения и вентиляции в «умных» современных домах. Этот источник энергии имеет высокий КПД до 60–70 % и выигрывает у других источников энергии по себестоимости. С 2009 по 2013 годы инвестиции в этот сектор энергетики возросли с 1,8 до 6,8 миллиардов DS.

На рисунках 9 а,б показаны схемы использования солнечного тепла (до 400°С) для промышленного производства электричества и примеры практического использования солнечной энергии для обогрева помещений и для малых электростанций.

Рисунок 9.

Нанотехнологии используются для повышения эффективности сбора солнечных тепловых лучей за счет антиотражательных нанопокрытий, использования полимерных наноматериалов с изменяющимся фазовым состоянием для хранения энергии, использования углеродных покрытий с высокой эффективностью сорбции тепловых лучей и для повышения термо- и механостойкости коллекторов.

Геотермальная энергетика.

Геотермальная энергетика используется главным образом в вулканических районах Земли и для отопления и производства электрической энергии на специальных электростанциях. Различают гидротермальную и петротермальную энергетику. Гидроэнергетика – это использование горячей воды, нагретой вблизи вулканических пород (от 40 до 100°С и более), а петроэнергетика основана на глубинном бурении на глубину до 5–10 км, где температура соответственно 125–250°С.

Лидером в использовании геотермальной энергетики является США, на втором месте находятся Филиппины, где объем этого вида энергетики в 2 раза меньше, чем в США. Россия, где существует вулканические районы (Камчатка, Курилы и другие), неэффективно использует этот потенциал, мощность геотермических станций в РФ в 100 раз ниже, чем в США.

Нанотехнологии могут быть использованы для термо- и коррозионностойких нанопокрытий бурильных установок.

Преобразование разных видов энергии.

При трансформации, преобразовании одного вида энергии в другой, прежде всего, необходимо повышать эффективность этих переходов. Это очень важно при трансформации энергии традиционных видов топлива (нефть, газ, уголь) путем сжигания и использования турбин и двигателей внутреннего сгорания или в случае топливных элементов, где эффективность превращения химической энергии в электрическую является проблемой экономичности.

Те же проблемы повышения эффективности не решены и во всех других видах превращения энергии. Проблемы эффективности превращения энергии тесно связаны с экологическими проблемами снижения выброса СО2 в атмосферу при сжигании топлива на электростанциях, в двигателях всех видов транспорта, превращения энергии топлива при сжигании в двигателях и турбинах.

Особо остро проблема эффективности стоит в случае использования угля на электростанциях. В настоящее время использование достижений нанотехнологий позволило поднять эффективность до 45%. Еще несколько лет назад было только 35%. Современные газовые турбины характеризуется эффективностью 60%. Полная замена угля на газ на электростанциях позволит снизить выброс СО2 в атмосферу на 35%.

Повышение эффективности производства электричества на электростанциях за счет сжигания топлива достигается за счет существенного повышения температуры сжигания (600°С), а это требует создания термостойких деталей турбин. Для этого используется термостойкие градиентные титаносодержащие нанопокрытия.

Для снижения выбросов СО2 в атмосферу при использовании угля при сжигании используют наномембранную технологию. На рисунке 10 показано использование нанотехнологий в конструкциях современных турбин.

Рисунок 10.

Топливные элементы.

С помощью топливных элементов с высокой эффективностью преобразуют химическую энергию непосредственно в электрическую. Для работы топливных элементов в качестве химического сырья используют чистый водород, а также природный газ, метанол, бензол или биогаз, которые служат источником водорода. Топливные элементы это своеобразное электрохимическое устройство, в котором вещества («сырье») для электрохимических реакций, в результате которой возникает электрический ток, подаются в устройства извне (в отличие от батареек, аккумуляторов, и конденсаторов, где все реагенты находятся внутри этих устройств). Пример такого топливного элемента на основе водорода показан на рисунке 11.

Рисунок 11.

Самым простым природным топливным элементом является часть живой клетки – митохондрия, которая перерабатывает химическую энергию органических веществ (например, «сжигая» жирные кислоты и синтезирует АТФ – универсальный источник энергии в живых организмах). Этот принцип превращения энергии в технике пока не реализован (бионика), но не исключено, что мы этого дождемся.

Поскольку в топливных элементах химическая энергия «без посредников» непосредственно превращается в электрическую, то достигается высокая эффективность преобразования, достигающая в настоящее время 80% (без посредников во всех делах эффективность выше), но теоретически может превышать даже 100% (за счет дополнительного использования выделяющегося в химических реакциях тепла).

Топливные элементы в отличие от батарей и аккумуляторов могут работать до тех пор пока в них извне будут поступать химические реагенты, чаще всего Н2 и О2, а батареи и аккумуляторы перестают работать как только в них израсходуется реагенты. Топливные элементы в отличие от батареек и аккумуляторов не могут хранить электрическую энергию и должны быть подключены к потребителю электричества или к устройству хранения электричества. Необходимым устройством в топливных элементах является разделительная мембрана (проницаема для протонов, но не для электронов) из специального полимерного материала.

Область использования топливных элементов – мобильные устройства, электромобили, тепло- и электроснабжение домов, локальные маленькие электростанции, двигатели на яхтах, приватные информационные системы. В зависимости от области применения топливные элементы имеют различную конструкцию и виды используемых реагентов.

Вклад нанотехнологий в этот вид конверсии энергии – это миниатюризация устройства, совершенствование разделительных мембран, наноструктурированных электродов, использование нанокатализаторов. Для примера на рисунке 11 показана схема топливного элемента с электролит/электрод-ячейкой с использованием Н2 и О2 как реагентов.

Термоэлектричество.

Термоэлектричество – это прямое преобразование тепловой энергии в электрическую (можно направить трансформацию энергии в обратную сторону, то есть электрическим током нагревать или охлаждать систему).

В термоэлектрическом устройстве используется эффект Зеебека, то есть появление напряжении между двумя точками электрического проводника при наличии разницы температур в этих точках. Чем больше разница, тем больше электрической энергии возникает в проводнике. Материал электропроводника должен обладать хорошей электропроводностью и низкой теплопроводностью (сплав кремний/ германий), в котором генерируется ток при градиенте температуры 700°С.

Нанотехнологии в термоэлектричестве используются для производства полупроводников с оптимальным пограничным слоем. Термоэлектрические устройства используют в современных автомобилях, где образующиеся при сжигании топлива в двигателе продукты утилизируются для производства электричества, которым питают всю бортовую аппаратуру или используют физиологическое тепло тела человека для питания различных гаджетов, вмонтированных в текстиль умной одежды. Еще одна область использования термоэлектричества – в портативных холодильниках.

Сжигание и электродвигатели.

Значительная часть мирового потребления энергии приходится на индивидуальный моторизованный транспорт, работающий пока на двигателях внутреннего сгорания. Поэтому задача повышения эффективности в энергетике в значительной мере зависит от эффективности работы двигателей внутреннего сгорания.

Нанотехнологии помогают произвести термо- и коррозионностойкие детали двигателей за счет наноструктурированного покрытия, создавать более эффективное устройство вспрыскивания дизельного топлива под высоким давлением, добавки наноприсадок в топливо (бензин, дизельное), повышающие эффективность сгорания и экономя до 5–10% топлива. В будущем в электродвигателях с помощью нанотехнологий предполагается использовать сверхпроводимые материалы. Область применения таких электродвигателей расширится до авиации и производства газовых турбин.

Производство источников химической энергии.

Наиболее перспективным источником энергии удобным для хранения является водород, на котором как топливе могут работать топливные элементы. Проблема заключается в создании инфраструктуры промышленного производства водорода и создание широчайшей сети заправочных станций для электроавтомобилей. В настоящее время в США работают несколько сот таких заправок. К 2020 году планируется, что 6 миллионов электроавтомобили на водородном топливе будут бегать по дорогам Европы. Нанотехнологии вносят свой вклад в эту проблему путем разработки биохимической и фотохимической схемы производства Н2.

Хранение энергии.

Эта проблема стоит на всех фазах энергетики: от добычи топлива, превращения энергии, ее распространения и до использования конечным потребителем. Хранение энергии может быть необходимо в разных его формах (тепло, электричество, давление, химическая). Самую большую роль в этом ряду играет хранение тепловой энергии, используемой для обогрева зданий.

Хранение энергии на гидроэлектростанциях осуществляется в реверсивном (обратимом) режиме, при котором ГЭС имеет два бассейна (верхний и нижний, верхний может быть естественным). В часы низкого потребления электричества потребителем примерно (~7–12 часов в сутки) вода сбрасывается из верхнего бассейна в нижний, при пиковом (~2–6 часов в сутки) вода поднимается на турбину, где вырабатывается ток, идущий в сеть. При этом выравнивается нагрузка на потребление и снижается цена вырабатываемой электроэнергии.

Нанотехнологии «участвуют» в повышении эффективности ГЭС в производстве износостойких деталей глубинных насосов и термостойких лопаток турбин с наноструктурированным покрытием из металлокерамики.

Хранение электрической энергии.

В настоящее время хранение электрической энергии в основном используется в мобильной электронике (батарейки, аккумуляторы), а в будущем планируется широкое использование в гибридных электромобилях.

К устройствам для хранения электроэнергии, особенно используемым в мобильной электроники, предъявляются следующие требования: высокая эффективность и плотность энергии, время жизни, скорость включения, термостойкость, безопасность.

Многие из этих свойств создаются с использованием нанотехнологий. Примером являются Li-ионные батареи, отличающиеся высокой энергией и ее высокой плотностью. Такие батареи могут быть использованы в электромобилях, в ветряках, как мостик между потребителем и изменяющимся режимом производства электроэнергии. В будущем планируется использование таких батарей в «умных» и децентрализованных системах хранения электричества.

Хранение химической энергии.

В будущем хранение в химической форме будет играть очень большую роль, особенно хранение водорода как возобновляемого источника энергии. Решение этой проблемы на практике будет зависеть от создания инфраструктуры производства и хранения Н2, от эффективного менеджмента в этой индустрии производства, хранения и потребления Н2.

Существует четыре способа хранения Н2.

  1. В жидкой форме при температуре 270°С, эффективность хранения 7,5% от веса; преимущества и недостатки: малый объем, очень дорогая изоляция, потери энергии при сжигании, утечка газа при хранении.
  2. Газообразный Н2 при давлении 70 бар, эффективность хранения 6%; преимущества и недостатки; плохая технологичность, большие объемы резервуаров, большие риски из-за высокого давления.
  3. Использование наноразмерных гидридов металлов, например Mgh3, при температуре 300°С и давлении 8 бар, эффективность хранения 4–7%; преимущества и недостатки: высокий вес, низкая потребность в объеме, высокая температура.
  4. Использование нанопористых материалов на основе металлоорганики при температуре 210°С, давление 500 бар, эффективность хранения 7,5 %; преимущества и недостатки: малый вес, низкая температура, большой объем.

В технология хранения Н2 большое значение имеют барьерные свойства материалов хранилищ, которые выполняются из композитов с нанонаполнителем.

Хранение тепла.

Хранение тепла играет большую роль при обогреве и охлаждении зданий и человека с помощью «умной» одежды. И в том и другом случае используют традиционные изоляционные материалы – микропористые и новое поколение нанопористых (цеолиты) материалов, изменяющих фазовое состояние в зависимости от температуры. Последние обратимо абсорбируют тепло при фазовом переходе высвобождения тепла в окружающую среду.

Распространение энергии.

Проблема эффективности передачи энергии остро стоит при использовании традиционных линий передач, неспособных гибко адаптироваться к постоянным изменениям в подаче в них электроэнергии от её генераторов и потребления от пользователей. Для решения этих проблем адаптации и эффективности распространения энергии с использованием нанотехнологий создают наносенсоры и сверхпроводящие материалы на основе углеродных нанотрубок.

В долгосрочной перспективе для передачи энергии планируют использовать беспроводные технологии (лазер, микроволны, электромагнитный резонанс). В будущем планируется использовать солнечную энергию в космосе, преобразуя ее в электрическую и передавая на Землю с помощью лазеров и микроволновых устройств.

Экономический потенциал нанотехнологий в секторе экономики.

Нанотехнологии имеют огромный экономический потенциал использования во всех сферах энергетики, способствуя повышению эффективности и экологичности на всех стадиях: все виды источников энергии, производства, хранения и трансформации энергии, ее передачи и использования. Эксперты называют цифру в 40 миллиардов DS в краткосрочном периоде за счет использования нанотехнологий в энергетике.

Энергия на транспорте и нанотехнологии.

  • Легкие конструкции за счет использования нанокомпозитов в конструкции автомобилей, самолетов, судов и других видов транспорта. На рисунках 12 и 13 показано использование нанотехнологий в автотранспорте и в самолетах.
  • Экономия топлива за счет наноприсадок в форме наночастиц и износостойкая нанозащита частей двигателя.

Рисунок 12. Использование нанотехнологий в современном легковом автомобиле.

Рисунок 13. Использование нанотехнологий в современном самолете.

Современные промышленные и жилые строения.

  • Термо- (тепло-) изоляция за счет использования нанопористых материалов и нанокомпозитов для контроля за свето- и теплопотоками за счет умных стекол, тепловых рефлекторов. 80% изоляционных материалов используют в частных домах (2006 год – в Европе производство теплоизоляционных материалов оценивалось в 3 миллиарда DS).
  • Использование различных видов светодиодов для освещения (мировой рынок в 2010 году – 83 миллиарда DS, с годовым ростом ~15–20%). В будущем использование в передних фарах автомобилей, дисплеях компьютеров и ТВ. Огромная экономия (десятки процентов) за счет использования диодов в рекламе.

Хранение энергии.

Использование нанотехнологий в хранении энергии сосредоточено на совершенствование Li-ионных батарей для портативной электроники, электро- и гибридных автомобилей, при создании нанопористых материалов для хранения Н2. В 2014 году выигрыш от использования нанотехнологий в хранении энергии составил 5 миллиардов DS. Мировой оборот продаж только Li-ионных батарей в 2014 году составил 4 миллиарда DS.

Топливные солнечные элементы.

Использование нанотехнологий в области конверсии энергии, особенно совершенствование топливных элементов и солнечных панелей. В ближайшее время объемы производства достигнет в ценовом выражении ~10 миллиардов DS. Только оборот тонкослойных солнечных панелей в 2010 году на рынке составил 2 миллиарда DS. В основном это системы, построенные на замещение кремния на иные полупроводниковые материалы. Эта технология позволяет производить наноструктурированные слои с высокой фотоэффективностью. Эти материалы обладают термостойкостью, высокой фотоактивностью и находят применение в таких областях, как плоские надежные крыши – солнечные панели.

Ещё более динамично на основе нанотехнологий растет мировое производство топливных элементов. В 2013 году их было произведено на 18 миллиардов DS. В Европе в 2010 году было произведено топливных элементов на 1 миллиард евро, а в 2020 году производство планируется увеличить более чем в 20 раз (21,5 миллиардов евро). Такой рост производства топливных элементов связан с переходом в европейском и мировом автопроме от бензиновых и дизельных двигателей на электро-, гибридные и водородные двигатели.

На рисунке 14 показана динамика роста потребления солнечных панелей на основе тонких слоев различного состава и топливных элементов, которые подтверждают высокую динамику развития этих направлений энергетики с использованием нанотехнологий.

Рисунок 14. Динамика роста потребления солнечных панелей на основе тонких слоев различного состава и топливных элементов.

Высоко температурные сверхпроводники.

Это область также является интересным объектом приложения нанотехнологий, но мировой рынок этой продукции пока невелик, скорость его роста мала и в 2014 году составляля 300 миллионов DS, но к 2025 году достигнет 18 миллиардов DS. Основная экономия от использования ВТСП – понижение потери энергии при её передаче в двигателях, генераторах, преобразователях, трансмиссиях.

Термоэлектричество.

Это область конверсии энергии остается пока в лидерах, но и в ней использование нанотехнологий позволяет в настоящее время на мировом рынке иметь продукцию на основе принципа термоэлектричества объемом ~1 миллиард DS.

Использование вторичного тепла от двигателей на транспорте для производства локального электричества позволит в будущем сэкономить до 2/3 затрагиваемой энергии на транспорте, используя локальные термогенераторы (фирма BHW еще в 2011 году начала применять термогенераторы мощностью 750 ватт).

В заключение представим две обобщающие диаграммы и схему, подытоживающие предыдущий материал. На рисунке 15 представлена дорожная карта (стратегия) развития мировой энергетики в кратко-, средне- и долгосрочных прогнозах, при этом указаны главные направления и их решения с помощью нанотехнологий. На рисунке 16 обозначены основные цели использования энергетики в будущем и средства достижения этих целей. Наконец, на рисунке 17 представлена дорожная карта основных проблем (фаз общей цепочки) энергетики и их достижение с помощью нанотехнологий.

Рисунок 15. Цели энергетики и их решения с помощью нанотехнологий

Рисунок 16. Инфраструктура исследований развития энергетики с использованием нанотехнологий

Рисунок 17. Дорожная карта (стратегия) развития энергетики.

Послесловие автора.

Автор не специалист в энергетике, но нанотехнологии проникают всюду и особенно в энергетику, без которой развитие мира затормозится. Задача обзора показать специалистам и околоспециалистам в области наноэнергетики, что нанотехнологии изменяют саму парадигму развития цивилизации, и путь использования исключительно полезных ископаемых в виде топлива – путь в никуда. И скорее является политическим тормозом развития прогресса. И это в первую очередь должна понять пытливая молодежь, а не циничные политики.

Литература.

*1. Hessian Ministry of Economy, Transport, Urban and development (2008), Application of nano-technologies in the Energy Sector (http://www.hessen-nanotech.de/…ergy_web.pdf). *

*2. Nanoforum, European Nanotechnology Gateway (2004), Nanotechnology Helps Saving the World's Energy Problems (http://www.nanoforum.org). *

*3. Nanoscience Research for Energy Needs, National Nanotechnology Initiative 2004 (https://public.ornl.gov/conf/nanosummit2004/energy_needs.pdf). *

*4. Nanotechnology: Energizing the Future, Nanofrontiers Newsletter Fall 2008, Wooodrow Wilson International Center for Scholars, Project on Emerging Nanotechnologies (http://www.nanotechproject.org/publications/archive/nanotechnology_energizing_future/). *

*5. ObservatoryNANO Focus Report, Nanotechnology in batteries, April 2010 (http://www.observatorynano.eu) (includes a market evaluation report). *

*6. ObservatoryNANO Focus Report, Nanotechnology in batteries for electric vehicles, April 2010 (http://www.observatorynano.eu) (includes a market evaluation report). *

*7. Gratzel, M„ ‹Photoelectrochemical cells›, Nature, 2001, 414, 338–44. *

*8. Pandolfo, A. G., Hollenkamp, A. F., ‹Review: Carbon properties and their role in supercapacitors›, Journal of Power Sources, 2006, 157, 11–27. *

*9. Smalley, R. E,, ‹Future Global Energy Prosperity: The Terawatt Challenge›, Materials Matters Bulletin, Vol. 30, June 2005, 412–417; a comprehensive overview of the ‹Energy challenge› discussed by Professor R. E. Smalley is available online (http://smalley.rice.edu) (free access). *

*10. Zach, M., Hagglund, C„ Chakarov, D., Kasemo, B., ‹Nanoscience and nanotechnology for advanced energy systems›, Current Opinion in Solid State and Materials Science, 10 (2006) 132–143. *

*11. Boukai, A. I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard, W. A., Heath, J. R., ‹Silicon nanowires as efficient thermoelectric materials›, Nature, 2008, 451, 168–171. *

*12. Bowers II, M. J., McBride, J. R., Rosenthal, S., ‹White-Light Emission from Magic-Sized Cadmium Selenide Nanocrystals›, Journal of the American Chemical Society, 2005, 127, 15378–15379. *

*13. Du, C., Pan, N., ‹High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition›, Nanotechnology, 2006, 17, 5314–5318. *

*14. Lauritsen, J. V., Bollinger, M. V., Laegsgaard, E., Jacobsen, K. W.,** N0rskov,** J. K., Clausen, B. S., Topsoe, H., Besenbacher, F., ‹Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts›, Journal of Catalysis, 2004, 221, pp. 510–522. *

*15. Lauritsen,J. V., Nyberg, M., Vang, R. T., Bollinger, M. V., Clausen, B. S., Topsoe, H., Jacobsen, K. W., **JS **Laegsgaard, E., Norskov, J. K., Besenbacher, F., ‹Chemistry of one-dimensional metallic edge states in MoS2 nanoclusters›, Nanotechnology, 2003, 14, pp. 385–389. *

*16. Raja, K. S., Mahajan, V. K., Misra, M., ‹Determination of photo conversion efficiency of nanotubular titan- ji9 ium oxide photoelectrochemical cell for solar hydrogen generation›, Journal of Power Sources, 2006, 159,1258–1265. *

*17. Schlapbach, L., Zuttel, A., ‹Hydrogen-storage materials for mobile applications›, Nature, 2001, 414, '' ' 353–358. *

*18. Taberna,P. L., Mitra, S., Poizot, P., Simon, P., Tarascon, J-M., ‹High rate capabilities Fe304 -based Cu nanoarchitectured electrodes for lithium-ion battery applications›, Nature Materials, 2006, 5, 567–573. *

*19. Balzer, G. et al. „Elektrische Energietechnik: Schlusseltechnologie der Zukunft", Forschung 2/2007 TU Darmstadt *

*20. Becker,** M., Schneller, T.** „Neue Wege zu Hochtemperaturleitern", Nachrichten aus der Chemie, 55, December 2007 *

21. Cientifica „Nanotechnologies and Energy", whitepaper, Cientifica, London, 2/2007, www.cientifica.eu

22. CLSA „Solar Power Sector outlook", July 2004, www.clsa.com

23. EPIA, Greenpeace „Soiar Generation IV- 2007", Bericht der European Photovoltaics Industry Association und Greenpeace International, 2007

24. Impulsveranstaltung Nano Energie Hanau-Wolfgang, 28.6.2007

25. Forschungsverbund Sonnenenergie „Themenheft Photovoltaik – Neue Horizonte" 2003, www.fv-sonnenenergie.de

26. Forschungsverbund Sonnenenergie „Gemeinsam forschen fiir die Energie der Zukunft", Fall 2007

27. GDCh „Potenziale der Chemie fiir mehr Energieeffizienz", Nachrichten aus der GDCh- Energieinitiative, April 2007

28. Lux Research „Nanotech's Impact on Energy and Environmental Technologies", Lux Research 2007

29. Schott „Solar – Energie fiir die Zukunft", Broschure, Schott AG Mainz, April 2006

30. Schiith, F., Felderhoff, M., Bogdanovic, B. „Komplexe Hydride als Materialien fiir die Wasserstoffspeicherung", Tatigkeitsbericht Max-Planck-Gesellschaft, 2006

31. Sommerlatte, J., Nielsch, K., Bottner, H. „Thermoelektrische Multitalente", Physik Journal 6 Nr. 5, Wiley-VCH Verlag, 2007

32. Technology Review „Energiespeicher", ' S. 59–73, August 2007 

Автор: Герман Евсеевич Кричевский,профессор, доктор технических наук, вице-президент НОР

www.nanonewsnet.ru

Реферат - Роль нанотехнологии в создании более эффективных преобразователей энергии

Федеральное агентство науки и образования

Пензенский государственный университет

Кафедра нано- и микроэлектроники

Курсовая работа

«Роль нанотехнологии в создании более эффективных преобразователей энергии»

Выполнили:

ст. гр. 06ЕЮ1

Сапрыкин М.С.

Сорокин О.В.

Проверила:

Гришанова В.А.

2007

Содержание

1. Введение

2. Эйфория по поводу нанотехнологий вполне оправдана

3. Нанотехнологии и переход к водородной энергетике

4. Не «Дюраселом» единым

5. Наноканалы генерируют электричество за счёт тока жидкости

6. Побит рекорд эффективности пластиковых солнечных элементов

7. Создан двигатель с фотонным питанием

8. Топливо для нанороботов

9. Приложение

10.Литература

1. Введение

Для понятия нанотехнология, пожалуй, не существует исчерпывающего определения, но по аналогии с существующими ныне микротехнологиями следует, что нанотехнологии — это технологии, оперирующие величинами порядка нанометра. Поэтому переход от «микро» к «нано» — это качественный переход от манипуляции веществом к манипуляции отдельными атомами.

Когда речь идет о развитии нанотехнологий, имеются в виду три направления:

изготовление электронных схем (в том числе и объемных) с активными элементами, размерами сравнимыми с размерами молекул и атомов;

разработка и изготовление наномашин;

манипуляция отдельными атомами и молекулами и сборка из них макрообъектов.

Разработки по этим направлениям ведутся уже давно. В 1981 году был создан туннельный микроскоп, позволяющий переносить отдельные атомы. С тех пор технология была значительно усовершенствована. Сегодня эти достижения мы используем в повседневной жизни: производство любых лазерных дисков, а тем более DVD невозможно без использования нанотехнических методов контроля.

На данный момент возможно наметить следующие перспективы нанотехнологий:

1. Медицина. Создание молекулярных роботов-врачей, которые «жили» бы внутри человеческого организма, устраняя или предотвращая все возникающие повреждения, включая генетические.

2. Геронтология. Достижение личного бессмертия людей за счет внедрения в организм молекулярных роботов, предотвращающих старение клеток, а также перестройки и улучшения тканей человеческого организма. Оживление и излечение тех безнадежно больных людей, которые были заморожены в настоящее время методами крионики.

3. Промышленность. Замена традиционных методов производства сборкой молекулярными роботами предметов потребления непосредственно из атомов и молекул.

4. Сельское хозяйство. Замена природных производителей пищи (растений и животных) аналогичными функционально комплексами из молекулярных роботов. Они будут воспроизводить те же химические процессы, что происходят в живом организме, однако более коротким и эффективным путем. Например, из цепочки «почва — углекислый газ — фотосинтез — трава — корова — молоко» будут удалены все лишние звенья. Останется «почва — углекислый газ — молоко (творог, масло, мясо)». Такое «сельское хозяйство» не будет зависеть от погодных условий и не будет нуждаться в тяжелом физическом труде. А производительности его хватит, чтобы решить продовольственную проблему раз и навсегда.

5. Биология. Станет возможным внедрение наноэлементов в живой организм на уровне атомов. Последствия могут быть самыми различными — от «восстановления» вымерших видов до создания новых типов живых существ, биороботов.

6. Экология. Полное устранение вредного влияния деятельности человека на окружающую среду. Во-первых, за счет насыщения экосферы молекулярными роботами-санитарами, превращающими отходы деятельности человека в исходное сырье, а во-вторых, за счет перевода промышленности и сельского хозяйства на безотходные нанотехнологические методы.

7. Освоение космоса. По-видимому, освоению космоса «обычным» порядком будет предшествовать освоение его нанороботами. Огромная армия роботов-молекул будет выпущена в околоземное космическое пространство и подготовит его для заселения человеком — сделает пригодными для обитания Луну, астероиды, ближайшие планеты, соорудит из «подручных материалов» (метеоритов, комет) космические станции. Это будет намного дешевле и безопаснее существующих ныне методов.

8. Кибернетика. Произойдет переход от ныне существующих планарных структур к объемным микросхемам, размеры активных элементов уменьшаться до размеров молекул. Рабочие частоты компьютеров достигнут терагерцовых величин. Получат распространение схемные решения на нейроноподобных элементах. Появится быстродействующая долговременная память на белковых молекулах, емкость которой будет измеряться терабайтами. Станет возможным «переселение» человеческого интеллекта в компьютер.

9. Разумная среда обитания. За счет внедрения логических наноэлементов во все атрибуты окружающей среды она станет «разумной» и исключительно комфортной для человека.

2. Эйфория по поводу нанотехнологий вполне оправданна

Тот факт, что нанотехнологии способны внести важнейший вклад в решение проблем как энергетики, так и связанных с ними задач по сохранению окружающей среды, сомнений не вызывает. Линии электропередачи, да и вообще все проводники электроэнергии, аккумуляторы и солнечные фотопреобразователи становятся благодаря им мощнее и повышают свой КПД. Именно это обстоятельство побудило руководство германской земли Гессен, как отмечает еженедельная газета VDI-Nachrichten перейти к организации постоянного диалога между представителями различных энергетических отраслей и нано-учеными. Гессен, по словам земельного министра экономики Алоиса Риля делает ставку на надежную, экологически чистую энергию по доступным для населения ценам и именно достижению этой цели могут помочь нанотехнологии.

Проведенный по инициативе министерства в кооперации с таким научным учреждением Institut fur Solare Кnergieversorgungstechnik форум под названием «Нано-Энергия» продемонстрировал возможности нанотехнологий не только в сфере повышения качественного использования традиционных энергоносителей, в частности ископаемых, включая и ядерную энергетику, таких возобновляемых видов энергии, как тепло земли, солнце, ветер, вода, биомасса. Речь при этом может идти, например, об использовании новых технологий для производства более стойкого к износу бурового оборудования, применяемого для освоения нефтяных и газовых месторождений, для изготовления более легких и стабильных лопастей для роторов ветряных электростанций, для увеличения КПД солнечных панелей за счет роста объема поглощения света на электростанциях, использующих энергию нашего светила. Уже созданы «интеллигентные» окна, способные либо абсорбировать энергию солнца, либо отражать ее в зависимости от времени года и потребности жилища. Перспективным направлением применения нанотехнологий ученые считают работы по улучшению поглощающих свойств традиционных солнечных панелей с использованием кремния или созданию новых видов покрытия из полимерных пленок. Полимеры позволят не только снизить цену таких панелей, но и даже использовать их для энергоснабжения мобильных электронных устройств.

Широкое применение наноматериалы найдут в процессах превращения первичных видов энергоресурсов в другие виды энергии, в том числе в электроэнергию. В автомобильной промышленности это снизит потребление топлива за счет применения наноматериалов в генераторах, в шинах, в специальных добавках в бензин или за счет оптимизации сгорания топлива в моторах, изготовленных на базе наноматериалов. В электроэнергетике предполагается применение покрытий из нановещества в турбинах, топливных элементах. Можно добиться повышения емкости электрических батарей, аккумуляторов и конденсаторов за счет применения при их создании наноэлементов.

Сегодня ученые работают над применением наноматериалов при термоэлектрических превращениях энергии. Речь идет о создании полупроводников с наночастицами, что позволит использовать остаточное тепло как в автомобильных моторах, так и тепло человеческого тела с помощью специальных текстильных наноматериалов.

Потерь энергии можно будет в перспективе избежать за счет применения в системах электропередачи углеродных проводников с добавками наноэлементов.

Однако не только в высокотехнологичных областях возможно применение наноматериалов. Например, в спорте можно резко повысить энергетику мяча для гольфа. Смысл состоит в физических свойствах ротации мяча, благодаря которым он достигает наибольшей высоты. При этом если ротация неравномерно воздействует на ось мяча, то он отклоняется влево или вправо. Использование нанотехнологий при изготовлении таких мячей позволяет им равномерно достигать больших высот без каких-либо отклонений. Возможно, что подобная технология может применяться и при конструировании летательных аппаратов.

3. Нанотехнологии и переход к водородной энергетике

Если рассмотреть «водородные программы» правительств разных стран, становится видно, что их целью является достижение «технологической готовности» такого уровня, на котором станет возможным принимать решения о коммерциализации этой технологии и сателлитных разработок в масштабах промышленности.

На достижение столь амбициозных целей отпущено крайне мало времени: в качестве дат полного перехода к повсеместному использованию водородного топлива называются 2015, 2020 и 2025 гг. Нанотехнологии могут существенно помочь разработкам в этом направлении, поскольку уже сейчас предоставляют решения для каждого из трех ключевых аспектов водородной энергетики – производства водорода, его хранения и создания эффективных топливных ячеек.

Чтобы избежать терминологической путаницы, заметим, что «водородный автомобиль», о котором идет речь в настоящей статье — это не автомобиль с двигателем внутреннего сгорания, использующим в качестве горючего водород или смесь водорода с природным газом. Имеется в виду «водородный автомобиль» как машина с электрическим приводом, где химическая энергия топлива напрямую преобразуется в электрическую энергию, без механических или тепловых процессов. Чистый выхлоп – тепло и вода.

Первая существенная проблема, которую необходимо решить для перехода на водородную основу – это собственно производство водорода. Топливные ячейки на водороде заряжаются водородом через преобразование жидких топлив (бензин, этанол, метанол) в водород прямо внутри самой ячейки, либо используют водород, произведенный где-то в другом месте и хранящийся в баке автомобиля.

Второй способ влечет за собой серьезную инфраструктурную задачу: поскольку пока еще не существует заправочных станций с водородной колонкой, их потребуется построить, а также создать и отладить всю логистическую цепочку – от завода по выработке водорода до бака автомобиля.

Производство водорода может осуществляться с использованием самых разных источников. Наиболее экологически чистые технологии находятся довольно далеко в стороне от главного направления разработок. Эти технологии используют возобновляемую энергию для обеспечения электричеством процесса электролиза воды, получая в итоге водород и кислород.

Технологией с самым высоким уровнем отходов является газификация угля. Как минимум до того времени, когда будут разработаны высокоэффективные способы захвата и отделения углерода. Разумеется, еще можно использовать атомную энергию для обеспечения электролизных станций электричеством – АЭС строятся, и на обеспечение безопасности эксплуатации этих станций тратится много усилий.

Если взять в качестве примера США, чей «водородный комплекс» можно считать одним из самых передовых, и попытаться выяснить, каким способом получают водород в этой стране, то получается следующая картина. Порядка 95 % производимого на сегодняшний день в США водорода (это составляет около 50 % мирового производства) – порядка 9 млн. тонн ежегодно – производится из метана при помощи высокотемпературного пара.

Становится понятно, зачем нефтяникам водородные технологии. Пока политики и энергетики говорят о «чистом будущем», которое наступит в эру водородной экономики, технологический маршрут Министерства энергетики США в данном направлении предусматривает подавляющее большинство – 90 % – водородной генерации на основе ископаемых энергоносителей – угля, газа и нефти – с дополнительной опорой на атомные электростанции.

Другими словами, выбросы парниковых газов останутся на прежнем уровне – только уже не из автомобильных выхлопных труб, а со станций генерации водорода. Существенным препятствием в создании чистых технологий производства водорода является их цена. Пока правительство не утвердит использование водорода в качестве основного топлива, или не увеличит в разы налоги на использование топлив на базе ископаемых энергоносителей, «эквивалент литра бензина» будет основным эталоном для водителей при принятии решения, какое топливо им покупать. А производство водорода из нефти, газа и угля на сегодняшний день является наиболее экономически оправданным методом.

Основной вклад нанотехнологий в «чистое» производство водорода заключается в том, что материалы, созданные с их помощью, могут использоваться в солнечных батареях. Также известны применения результатов нанотехнологических разработок в области катализаторов для процесса электролиза. Основные поиски сейчас нацелены на то, чтобы создать высокоэффективное устройство, которое можно заправить водой, выставить на солнце и получить водород без использования каких-либо внешних энергетических источников.

У солнечных батарей есть потенциал, который поможет воплотить эту идею в жизнь, однако пока мешает этому их низкая эффективность и, наоборот, слишком высокая цена. Правда, похоже, что солнечная энергетика не может покрыть все потребности в обеспечении станций генерации водорода нужным количеством энергии. Если представить, что вся солнечная энергия будет без потерь запасаться в топливные ячейки, то даже при этом условии получаются результаты, которые вряд ли удовлетворят потребителей энергии.

Статистика утверждает, что мировое потребление энергии в 2004 году составило около 404 квадриллионов британских тепловых единиц, или 427,4 млрд. ГДж. С одного квадратного метра поверхности можно в среднем получить 250 Вт за 1 секунду. Для выработки требуемого количества энергии потребуется площадь солнечных батарей в размере 95 млн. кв.км., что составляет около 2/3 всей поверхности суши планеты. А по прогнозу, потребление энергии к 2025 вырастет более чем в 1,5 раза – и тогда придется покрыть почти всю поверхность суши солнечными батареями.

Таким образом, вопрос повышения КПД выходит на первый план. Есть два основных типа солнечных батарей. Один из них производит водород напрямую посредством электрохимического процесса, преобразовывающего солнечную энергию в химическую. Для повышения КПД этого типа батарей существует материал с наноразмерными электродами, который увеличивает отношение поверхности к объему и тем самым повышает эффективность установки.

Другой тип солнечных батарей – фотоэлектрический. С помощью установок этого типа получаемое электричество может направляться на производство водорода путем электролиза воды. Эксперименты с массивами нанопроводов и другими наноструктурными материалами показали, что их применение может увеличить эффективность и таких батарей.

Не вдаваясь в детали, можно сказать, что нанотехнологии в будущем сыграют значительную роль в разработке высокоэффективных типов солнечных батарей, требующихся для создания жизнеспособной альтернативы добыче водорода при помощи ископаемых энергоносителей.

Проблема хранения водорода

Следующая важная задача – это задача хранения водорода. Хранение водорода на борту автомобиля в количестве, необходимом для передвижения, представляет собой серьезный вызов инженерам. По самым грубым подсчетам, для перемещения на расстояние в 100 км требуется около 1 кг водорода. Это значит, что необходимо возить в баке около 5 кг водорода, чтобы иметь возможность покрыть средний дневной пробег. Плотность водорода составляет 0,1 грамма на литр объема при комнатной температуре, следовательно, потребуется разместить 50 тыс. литров водорода в баке.

Есть три способа хранения такого объема: в виде сжатого газа с высокой степенью компрессии, в качестве жидкости (что требует сильного охлаждения), или в твердом виде.

Первый способ использовался в ранних моделях автомобилей, работающих на водороде. Конструкторы разных автомобильных платформ пытаются создать хранилища, которые бы соответствовали техническим требованиям, и при этом имели бы приемлемую цену, но пока рано говорить о каких-то значительных подвижках в данной области.

В прошлом году автомобильная компания Honda анонсировала концепт-кар FCX, который может хранить на борту 5 кг водорода при давлении около 350 кг/см2, причем его бак имеет размеры, позволяющие разместить его на автомобиле средних габаритов.

Использовать давление в десятки килограммов на кв. см. для хранения сжатого водорода, или охлаждение в до минус 252 градусов Цельсия для превращения его в жидкость представляет определенную угрозу безопасности потребителей. В этом свете подходящим альтернативным способом является хранение водорода в виде металлогидридов в хранилище, основанном на принципах адсорбции. В такой емкости водород впитывается во внутренние поверхности пористого материала, и может высвобождаться при помощи тепла, электричества или химической реакции. Известно довольно много металлов, которые могут выступать в качестве наполнителя, способного запасать водород.

Нанотехнологии и здесь могут помочь в решении таких задач. Методы, используемые при создании наноматериалов, позволяют управлять физическими характеристиками получаемых композитов. Это дает возможность формировать удерживающие эффекты нужной силы и получать большое соотношение площади поверхности адсорбента к его объему.

Подобные свойства полезны для разработки наполнителей для хранилищ водорода «третьего типа» — на базе адсорбции. Например, исследователи сейчас изучают свойства полимерных наноструктурированных материалов с целью разработки нового типа адсорбентов для хранилищ водорода. На сегодняшний день идет предварительное тестирование новых материалов, и результаты испытаний выглядят вполне обнадеживающими.

Одностенные углеродные нанотрубки обладают большой поверхностной площадью и при этом имеют относительно малую массу. Эти характеристики нанотрубок, согласно общему убеждению, позволяют считать их одним из наиболее перспективных материалов для создания хранилищ водорода большой вместимости.

Теоретически, в таком хранилище может быть запасено около 7,7 массового процента, поскольку хемосорбция такого материала очень велика: на каждый атом углерода в нанотрубке возможно адсорбировать один атом водорода. В дополнение, последующая физическая адсорбция увеличивает вместимость хранилища еще больше. Так или иначе, некоторый скепсис в отношении хранилищ водорода на базе углеродных наонтрубок был обусловлен ошибками ранних, экспериментальных, стадий и разумная основа для разработки хранилищ водорода высокой вместимости уже заложена.

Создание эффективных топливных ячеек

Теперь перейдем к последней задаче. Это создание эффективных топливных ячеек, в которых химическая энергия водорода будет преобразовываться в кинетическую энергию движения с высоким КПД. Топливные ячейки, в принципе, являются зеркальным отображением батарей электролиза. В последних за счет воздействия электричества происходит разделение молекул воды на водород и кислород, а в топливных ячейках соединение водорода с кислородом производит электричество.

Главным препятствием для массового выпуска автомобилей на базе топливных ячеек сейчас является цена такого автомобиля. Стоимость топливной ячейки сейчас колеблется между $1 тыс. и $3 тыс. за киловатт установленной мощности. Чтобы выдержать конкуренцию с обычными автомобилями, использующими двигатели внутреннего сгорания, эта цифра должна снизиться более чем в 30 раз – до $30.

Существует несколько различных типов топливных ячеек, но кандидат номер один на применение в автомобилях – ячейки на основе полимерных электролитических мембран, также называемых «мембранами протонного обмена».

И установки электролиза, и топливные ячейки используют для работы дорогие платиновые электроды. Исследователи работают в двух направлениях снижения цены: минимизировать использование платины путем повышения каталитической отдачи через структуризацию катализаторов на наноуровне. Другое направление разработок ставит целью вообще исключить дорогие платиновые катализаторы, заменив их каким-нибудь другим катализатором, в котором наноструктурированная поверхность будет иметь те же каталитические свойства при более низкой цене.

Нанотехнологии непременно сыграют главную роль в будущей водородной экономике. вопрос только в том, когда эта экономика перейдет с генерации водорода из ископаемых энергоносителей на возобновляемые источники энергии. Судя по всему, это случится никак не раньше 2020 года.

4. Не «Дюраселом» единым…

Разработкой химических источников тока (и первичных, «батареек», и вторичных, «аккумуляторов») с использованием наночастиц занимаются явно или неявно уже не один десяток лет. Сейчас этому разделу науки (а точнее, практики), который часто называют наноионикой, посвящены целые разделы конференций, организуются новые фирмы и компании. Это связано, очевидно, с тем, что все более востребованными становятся надежные, долговечные, безопасные и дешевые химические источники тока (ХИТ) для многочисленных устройств микроэлектроники, таких как сотовые телефоны, карманные компьютеры, кардиостимуляторы, устройства «двойного назначения». Мировой рынок таких продуктов превысил в 2006 г. 50 млрд. долларов и чрезвычайно перспективен с точки зрения привлечения инвестиций.

В России направление «наноионики» также начинает развиваться. В начале апреля закончился один из этапов реализации Федеральной Целевой Программой по критическим технологиям развития РФ. По нашим подсчетам, около 10 «свежих» проектов в этой программе так или иначе связаны с исследованием ионного и электронного транспорта в наносистемах. Например, совсем недавно совместный проект по наноионике («Разработка фундаментальных основ технологии получения нанокристаллических и наноструктурированных материалов с суперионной и смешанной проводимостью для новых поколений химических источников тока»), предложенный Институтом Физической Химии и Электрохимии и Факультетом Наук о Материалах МГУ им.М.В.Ломоносова, был поддержан ФЦП.

Важной целью проекта является создание новых типов энергоемких, высокоэффективных и безопасных портативных источников тока и интегрированных устройств наноионики для преобразования и хранения энергии. Задачи работы достаточно амбициозны: разработка новых методов получения нанокристаллических и наноструктурированных систем с ионной и ионно-электронной проводимостью, фундаментальные исследования структуры и морфологических (микроструктурных) особенностей нанокомпозитов, нанотубуленов и нановискеров с высокой ионной и электронной проводимостью, достижение контролируемого уровня и заданной кросс-корреляции структурно-чувствительных функциональных свойств, разработка научных основ технологий получения гаммы расходных материалов для микропечатной электроники и компьютерного дизайна интегрированных устройств наноионики. Огромное количество проектов по данной тематике традиционно проходит и через Российский Фонд Фундаментальных Исследований.

Развитие новой области знаний о поведении наноразмерных систем с ионной и смешанной проводимостью — наноионики, таким образом, действительно относится к ключевым направлениям современных исследований. С фундаментальной точки зрения представляет значительный интерес разработка новых и оптимизация существующих методов получения таких материалов, а также исследование особенностей ионного и электронного транспорта в таких уникальных системах в зависимости от структуры и микроморфологии используемых наноматериалов. С практической точки зрения, решение основных задач наноионики связано с борьбой за существенное повышение функциональных характеристик суперионных материалов при снижении их себестоимости. Подъем уровня эффективности и конкурентоспособности отечественных электропроизводящих и электропотребляющих отраслей промышленности и транспорта, микроэлектроники, медицины, научных исследований, специальной техники, значительное снижение вредного воздействия на окружающую среду во многом определяются уровнем разработок в области суперионных проводников. Разработка нового поколения электроэнергетического оборудования на базе современных супериоников с повышенными показателями по эффективности, надежности, безопасности, в несколько раз меньшего по массогабаритным показателям по сравнению с традиционным оборудованием, с практически отсутствующим загрязнением окружающей среды позволит создать принципиально недостижимые в традиционном исполнении виды устройств, широко востребованные в прорывных областях современных науки и техники.

Разработка новых «умных» поколений ХИТ основана на том, что свойства ультрадисперсных частиц в существеннейшей степени изменяются по сравнению с объемным телом. И причина этого не только в доступности поверхности и облегчении диффузионных потоков, но и в изменении концентрации дефектов, а главное – в разнообразных «размерных эффектах», которые связаны с тем, что размер частицы становится меньше некоторой критической величины, сопоставимой с так называемой корреляционной длиной или радиусом взаимодействия, характерным для того или иного физического явления. В результате возникают новые закономерности, что проявляется в уникальном физико-химическом и электрохимическом поведении таких наноматериалов.

Переходные элементы, имеющие переменные степени окисления и находящиеся в различных спиновых состояниях в формируемых ими сложных кристаллических структурах, играют важную роль при создании современных функциональных материалов. Одними из наиболее известных адаптивных химических систем, обладающих к тому же широкой распространенностью и низкой стоимостью, малой токсичностью и экологической безопасностью, являются системы Mn-O, Ti-O, V-O (и некоторые другие).

За счет изменения дисперсности самый дешевый и самый известный (еще с 1867 г.!) марганец-цинковый элемент француза Жоржа Лекланше “Zn-MnO2 ” получает вторую жизнь в виде … всемирно разрекламированной щелочной батарейки Дюраселл! В настоящее время по всему миру сделано большое количество экспериментов, позволяющих получить известный всем диоксид марганца в виде наночастиц, нанопластин, наноусов и даже нанотрубок. Такие материалы работают в батарейках дольше, лучше и, конечно, быстрее перезаряжаются в аккумуляторах, если в них интеркалировать литий.

Так, подобный литий-ионный аккумулятор фирмы Toshiba способен зарядиться на 80% за 60 секунд!.. Это значительно быстрее, чем обычные коммерческие литий-ионные аккумуляторы, которым для зарядки требуется от одного до десяти часов. Аккумуляторы с наночастицами теряют только 1% емкости после 1000 циклов зарядка-разрядка, они могут работать при температуре -40°C, при 45°C срок службы начинает сокращаться, но при этом теряется лишь 5% свойств после тысячного цикла. Прототип Toshiba 600mAh разрабатывался с учетом применения с компактными устройствами, размеры его всего 6.2 x 3.5 x 0.4 см.

Еще одна важная черта наночастиц – они не «растрескиваются» и не изменяются при циклировании аккумулятора (в циклах зарядка-разрядка). Раньше считалось, что это явление серьезно ограничивает ресурс обычных химических источников тока, поскольку разрушается или даже химически изменяется электрод, при этом теряется «связность» между отдельными частями электрохимической цепи «батарейки». Другая проблема – электроды могут прорастать друг в друга через разделяющую мембрану («усы» и «дендриты» металлического лития), что приводит к короткому замыканию, иногда – даже к «вскипанию» аккумулятора, как было в недавней истории с изъятием из эксплуатации «ноутбуков» одной очень известной фирмы. Все, аккумулятор можно выбрасывать! При использовании наночастиц в виде «пасты» с тесно контактирующими частицами эти проблемы во многом снимаются. Кроме того, новые литиевые аккумуляторы, выходящие в свет под маркой NanoSafe, среди прочего отличаются и новым материалом для отрицательного электрода, использующего наночастицы так называемых титановых «бронз». Это также позволило существенно повысить срок жизни аккумуляторов. После 15 тысяч циклов глубокого разряда и полной зарядки ёмкость аккумуляторов сохранилась на уровне 85% от первоначального значения. И это при том, что обычные литий-ионные и литий-полимерные батареи имеют жизненный цикл длиной примерно в 300-500 полных циклов заряда и разряда, после чего их ёмкость быстро и существенно падает. Если представить, что батареи NanoSafe появятся на мобильных телефонах, зарядка один раз в три дня будет означать, что аккумулятор проработает 123 года.

В то же время, конечно, возникают и новые «камни преткновения». Например, из-за высокой реакционной способности наночастиц они с удовольствием реагируют с электролитом и вообще со всем, с чем соприкасаются. Однако эту проблему химики успешно решают, если судить по большому числу «свежих» патентов, полученных по этой тематике.

В последнее время все больше систем становятся потенциальными или реальными кандидатами для использования в наноионике. Одна из них – материал состава LiFePO4 со структурой минерала оливина. По словам некоторых разработчитков, срок службы таких аккумуляторов увеличится по сравнению с предыдущими образцами в 10 раз, мощность возрастет в 5 раз, значительно уменьшится время заряда (более 90% емкости через 5 минут). Ожидается, что новинка будет использоваться в различных устройствах, включая электроинструменты, медицинские приборы и гибридные электромобили.

Другие системы, которые упоминаются в литературе в последнее время:

«Вискеры» с туннельной структурой

Ванадиевые бронзы

Микропористые системы оксидов переходных металлов типа

Наноструктурированный диоксид титана

Углеродные нанотрубки

Еще одна важная черта использования наночастиц – возможность создания специальных «чернил» для струйной микропечати плоских батареек и вообще готовых «лабораторий – на — микросхеме» (lab-on-chip). Подробнее об этом (и многом другом) можно посмотреть, например, на сайте Массачусетского Технологического Института (знаменитого MIT).

Экзотические «нано» батарейки (в буквальном смысле «нано» по своим размером) также пытаются создать, но это уже область биомиметики и молекулярной электроники. Так, в Национальной Лаборатории Sandia работают над созданием батареи нано-размеров, которую можно будет имплантировать в человеческий глаз. Эти батареи предназначены для снабжения энергией различных имплантируемых устройств, одним из которых является искусственная сетчатка глаза.

Таким образом, использование наночастиц и нанокомпозитов в химических источниках тока, в том числе тех, что уже гордо пришли на рынок к нам с вами, становится вполне реальным и эффективным. Это один из примеров, когда нанотехнологии действительно выполняют то, что ими обещано и что от них ждут.

5. Наноканалы генерируют электричество за счёт тока жидкости

Мельчайшие каналы, создаваемые на субстрате, всегда ассоциировались с «лабораториями на чипе». Однако, наноразмерная геометрия может использоваться и иначе — для выработки электричества.

Учёные из Нидерландов продемонстрировали эффективность преобразования энергии с КПД 3.25% при течении солевого раствора через канал 75 нм глубиной, 50 мкм шириной и 4.5 мм длиной.

В перспективе группа из Технологического Университета Дельфта рассчитывает добиться эффективности 10%. Исследователи считают, что этот метод может обеспечить микро- и нанофлюидные устройства «бортовыми» источниками энергии.

Метод электрокинетической генерации электроэнергии основан на разности давлений вдоль наноканала, прокачивающей водный раствор KCl или LiCl от одного конца к другому. Движение жидкости индуцирует ток, пропускаемый через внешнее сопротивление, совершая, таким образом, работу.

Возле стенки канала, на поверхности раздела жидкость-субстрат, зарядовая нейтральность жидкости нарушается, что и делает возможной выработку электрической энергии. А поскольку наноразмерные каналы имеют высокое отношение поверхности к объёму, в них этот эффект особенно силён. Сама идея получения электроэнергии с помощью жидкости, текущей через узкий канал, не нова, но теперь достижения технологий изготовления нанообъектов позволяют создавать и испытывать реальные устройства.

Учёные наносили каналы непосредственно на поверхность плавленого кварца. Как оказалось, плотность поверхностного заряда этого материала практически оптимальна для таких экспериментов. Однако, дальнейшее повышение эффективности метода требует поисков материала или покрытия с такой же плотностью поверхностного заряда, но меньшей штерновской проводимостью — за счёт этого эффекта сам материал действует, как параллельно включённый проводник, через который идёт утечка электрической энергии.

6. Побит рекорд эффективности пластиковых солнечных элементов

В Центре Нанотехнологий и Молекулярных Материалов Университета Уейк Форест (Wake Forest University, Center for Nanotechnology and Molecular Materials) достигнуты значительные успехи в области возобновляемы источников энергии.

Исследователи Центра объявили о создании пластиковых солнечных элементов с эффективностью более 6%. Такая высокая эффективность была достигнута за счёт внедрения нановолокон в светопоглощающий пластик, аналогично жилам в листьях растений. Такой подход позволяет создавать устройства с более толстым светопоглощающим слоем, улавливающие больше солнечного света.

Эффективные пластиковые солнечные батареи важны для создания недорогих и лёгких элементы питания — особенно в сравнении с традиционными кремниевыми солнечными батареями, которые обладают большим весом и размерами. Благодаря гибкости и простоте в обращении, пластиковые солнечные батареи могут использоваться в качестве покрытий на домах и автомобилях. А поскольку такие элементы намного легче обычных, отпадает необходимость в прочных опорных конструкциях.

Современные кремниевые элементы достигают эффективности преобразования света в электрическую энергию порядка 12%. Максимальная эффективность пластиковых солнечных элементов не превышала 3%, пока в 2005 году директор Центра Дэвид Кэрролл (David Carroll) и его группа не объявили о создании устройств с эффективностью почти 5%, а теперь, спустя чуть более года, они превзошли отметку 6%. Таким образом за два года им удалось более чем вдвое повысить эффективность элементов. Исследователи ожидают добиться ещё больших успехов в течение следующих двух лет, что наконец сделает пластиковые солнечные элементы лидерами среди солнечных батарей. Для коммерческой рентабельности эффективность солнечных элементов должна быть не ниже 8%; исследователи из Уейк Форест ожидают достигнуть 10% отметки в следующем году.

7. Создан нанодвигатель с фотонным питанием

Создан нанодвигатель с фотонным питанием Ученые из университетов Болоньи и Калифорнии создали первый молекулярный двигатель, работающий от солнечного света.

Нанодвигатель разрабатывался более шести лет исследователями из университета Болоньи и Калифорнийского университета. По форме он напоминает гантель длиной 6 нм, на рукоятке которой находится кольцо диаметром 1,3 нм. Кольцо может двигаться вдоль рукоятки, но не может соскользнуть из-за двух ограничителей на концах «гантели». Кольцо занимает один из двух участков на «рукоятке». Когда один из ограничителей поглощает солнечный свет, электрон перемещается к одному из этих участков, что вызывает перемещение кольца к другому участку. Когда электрон перемещается обратно, кольцо возвращается на место, и, таким образом, цикл повторяется много раз. Микромотор размером всего несколько нанометров двигается подобно микроскопическому поршню. «Эти нанодвигатели можно использовать в качестве ячеек памяти в молекулярной фотонике и электронике — двух перспективных направлениях, нацеленных на создание химического компьютера», — говорит доктор Винченцо Бальцани (Vincenzo Balzani) из университета Болоньи.

Наномоторы можно использовать и в качестве клапанов для пор наночастиц на основе кварца. Ученые с помощью световых импульсов управляют открытием и закрытием этих клапанов, регулируя заполнения пор молекулами определенного вида — к примеру, молекулами лекарств для лечения рака, сообщает Physorg. «Когда такие наноконтейнеры достигнут цели, свет может использоваться как переключатель доставки лекарства», — комментирует доктор Дж. Фрейзер Стоддарт (J. Fraser Stoddart) из Калифорнийского университета в Лос-Анджелесе, соавтор изобретения.

Нанодвигатель работает очень быстро. Полный цикл занимает менее тысячной доли секунды. Как считают авторы изобретения, процесс можно сравнить с работой автомобильного двигателя, совершающего 60 тыс. тактов в минуту. По мнению ученых, примечателен тот факт, что молекулярный двигатель подобного типа не нуждается в химическом топливе. Новый нанодвигатель берет энергию непосредственно из солнечного света, не требует доставки топлива и не производит отходов. Его можно сравнить с солнечным автомобилем. Специалисты едины в своих оценках и считают изобретение нанодвигателя важным этапом на пути к созданию молекулярных машин. В настоящее время исследователи заняты созданием поверхностных покрытий и мембран из подобных нанодвигателей, где все они будут работать согласованно и производить механическую работу на макроуровне.

8. Топливо для нанороботов

Учеными из Белорусского государственного университета информатики и радиоэлектроники обнаружен эффект горения и взрыва в слоях наноструктурированного пористого кремния.

Наноструктурированный пористый кремний, полученный методами электрохимического анодирования, при определенных условиях способен гореть и взрываться, при этом энергетический эффект этих процессов выше, чем у углеводородных материалов. Обнаруженный эффект открывает возможность обеспечения энергией MEMS или NEMS на микроуровне непосредственно внутри полупроводниковой схемы.

Активизация микроисточника энергии может осуществляться электрическим, термическим или механическим сигналом. Интересно, что при толщине слоя пористого кремния меньше 60 мкм наблюдается процесс горения. А при толщине больше 60 мкм происходит взрыв. Размер световой вспышки, наблюдаемый при горении и взрыве пористого кремния, максимален для свежеприготовленных образцов.

Изготовление наноструктурированных кремниевых пленок может быть осуществлено на основе кремниевой технологии, используемой при изготовлении интегральных микросхем, что особенно важно для миниатюрных изделий.

Были изготовлены кремниевые микроактюаторы, способные преодолевать расстояния в несколько метров. Оценочные расчеты показывают, что эффективность преобразования энергии горения в кинетическую энергию достигает 50%. То есть, даже предварительные результаты позволяют говорить о возможности использования процессов горения пористого кремния в микромашинах, изготавливаемых на основе кремниевой технологии.

Более высокая удельная энергия при взрыве открывает принципиально новые возможности для использования пористого кремния. На рис. 3 показаны этапы процесса разделения кремниевой пластины на отдельные чипы при помощи взрыва слоя пористого кремния. По сравнению с традиционными методами лазерного и алмазного разделения кремниевых пластин данный метод имеет ряд преимуществ:

* ширина разделительной дорожки может быть уменьшена до 40 мкм; * при помощи этого метода можно вырезать кремниевые кристаллы любой формы, в том числе и круглые и овальные, так как линия разреза формируется при помощи операций фотолитографии.

К другим возможным практическим применениям процесса взрыва пористого кремния следует отнести изготовление самоуничтожающихся кремниевых чипов, а также экологически безопасных пиротехнических схем.

Следует отметить, что наноструктурированный кремний является энергоносителем, альтернативным углеводородным видам топлива. В частности, кремень, использовавшийся в древности как источник огня, есть не что иное, как наноструктурированное минеральное образование из кварца и халцедона. Минерал халцедон отличается от кварца нестехиометричностью состава – повышенным массовым содержанием водорода, т.е. этот минерал является “недоокисленным” по сравнению с кварцем, что и объясняет его необычные свойства, позволяющие его микрочастицам воспламеняться после механического воздействия.

9. Приложение

Новые эффекты, возникающие в нанокомпозитах: Электростатические эффекты разделения зарядов в нанокомпозитах металл (рутений) – оксид (Li2O), J.Maier, Nature materials, vol.4, 2005)

Новые эффекты, возникающие в нанокомпозитах: поведение «ионной жидкости» («шарики» и «ионы»), распределенной в прочной нанопористой непроводящей матрице (обозначено зеленым цветом). (J.Maier, Nature materials, vol.4, 2005)

Различные формы MnO2 для марганец-цинковых батареек (Journal of Solid State Chemistry 179 (2006) 1757–1761)

Уникальные нанотрубки на основе MnO2 для химических источников тока (Adv. Mater. 2005, 17, 2753–2756).

Нанотрубки пентаксида ванадия, полученные гидротермальным методом (Факультет Наук о Материалах МГУ)

Аккумуляторная батарейка фирмы Toshiba, содержащая наночастицы.

Частицы диоксида титана TiO2 различного размера для использования в литий-ионных аккумуляторах нового поколения (Adv. Mater. 2006, 18, 1421–1426).

Аккумулятор Nanosafe, содержащий наночастицы диоксида титана.

Нанопористая структура композита «LiFePO4 — углерод» (Solid State Ionics 176 (2005) 1801 – 1805).

Кристаллическая структура минерала оливина.

Интеркаляция лития в структуру фосфата железа.

Модель американского Белого Дома, «напечатанная» с помощью технологии трехмерной струйной печати с использованием чернил, содержащих высокодисперсные частицы.

Жидкостный наногенератор

Солнечная нанобатарея

Так выглядит основа новой нанобатареи — кристалл теллурида кадмия

Кремниевый микроактюатор, использующий энергию горения пористого кремния для перемещения в пространстве

Метод лазерного и алмазного разделения кремниевых пластин

Фрагменты поведения шарообразной вспышки при взрыве наноструктурированного гидрированного кремния, пропитанного KNO3

10. Литература

1. www.nanonewsnet.ru

2. www.paramatma.ru

3. www.cnews.ru

4. www.nanometer.ru

5. www.rian.ru

6. www.ng.ru

7. Р.С. Ерофеев. Роль нанотехнологии в создании более эффективных преобразователей энергии. Нанотехника. № 3, 2005 г.

www.ronl.ru

Нанотехнологии в энергетике, Энергетика - Реферат

Реферат по предмету: Энергетика (Пример)

Содержание

Введение 3

1 Основные проблемы технологий современной энергетики 4

2 Пути решения проблем энергетики посредством внедрения нанотехнологий 6

Заключение 13

Список использованных источников 14

Содержание

Выдержка из текста

Фотовольтаика находит применение в портативной электронике, для контроля движения транспорта, в телекоммуникационных системах, в производстве нового поколения электродов. Среднесрочный прогноз по фотовольтаике на основе нового поколения полимеров —

10. от всей фотовольтаики.

Существуют теории, что уголь, торф, нефть, газ являются продуктами биологических и химических превращений погибших растений и животных, произошедших много миллионов лет тому назад в толще земли. При сгорании и крекинге всех видов ископаемого топлива и растительных материалов (древесина, соломы, водоросли, злаковые) образуются близкие по химическому составу продукты. В настоящее время под понятием биомассы как источника энергии понимают различные виды растений в различных формах: отходы деревообработки, различные непригодные или малопригодные злаковые, разные виды трав.

В странах ЕС до 6- 8% энергии получает из биотоплива. Лидерами являются Финляндия и Швеция, в которых доля биотоплива составляет соответственно

16 и

20. от общего потребления энергии. Но в общем мировом потреблении энергии этот источник составляет только примерно 11%.

Очень важную роль в балансе источников энергии на основе биомассы начинают занимать водоросли различных видов.

Причем используются водоросли, произрастающие в естественных водоемах и разводимые на специальных биофермах промышленным способом. Лидерами в мире первом случае является Китай, а во втором США.

Различные виды биомассы используется как источники энергии. Как таковые их в качестве топлива (сжигают) или подвергают сложным термохимическим превращениям, получая из них жидкое биотопливо (биометанол, биоэтанол, биодизель, биогаз и др.), как в случае коксо-, нефте- и газохимии. В этих термохимических превращениях растительной биомассы нанотехнологии реализуются через интенсификацию этих технологий за счет нанокатализаторов (повышение выхода конечного продукта, управление процессом с помощью наносенсоров).

Заключение

Таким образом, можно сделать следующие выводы по данной работе.

Значимость энергетики в современном мире понимают все, её трудно переоценить. Поэтому более эффективное использование традиционных источников, переход от невозобновляемых к возобновляемым источникам энергии является одной из главенствующих планетарных задач, напрямую или опосредованно связанных с устойчивостью глобальной и региональных систем обеспечения энергией всех областей деятельности современного человека. Кроме того, эффективное, разумное использование энергии и её невозобновляемых источников напрямую или опосредованно связано с состоянием глобальной и региональной экологии.

Решить планетарные проблемы энергетики при ограниченности и всё менее недоступных и невозобновляемых традиционных источников энергии, можно только поставив на службу экономической эффективности энергетики комплекс конвергентных NBIC-технологий и примыкающей к ним бионики.

Список использованных источников

Морозов В.В. Институциональные аспекты энергетической интеграции// Нефть, газ и бизнес, № 9, 2014.

Прогноз развития энергетики мира и России до 2040 года//Институт энергетических исследований РАН. 2014.

Рюль К. Три тенденции мировой энергетики// Нефть России, № 6, 2012.

Хейфец Б. О зоне свободных инвестиций Евразийского экономического союза// Вопросы экономики, № 8, 2014.

Рюль К. Три тенденции мировой энергетики// Нефть России, № 6, 2012.

Морозов В.В. Институциональные аспекты энергетической интеграции// Нефть, газ и бизнес, № 9, 2014.

Хейфец Б. О зоне свободных инвестиций Евразийского экономического союза// Вопросы экономики, № 8, 2014.

Прогноз развития энергетики мира и России до 2040 года//Институт энергетических исследований РАН. 2014.

2

14

3

Список источников информации

1. Морозов В.В. Институциональные аспекты энергетической интеграции// Нефть, газ и бизнес, № 9, 2014.

2. Прогноз развития энергетики мира и России до 2040 года//Институт энергетических исследований РАН. 2014.

3. Рюль К. Три тенденции мировой энергетики// Нефть России, № 6, 2012.

4. Хейфец Б. О зоне свободных инвестиций Евразийского экономического союза// Вопросы экономики, № 8, 2014.

список литературы

referatbooks.ru

Отчет по практике - Роль нанотехнологии в создании более эффективных преобразователей энергии

Федеральное агентство науки и образования

Пензенский государственный университет

Кафедра нано- и микроэлектроники

Курсовая работа

«Роль нанотехнологии в создании более эффективных преобразователей энергии»

Выполнили:

ст. гр. 06ЕЮ1

Сапрыкин М.С.

Сорокин О.В.

Проверила:

Гришанова В.А.

2007

Содержание

1. Введение

2. Эйфория по поводу нанотехнологий вполне оправдана

3. Нанотехнологии и переход к водородной энергетике

4. Не «Дюраселом» единым

5. Наноканалы генерируют электричество за счёт тока жидкости

6. Побит рекорд эффективности пластиковых солнечных элементов

7. Создан двигатель с фотонным питанием

8. Топливо для нанороботов

9. Приложение

10.Литература

1. Введение

Для понятия нанотехнология, пожалуй, не существует исчерпывающего определения, но по аналогии с существующими ныне микротехнологиями следует, что нанотехнологии — это технологии, оперирующие величинами порядка нанометра. Поэтому переход от «микро» к «нано» — это качественный переход от манипуляции веществом к манипуляции отдельными атомами.

Когда речь идет о развитии нанотехнологий, имеются в виду три направления:

изготовление электронных схем (в том числе и объемных) с активными элементами, размерами сравнимыми с размерами молекул и атомов;

разработка и изготовление наномашин;

манипуляция отдельными атомами и молекулами и сборка из них макрообъектов.

Разработки по этим направлениям ведутся уже давно. В 1981 году был создан туннельный микроскоп, позволяющий переносить отдельные атомы. С тех пор технология была значительно усовершенствована. Сегодня эти достижения мы используем в повседневной жизни: производство любых лазерных дисков, а тем более DVD невозможно без использования нанотехнических методов контроля.

На данный момент возможно наметить следующие перспективы нанотехнологий:

1. Медицина. Создание молекулярных роботов-врачей, которые «жили» бы внутри человеческого организма, устраняя или предотвращая все возникающие повреждения, включая генетические.

2. Геронтология. Достижение личного бессмертия людей за счет внедрения в организм молекулярных роботов, предотвращающих старение клеток, а также перестройки и улучшения тканей человеческого организма. Оживление и излечение тех безнадежно больных людей, которые были заморожены в настоящее время методами крионики.

3. Промышленность. Замена традиционных методов производства сборкой молекулярными роботами предметов потребления непосредственно из атомов и молекул.

4. Сельское хозяйство. Замена природных производителей пищи (растений и животных) аналогичными функционально комплексами из молекулярных роботов. Они будут воспроизводить те же химические процессы, что происходят в живом организме, однако более коротким и эффективным путем. Например, из цепочки «почва — углекислый газ — фотосинтез — трава — корова — молоко» будут удалены все лишние звенья. Останется «почва — углекислый газ — молоко (творог, масло, мясо)». Такое «сельское хозяйство» не будет зависеть от погодных условий и не будет нуждаться в тяжелом физическом труде. А производительности его хватит, чтобы решить продовольственную проблему раз и навсегда.

5. Биология. Станет возможным внедрение наноэлементов в живой организм на уровне атомов. Последствия могут быть самыми различными — от «восстановления» вымерших видов до создания новых типов живых существ, биороботов.

6. Экология. Полное устранение вредного влияния деятельности человека на окружающую среду. Во-первых, за счет насыщения экосферы молекулярными роботами-санитарами, превращающими отходы деятельности человека в исходное сырье, а во-вторых, за счет перевода промышленности и сельского хозяйства на безотходные нанотехнологические методы.

7. Освоение космоса. По-видимому, освоению космоса «обычным» порядком будет предшествовать освоение его нанороботами. Огромная армия роботов-молекул будет выпущена в околоземное космическое пространство и подготовит его для заселения человеком — сделает пригодными для обитания Луну, астероиды, ближайшие планеты, соорудит из «подручных материалов» (метеоритов, комет) космические станции. Это будет намного дешевле и безопаснее существующих ныне методов.

8. Кибернетика. Произойдет переход от ныне существующих планарных структур к объемным микросхемам, размеры активных элементов уменьшаться до размеров молекул. Рабочие частоты компьютеров достигнут терагерцовых величин. Получат распространение схемные решения на нейроноподобных элементах. Появится быстродействующая долговременная память на белковых молекулах, емкость которой будет измеряться терабайтами. Станет возможным «переселение» человеческого интеллекта в компьютер.

9. Разумная среда обитания. За счет внедрения логических наноэлементов во все атрибуты окружающей среды она станет «разумной» и исключительно комфортной для человека.

2. Эйфория по поводу нанотехнологий вполне оправданна

Тот факт, что нанотехнологии способны внести важнейший вклад в решение проблем как энергетики, так и связанных с ними задач по сохранению окружающей среды, сомнений не вызывает. Линии электропередачи, да и вообще все проводники электроэнергии, аккумуляторы и солнечные фотопреобразователи становятся благодаря им мощнее и повышают свой КПД. Именно это обстоятельство побудило руководство германской земли Гессен, как отмечает еженедельная газета VDI-Nachrichten перейти к организации постоянного диалога между представителями различных энергетических отраслей и нано-учеными. Гессен, по словам земельного министра экономики Алоиса Риля делает ставку на надежную, экологически чистую энергию по доступным для населения ценам и именно достижению этой цели могут помочь нанотехнологии.

Проведенный по инициативе министерства в кооперации с таким научным учреждением Institut fur Solare Кnergieversorgungstechnik форум под названием «Нано-Энергия» продемонстрировал возможности нанотехнологий не только в сфере повышения качественного использования традиционных энергоносителей, в частности ископаемых, включая и ядерную энергетику, таких возобновляемых видов энергии, как тепло земли, солнце, ветер, вода, биомасса. Речь при этом может идти, например, об использовании новых технологий для производства более стойкого к износу бурового оборудования, применяемого для освоения нефтяных и газовых месторождений, для изготовления более легких и стабильных лопастей для роторов ветряных электростанций, для увеличения КПД солнечных панелей за счет роста объема поглощения света на электростанциях, использующих энергию нашего светила. Уже созданы «интеллигентные» окна, способные либо абсорбировать энергию солнца, либо отражать ее в зависимости от времени года и потребности жилища. Перспективным направлением применения нанотехнологий ученые считают работы по улучшению поглощающих свойств традиционных солнечных панелей с использованием кремния или созданию новых видов покрытия из полимерных пленок. Полимеры позволят не только снизить цену таких панелей, но и даже использовать их для энергоснабжения мобильных электронных устройств.

Широкое применение наноматериалы найдут в процессах превращения первичных видов энергоресурсов в другие виды энергии, в том числе в электроэнергию. В автомобильной промышленности это снизит потребление топлива за счет применения наноматериалов в генераторах, в шинах, в специальных добавках в бензин или за счет оптимизации сгорания топлива в моторах, изготовленных на базе наноматериалов. В электроэнергетике предполагается применение покрытий из нановещества в турбинах, топливных элементах. Можно добиться повышения емкости электрических батарей, аккумуляторов и конденсаторов за счет применения при их создании наноэлементов.

Сегодня ученые работают над применением наноматериалов при термоэлектрических превращениях энергии. Речь идет о создании полупроводников с наночастицами, что позволит использовать остаточное тепло как в автомобильных моторах, так и тепло человеческого тела с помощью специальных текстильных наноматериалов.

Потерь энергии можно будет в перспективе избежать за счет применения в системах электропередачи углеродных проводников с добавками наноэлементов.

Однако не только в высокотехнологичных областях возможно применение наноматериалов. Например, в спорте можно резко повысить энергетику мяча для гольфа. Смысл состоит в физических свойствах ротации мяча, благодаря которым он достигает наибольшей высоты. При этом если ротация неравномерно воздействует на ось мяча, то он отклоняется влево или вправо. Использование нанотехнологий при изготовлении таких мячей позволяет им равномерно достигать больших высот без каких-либо отклонений. Возможно, что подобная технология может применяться и при конструировании летательных аппаратов.

3. Нанотехнологии и переход к водородной энергетике

Если рассмотреть «водородные программы» правительств разных стран, становится видно, что их целью является достижение «технологической готовности» такого уровня, на котором станет возможным принимать решения о коммерциализации этой технологии и сателлитных разработок в масштабах промышленности.

На достижение столь амбициозных целей отпущено крайне мало времени: в качестве дат полного перехода к повсеместному использованию водородного топлива называются 2015, 2020 и 2025 гг. Нанотехнологии могут существенно помочь разработкам в этом направлении, поскольку уже сейчас предоставляют решения для каждого из трех ключевых аспектов водородной энергетики – производства водорода, его хранения и создания эффективных топливных ячеек.

Чтобы избежать терминологической путаницы, заметим, что «водородный автомобиль», о котором идет речь в настоящей статье — это не автомобиль с двигателем внутреннего сгорания, использующим в качестве горючего водород или смесь водорода с природным газом. Имеется в виду «водородный автомобиль» как машина с электрическим приводом, где химическая энергия топлива напрямую преобразуется в электрическую энергию, без механических или тепловых процессов. Чистый выхлоп – тепло и вода.

Первая существенная проблема, которую необходимо решить для перехода на водородную основу – это собственно производство водорода. Топливные ячейки на водороде заряжаются водородом через преобразование жидких топлив (бензин, этанол, метанол) в водород прямо внутри самой ячейки, либо используют водород, произведенный где-то в другом месте и хранящийся в баке автомобиля.

Второй способ влечет за собой серьезную инфраструктурную задачу: поскольку пока еще не существует заправочных станций с водородной колонкой, их потребуется построить, а также создать и отладить всю логистическую цепочку – от завода по выработке водорода до бака автомобиля.

Производство водорода может осуществляться с использованием самых разных источников. Наиболее экологически чистые технологии находятся довольно далеко в стороне от главного направления разработок. Эти технологии используют возобновляемую энергию для обеспечения электричеством процесса электролиза воды, получая в итоге водород и кислород.

Технологией с самым высоким уровнем отходов является газификация угля. Как минимум до того времени, когда будут разработаны высокоэффективные способы захвата и отделения углерода. Разумеется, еще можно использовать атомную энергию для обеспечения электролизных станций электричеством – АЭС строятся, и на обеспечение безопасности эксплуатации этих станций тратится много усилий.

Если взять в качестве примера США, чей «водородный комплекс» можно считать одним из самых передовых, и попытаться выяснить, каким способом получают водород в этой стране, то получается следующая картина. Порядка 95 % производимого на сегодняшний день в США водорода (это составляет около 50 % мирового производства) – порядка 9 млн. тонн ежегодно – производится из метана при помощи высокотемпературного пара.

Становится понятно, зачем нефтяникам водородные технологии. Пока политики и энергетики говорят о «чистом будущем», которое наступит в эру водородной экономики, технологический маршрут Министерства энергетики США в данном направлении предусматривает подавляющее большинство – 90 % – водородной генерации на основе ископаемых энергоносителей – угля, газа и нефти – с дополнительной опорой на атомные электростанции.

Другими словами, выбросы парниковых газов останутся на прежнем уровне – только уже не из автомобильных выхлопных труб, а со станций генерации водорода. Существенным препятствием в создании чистых технологий производства водорода является их цена. Пока правительство не утвердит использование водорода в качестве основного топлива, или не увеличит в разы налоги на использование топлив на базе ископаемых энергоносителей, «эквивалент литра бензина» будет основным эталоном для водителей при принятии решения, какое топливо им покупать. А производство водорода из нефти, газа и угля на сегодняшний день является наиболее экономически оправданным методом.

Основной вклад нанотехнологий в «чистое» производство водорода заключается в том, что материалы, созданные с их помощью, могут использоваться в солнечных батареях. Также известны применения результатов нанотехнологических разработок в области катализаторов для процесса электролиза. Основные поиски сейчас нацелены на то, чтобы создать высокоэффективное устройство, которое можно заправить водой, выставить на солнце и получить водород без использования каких-либо внешних энергетических источников.

У солнечных батарей есть потенциал, который поможет воплотить эту идею в жизнь, однако пока мешает этому их низкая эффективность и, наоборот, слишком высокая цена. Правда, похоже, что солнечная энергетика не может покрыть все потребности в обеспечении станций генерации водорода нужным количеством энергии. Если представить, что вся солнечная энергия будет без потерь запасаться в топливные ячейки, то даже при этом условии получаются результаты, которые вряд ли удовлетворят потребителей энергии.

Статистика утверждает, что мировое потребление энергии в 2004 году составило около 404 квадриллионов британских тепловых единиц, или 427,4 млрд. ГДж. С одного квадратного метра поверхности можно в среднем получить 250 Вт за 1 секунду. Для выработки требуемого количества энергии потребуется площадь солнечных батарей в размере 95 млн. кв.км., что составляет около 2/3 всей поверхности суши планеты. А по прогнозу, потребление энергии к 2025 вырастет более чем в 1,5 раза – и тогда придется покрыть почти всю поверхность суши солнечными батареями.

Таким образом, вопрос повышения КПД выходит на первый план. Есть два основных типа солнечных батарей. Один из них производит водород напрямую посредством электрохимического процесса, преобразовывающего солнечную энергию в химическую. Для повышения КПД этого типа батарей существует материал с наноразмерными электродами, который увеличивает отношение поверхности к объему и тем самым повышает эффективность установки.

Другой тип солнечных батарей – фотоэлектрический. С помощью установок этого типа получаемое электричество может направляться на производство водорода путем электролиза воды. Эксперименты с массивами нанопроводов и другими наноструктурными материалами показали, что их применение может увеличить эффективность и таких батарей.

Не вдаваясь в детали, можно сказать, что нанотехнологии в будущем сыграют значительную роль в разработке высокоэффективных типов солнечных батарей, требующихся для создания жизнеспособной альтернативы добыче водорода при помощи ископаемых энергоносителей.

Проблема хранения водорода

Следующая важная задача – это задача хранения водорода. Хранение водорода на борту автомобиля в количестве, необходимом для передвижения, представляет собой серьезный вызов инженерам. По самым грубым подсчетам, для перемещения на расстояние в 100 км требуется около 1 кг водорода. Это значит, что необходимо возить в баке около 5 кг водорода, чтобы иметь возможность покрыть средний дневной пробег. Плотность водорода составляет 0,1 грамма на литр объема при комнатной температуре, следовательно, потребуется разместить 50 тыс. литров водорода в баке.

Есть три способа хранения такого объема: в виде сжатого газа с высокой степенью компрессии, в качестве жидкости (что требует сильного охлаждения), или в твердом виде.

Первый способ использовался в ранних моделях автомобилей, работающих на водороде. Конструкторы разных автомобильных платформ пытаются создать хранилища, которые бы соответствовали техническим требованиям, и при этом имели бы приемлемую цену, но пока рано говорить о каких-то значительных подвижках в данной области.

В прошлом году автомобильная компания Honda анонсировала концепт-кар FCX, который может хранить на борту 5 кг водорода при давлении около 350 кг/см2, причем его бак имеет размеры, позволяющие разместить его на автомобиле средних габаритов.

Использовать давление в десятки килограммов на кв. см. для хранения сжатого водорода, или охлаждение в до минус 252 градусов Цельсия для превращения его в жидкость представляет определенную угрозу безопасности потребителей. В этом свете подходящим альтернативным способом является хранение водорода в виде металлогидридов в хранилище, основанном на принципах адсорбции. В такой емкости водород впитывается во внутренние поверхности пористого материала, и может высвобождаться при помощи тепла, электричества или химической реакции. Известно довольно много металлов, которые могут выступать в качестве наполнителя, способного запасать водород.

Нанотехнологии и здесь могут помочь в решении таких задач. Методы, используемые при создании наноматериалов, позволяют управлять физическими характеристиками получаемых композитов. Это дает возможность формировать удерживающие эффекты нужной силы и получать большое соотношение площади поверхности адсорбента к его объему.

Подобные свойства полезны для разработки наполнителей для хранилищ водорода «третьего типа» — на базе адсорбции. Например, исследователи сейчас изучают свойства полимерных наноструктурированных материалов с целью разработки нового типа адсорбентов для хранилищ водорода. На сегодняшний день идет предварительное тестирование новых материалов, и результаты испытаний выглядят вполне обнадеживающими.

Одностенные углеродные нанотрубки обладают большой поверхностной площадью и при этом имеют относительно малую массу. Эти характеристики нанотрубок, согласно общему убеждению, позволяют считать их одним из наиболее перспективных материалов для создания хранилищ водорода большой вместимости.

Теоретически, в таком хранилище может быть запасено около 7,7 массового процента, поскольку хемосорбция такого материала очень велика: на каждый атом углерода в нанотрубке возможно адсорбировать один атом водорода. В дополнение, последующая физическая адсорбция увеличивает вместимость хранилища еще больше. Так или иначе, некоторый скепсис в отношении хранилищ водорода на базе углеродных наонтрубок был обусловлен ошибками ранних, экспериментальных, стадий и разумная основа для разработки хранилищ водорода высокой вместимости уже заложена.

Создание эффективных топливных ячеек

Теперь перейдем к последней задаче. Это создание эффективных топливных ячеек, в которых химическая энергия водорода будет преобразовываться в кинетическую энергию движения с высоким КПД. Топливные ячейки, в принципе, являются зеркальным отображением батарей электролиза. В последних за счет воздействия электричества происходит разделение молекул воды на водород и кислород, а в топливных ячейках соединение водорода с кислородом производит электричество.

Главным препятствием для массового выпуска автомобилей на базе топливных ячеек сейчас является цена такого автомобиля. Стоимость топливной ячейки сейчас колеблется между $1 тыс. и $3 тыс. за киловатт установленной мощности. Чтобы выдержать конкуренцию с обычными автомобилями, использующими двигатели внутреннего сгорания, эта цифра должна снизиться более чем в 30 раз – до $30.

Существует несколько различных типов топливных ячеек, но кандидат номер один на применение в автомобилях – ячейки на основе полимерных электролитических мембран, также называемых «мембранами протонного обмена».

И установки электролиза, и топливные ячейки используют для работы дорогие платиновые электроды. Исследователи работают в двух направлениях снижения цены: минимизировать использование платины путем повышения каталитической отдачи через структуризацию катализаторов на наноуровне. Другое направление разработок ставит целью вообще исключить дорогие платиновые катализаторы, заменив их каким-нибудь другим катализатором, в котором наноструктурированная поверхность будет иметь те же каталитические свойства при более низкой цене.

Нанотехнологии непременно сыграют главную роль в будущей водородной экономике. вопрос только в том, когда эта экономика перейдет с генерации водорода из ископаемых энергоносителей на возобновляемые источники энергии. Судя по всему, это случится никак не раньше 2020 года.

4. Не «Дюраселом» единым…

Разработкой химических источников тока (и первичных, «батареек», и вторичных, «аккумуляторов») с использованием наночастиц занимаются явно или неявно уже не один десяток лет. Сейчас этому разделу науки (а точнее, практики), который часто называют наноионикой, посвящены целые разделы конференций, организуются новые фирмы и компании. Это связано, очевидно, с тем, что все более востребованными становятся надежные, долговечные, безопасные и дешевые химические источники тока (ХИТ) для многочисленных устройств микроэлектроники, таких как сотовые телефоны, карманные компьютеры, кардиостимуляторы, устройства «двойного назначения». Мировой рынок таких продуктов превысил в 2006 г. 50 млрд. долларов и чрезвычайно перспективен с точки зрения привлечения инвестиций.

В России направление «наноионики» также начинает развиваться. В начале апреля закончился один из этапов реализации Федеральной Целевой Программой по критическим технологиям развития РФ. По нашим подсчетам, около 10 «свежих» проектов в этой программе так или иначе связаны с исследованием ионного и электронного транспорта в наносистемах. Например, совсем недавно совместный проект по наноионике («Разработка фундаментальных основ технологии получения нанокристаллических и наноструктурированных материалов с суперионной и смешанной проводимостью для новых поколений химических источников тока»), предложенный Институтом Физической Химии и Электрохимии и Факультетом Наук о Материалах МГУ им.М.В.Ломоносова, был поддержан ФЦП.

Важной целью проекта является создание новых типов энергоемких, высокоэффективных и безопасных портативных источников тока и интегрированных устройств наноионики для преобразования и хранения энергии. Задачи работы достаточно амбициозны: разработка новых методов получения нанокристаллических и наноструктурированных систем с ионной и ионно-электронной проводимостью, фундаментальные исследования структуры и морфологических (микроструктурных) особенностей нанокомпозитов, нанотубуленов и нановискеров с высокой ионной и электронной проводимостью, достижение контролируемого уровня и заданной кросс-корреляции структурно-чувствительных функциональных свойств, разработка научных основ технологий получения гаммы расходных материалов для микропечатной электроники и компьютерного дизайна интегрированных устройств наноионики. Огромное количество проектов по данной тематике традиционно проходит и через Российский Фонд Фундаментальных Исследований.

Развитие новой области знаний о поведении наноразмерных систем с ионной и смешанной проводимостью — наноионики, таким образом, действительно относится к ключевым направлениям современных исследований. С фундаментальной точки зрения представляет значительный интерес разработка новых и оптимизация существующих методов получения таких материалов, а также исследование особенностей ионного и электронного транспорта в таких уникальных системах в зависимости от структуры и микроморфологии используемых наноматериалов. С практической точки зрения, решение основных задач наноионики связано с борьбой за существенное повышение функциональных характеристик суперионных материалов при снижении их себестоимости. Подъем уровня эффективности и конкурентоспособности отечественных электропроизводящих и электропотребляющих отраслей промышленности и транспорта, микроэлектроники, медицины, научных исследований, специальной техники, значительное снижение вредного воздействия на окружающую среду во многом определяются уровнем разработок в области суперионных проводников. Разработка нового поколения электроэнергетического оборудования на базе современных супериоников с повышенными показателями по эффективности, надежности, безопасности, в несколько раз меньшего по массогабаритным показателям по сравнению с традиционным оборудованием, с практически отсутствующим загрязнением окружающей среды позволит создать принципиально недостижимые в традиционном исполнении виды устройств, широко востребованные в прорывных областях современных науки и техники.

Разработка новых «умных» поколений ХИТ основана на том, что свойства ультрадисперсных частиц в существеннейшей степени изменяются по сравнению с объемным телом. И причина этого не только в доступности поверхности и облегчении диффузионных потоков, но и в изменении концентрации дефектов, а главное – в разнообразных «размерных эффектах», которые связаны с тем, что размер частицы становится меньше некоторой критической величины, сопоставимой с так называемой корреляционной длиной или радиусом взаимодействия, характерным для того или иного физического явления. В результате возникают новые закономерности, что проявляется в уникальном физико-химическом и электрохимическом поведении таких наноматериалов.

Переходные элементы, имеющие переменные степени окисления и находящиеся в различных спиновых состояниях в формируемых ими сложных кристаллических структурах, играют важную роль при создании современных функциональных материалов. Одними из наиболее известных адаптивных химических систем, обладающих к тому же широкой распространенностью и низкой стоимостью, малой токсичностью и экологической безопасностью, являются системы Mn-O, Ti-O, V-O (и некоторые другие).

За счет изменения дисперсности самый дешевый и самый известный (еще с 1867 г.!) марганец-цинковый элемент француза Жоржа Лекланше “Zn-MnO2 ” получает вторую жизнь в виде … всемирно разрекламированной щелочной батарейки Дюраселл! В настоящее время по всему миру сделано большое количество экспериментов, позволяющих получить известный всем диоксид марганца в виде наночастиц, нанопластин, наноусов и даже нанотрубок. Такие материалы работают в батарейках дольше, лучше и, конечно, быстрее перезаряжаются в аккумуляторах, если в них интеркалировать литий.

Так, подобный литий-ионный аккумулятор фирмы Toshiba способен зарядиться на 80% за 60 секунд!.. Это значительно быстрее, чем обычные коммерческие литий-ионные аккумуляторы, которым для зарядки требуется от одного до десяти часов. Аккумуляторы с наночастицами теряют только 1% емкости после 1000 циклов зарядка-разрядка, они могут работать при температуре -40°C, при 45°C срок службы начинает сокращаться, но при этом теряется лишь 5% свойств после тысячного цикла. Прототип Toshiba 600mAh разрабатывался с учетом применения с компактными устройствами, размеры его всего 6.2 x 3.5 x 0.4 см.

Еще одна важная черта наночастиц – они не «растрескиваются» и не изменяются при циклировании аккумулятора (в циклах зарядка-разрядка). Раньше считалось, что это явление серьезно ограничивает ресурс обычных химических источников тока, поскольку разрушается или даже химически изменяется электрод, при этом теряется «связность» между отдельными частями электрохимической цепи «батарейки». Другая проблема – электроды могут прорастать друг в друга через разделяющую мембрану («усы» и «дендриты» металлического лития), что приводит к короткому замыканию, иногда – даже к «вскипанию» аккумулятора, как было в недавней истории с изъятием из эксплуатации «ноутбуков» одной очень известной фирмы. Все, аккумулятор можно выбрасывать! При использовании наночастиц в виде «пасты» с тесно контактирующими частицами эти проблемы во многом снимаются. Кроме того, новые литиевые аккумуляторы, выходящие в свет под маркой NanoSafe, среди прочего отличаются и новым материалом для отрицательного электрода, использующего наночастицы так называемых титановых «бронз». Это также позволило существенно повысить срок жизни аккумуляторов. После 15 тысяч циклов глубокого разряда и полной зарядки ёмкость аккумуляторов сохранилась на уровне 85% от первоначального значения. И это при том, что обычные литий-ионные и литий-полимерные батареи имеют жизненный цикл длиной примерно в 300-500 полных циклов заряда и разряда, после чего их ёмкость быстро и существенно падает. Если представить, что батареи NanoSafe появятся на мобильных телефонах, зарядка один раз в три дня будет означать, что аккумулятор проработает 123 года.

В то же время, конечно, возникают и новые «камни преткновения». Например, из-за высокой реакционной способности наночастиц они с удовольствием реагируют с электролитом и вообще со всем, с чем соприкасаются. Однако эту проблему химики успешно решают, если судить по большому числу «свежих» патентов, полученных по этой тематике.

В последнее время все больше систем становятся потенциальными или реальными кандидатами для использования в наноионике. Одна из них – материал состава LiFePO4 со структурой минерала оливина. По словам некоторых разработчитков, срок службы таких аккумуляторов увеличится по сравнению с предыдущими образцами в 10 раз, мощность возрастет в 5 раз, значительно уменьшится время заряда (более 90% емкости через 5 минут). Ожидается, что новинка будет использоваться в различных устройствах, включая электроинструменты, медицинские приборы и гибридные электромобили.

Другие системы, которые упоминаются в литературе в последнее время:

«Вискеры» с туннельной структурой

Ванадиевые бронзы

Микропористые системы оксидов переходных металлов типа

Наноструктурированный диоксид титана

Углеродные нанотрубки

Еще одна важная черта использования наночастиц – возможность создания специальных «чернил» для струйной микропечати плоских батареек и вообще готовых «лабораторий – на — микросхеме» (lab-on-chip). Подробнее об этом (и многом другом) можно посмотреть, например, на сайте Массачусетского Технологического Института (знаменитого MIT).

Экзотические «нано» батарейки (в буквальном смысле «нано» по своим размером) также пытаются создать, но это уже область биомиметики и молекулярной электроники. Так, в Национальной Лаборатории Sandia работают над созданием батареи нано-размеров, которую можно будет имплантировать в человеческий глаз. Эти батареи предназначены для снабжения энергией различных имплантируемых устройств, одним из которых является искусственная сетчатка глаза.

Таким образом, использование наночастиц и нанокомпозитов в химических источниках тока, в том числе тех, что уже гордо пришли на рынок к нам с вами, становится вполне реальным и эффективным. Это один из примеров, когда нанотехнологии действительно выполняют то, что ими обещано и что от них ждут.

5. Наноканалы генерируют электричество за счёт тока жидкости

Мельчайшие каналы, создаваемые на субстрате, всегда ассоциировались с «лабораториями на чипе». Однако, наноразмерная геометрия может использоваться и иначе — для выработки электричества.

Учёные из Нидерландов продемонстрировали эффективность преобразования энергии с КПД 3.25% при течении солевого раствора через канал 75 нм глубиной, 50 мкм шириной и 4.5 мм длиной.

В перспективе группа из Технологического Университета Дельфта рассчитывает добиться эффективности 10%. Исследователи считают, что этот метод может обеспечить микро- и нанофлюидные устройства «бортовыми» источниками энергии.

Метод электрокинетической генерации электроэнергии основан на разности давлений вдоль наноканала, прокачивающей водный раствор KCl или LiCl от одного конца к другому. Движение жидкости индуцирует ток, пропускаемый через внешнее сопротивление, совершая, таким образом, работу.

Возле стенки канала, на поверхности раздела жидкость-субстрат, зарядовая нейтральность жидкости нарушается, что и делает возможной выработку электрической энергии. А поскольку наноразмерные каналы имеют высокое отношение поверхности к объёму, в них этот эффект особенно силён. Сама идея получения электроэнергии с помощью жидкости, текущей через узкий канал, не нова, но теперь достижения технологий изготовления нанообъектов позволяют создавать и испытывать реальные устройства.

Учёные наносили каналы непосредственно на поверхность плавленого кварца. Как оказалось, плотность поверхностного заряда этого материала практически оптимальна для таких экспериментов. Однако, дальнейшее повышение эффективности метода требует поисков материала или покрытия с такой же плотностью поверхностного заряда, но меньшей штерновской проводимостью — за счёт этого эффекта сам материал действует, как параллельно включённый проводник, через который идёт утечка электрической энергии.

6. Побит рекорд эффективности пластиковых солнечных элементов

В Центре Нанотехнологий и Молекулярных Материалов Университета Уейк Форест (Wake Forest University, Center for Nanotechnology and Molecular Materials) достигнуты значительные успехи в области возобновляемы источников энергии.

Исследователи Центра объявили о создании пластиковых солнечных элементов с эффективностью более 6%. Такая высокая эффективность была достигнута за счёт внедрения нановолокон в светопоглощающий пластик, аналогично жилам в листьях растений. Такой подход позволяет создавать устройства с более толстым светопоглощающим слоем, улавливающие больше солнечного света.

Эффективные пластиковые солнечные батареи важны для создания недорогих и лёгких элементы питания — особенно в сравнении с традиционными кремниевыми солнечными батареями, которые обладают большим весом и размерами. Благодаря гибкости и простоте в обращении, пластиковые солнечные батареи могут использоваться в качестве покрытий на домах и автомобилях. А поскольку такие элементы намного легче обычных, отпадает необходимость в прочных опорных конструкциях.

Современные кремниевые элементы достигают эффективности преобразования света в электрическую энергию порядка 12%. Максимальная эффективность пластиковых солнечных элементов не превышала 3%, пока в 2005 году директор Центра Дэвид Кэрролл (David Carroll) и его группа не объявили о создании устройств с эффективностью почти 5%, а теперь, спустя чуть более года, они превзошли отметку 6%. Таким образом за два года им удалось более чем вдвое повысить эффективность элементов. Исследователи ожидают добиться ещё больших успехов в течение следующих двух лет, что наконец сделает пластиковые солнечные элементы лидерами среди солнечных батарей. Для коммерческой рентабельности эффективность солнечных элементов должна быть не ниже 8%; исследователи из Уейк Форест ожидают достигнуть 10% отметки в следующем году.

7. Создан нанодвигатель с фотонным питанием

Создан нанодвигатель с фотонным питанием Ученые из университетов Болоньи и Калифорнии создали первый молекулярный двигатель, работающий от солнечного света.

Нанодвигатель разрабатывался более шести лет исследователями из университета Болоньи и Калифорнийского университета. По форме он напоминает гантель длиной 6 нм, на рукоятке которой находится кольцо диаметром 1,3 нм. Кольцо может двигаться вдоль рукоятки, но не может соскользнуть из-за двух ограничителей на концах «гантели». Кольцо занимает один из двух участков на «рукоятке». Когда один из ограничителей поглощает солнечный свет, электрон перемещается к одному из этих участков, что вызывает перемещение кольца к другому участку. Когда электрон перемещается обратно, кольцо возвращается на место, и, таким образом, цикл повторяется много раз. Микромотор размером всего несколько нанометров двигается подобно микроскопическому поршню. «Эти нанодвигатели можно использовать в качестве ячеек памяти в молекулярной фотонике и электронике — двух перспективных направлениях, нацеленных на создание химического компьютера», — говорит доктор Винченцо Бальцани (Vincenzo Balzani) из университета Болоньи.

Наномоторы можно использовать и в качестве клапанов для пор наночастиц на основе кварца. Ученые с помощью световых импульсов управляют открытием и закрытием этих клапанов, регулируя заполнения пор молекулами определенного вида — к примеру, молекулами лекарств для лечения рака, сообщает Physorg. «Когда такие наноконтейнеры достигнут цели, свет может использоваться как переключатель доставки лекарства», — комментирует доктор Дж. Фрейзер Стоддарт (J. Fraser Stoddart) из Калифорнийского университета в Лос-Анджелесе, соавтор изобретения.

Нанодвигатель работает очень быстро. Полный цикл занимает менее тысячной доли секунды. Как считают авторы изобретения, процесс можно сравнить с работой автомобильного двигателя, совершающего 60 тыс. тактов в минуту. По мнению ученых, примечателен тот факт, что молекулярный двигатель подобного типа не нуждается в химическом топливе. Новый нанодвигатель берет энергию непосредственно из солнечного света, не требует доставки топлива и не производит отходов. Его можно сравнить с солнечным автомобилем. Специалисты едины в своих оценках и считают изобретение нанодвигателя важным этапом на пути к созданию молекулярных машин. В настоящее время исследователи заняты созданием поверхностных покрытий и мембран из подобных нанодвигателей, где все они будут работать согласованно и производить механическую работу на макроуровне.

8. Топливо для нанороботов

Учеными из Белорусского государственного университета информатики и радиоэлектроники обнаружен эффект горения и взрыва в слоях наноструктурированного пористого кремния.

Наноструктурированный пористый кремний, полученный методами электрохимического анодирования, при определенных условиях способен гореть и взрываться, при этом энергетический эффект этих процессов выше, чем у углеводородных материалов. Обнаруженный эффект открывает возможность обеспечения энергией MEMS или NEMS на микроуровне непосредственно внутри полупроводниковой схемы.

Активизация микроисточника энергии может осуществляться электрическим, термическим или механическим сигналом. Интересно, что при толщине слоя пористого кремния меньше 60 мкм наблюдается процесс горения. А при толщине больше 60 мкм происходит взрыв. Размер световой вспышки, наблюдаемый при горении и взрыве пористого кремния, максимален для свежеприготовленных образцов.

Изготовление наноструктурированных кремниевых пленок может быть осуществлено на основе кремниевой технологии, используемой при изготовлении интегральных микросхем, что особенно важно для миниатюрных изделий.

Были изготовлены кремниевые микроактюаторы, способные преодолевать расстояния в несколько метров. Оценочные расчеты показывают, что эффективность преобразования энергии горения в кинетическую энергию достигает 50%. То есть, даже предварительные результаты позволяют говорить о возможности использования процессов горения пористого кремния в микромашинах, изготавливаемых на основе кремниевой технологии.

Более высокая удельная энергия при взрыве открывает принципиально новые возможности для использования пористого кремния. На рис. 3 показаны этапы процесса разделения кремниевой пластины на отдельные чипы при помощи взрыва слоя пористого кремния. По сравнению с традиционными методами лазерного и алмазного разделения кремниевых пластин данный метод имеет ряд преимуществ:

* ширина разделительной дорожки может быть уменьшена до 40 мкм; * при помощи этого метода можно вырезать кремниевые кристаллы любой формы, в том числе и круглые и овальные, так как линия разреза формируется при помощи операций фотолитографии.

К другим возможным практическим применениям процесса взрыва пористого кремния следует отнести изготовление самоуничтожающихся кремниевых чипов, а также экологически безопасных пиротехнических схем.

Следует отметить, что наноструктурированный кремний является энергоносителем, альтернативным углеводородным видам топлива. В частности, кремень, использовавшийся в древности как источник огня, есть не что иное, как наноструктурированное минеральное образование из кварца и халцедона. Минерал халцедон отличается от кварца нестехиометричностью состава – повышенным массовым содержанием водорода, т.е. этот минерал является “недоокисленным” по сравнению с кварцем, что и объясняет его необычные свойства, позволяющие его микрочастицам воспламеняться после механического воздействия.

9. Приложение

Новые эффекты, возникающие в нанокомпозитах: Электростатические эффекты разделения зарядов в нанокомпозитах металл (рутений) – оксид (Li2O), J.Maier, Nature materials, vol.4, 2005)

Новые эффекты, возникающие в нанокомпозитах: поведение «ионной жидкости» («шарики» и «ионы»), распределенной в прочной нанопористой непроводящей матрице (обозначено зеленым цветом). (J.Maier, Nature materials, vol.4, 2005)

Различные формы MnO2 для марганец-цинковых батареек (Journal of Solid State Chemistry 179 (2006) 1757–1761)

Уникальные нанотрубки на основе MnO2 для химических источников тока (Adv. Mater. 2005, 17, 2753–2756).

Нанотрубки пентаксида ванадия, полученные гидротермальным методом (Факультет Наук о Материалах МГУ)

Аккумуляторная батарейка фирмы Toshiba, содержащая наночастицы.

Частицы диоксида титана TiO2 различного размера для использования в литий-ионных аккумуляторах нового поколения (Adv. Mater. 2006, 18, 1421–1426).

Аккумулятор Nanosafe, содержащий наночастицы диоксида титана.

Нанопористая структура композита «LiFePO4 — углерод» (Solid State Ionics 176 (2005) 1801 – 1805).

Кристаллическая структура минерала оливина.

Интеркаляция лития в структуру фосфата железа.

Модель американского Белого Дома, «напечатанная» с помощью технологии трехмерной струйной печати с использованием чернил, содержащих высокодисперсные частицы.

Жидкостный наногенератор

Солнечная нанобатарея

Так выглядит основа новой нанобатареи — кристалл теллурида кадмия

Кремниевый микроактюатор, использующий энергию горения пористого кремния для перемещения в пространстве

Метод лазерного и алмазного разделения кремниевых пластин

Фрагменты поведения шарообразной вспышки при взрыве наноструктурированного гидрированного кремния, пропитанного KNO3

10. Литература

1. www.nanonewsnet.ru

2. www.paramatma.ru

3. www.cnews.ru

4. www.nanometer.ru

5. www.rian.ru

6. www.ng.ru

7. Р.С. Ерофеев. Роль нанотехнологии в создании более эффективных преобразователей энергии. Нанотехника. № 3, 2005 г.

www.ronl.ru

Исследовательская работа студентов "Перспективные ориентиры использования нанотехнологий в электроэнергетике"

Министерство образования Нижегородской области

Государственное бюджетное профессиональное образовательное учреждение

«Арзамасский коммерческо-технический техникум»

ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА

Тема: ПЕРСПЕКТИВНЫЕ ОРИЕНТИРЫ ИСПОЛЬЗОВАНИЯ

НАНОТЕХНОЛОГИЙ В ЭЛЕКТРОЭНЕРГЕТИКЕ

Выполнил: студент гр. 14-21ЭРЭО

Шленов Виктор

Руководитель В.В Федосеев

преподаватель спецдисциплин

Арзамас, 2017

Содержание

История возникновения нанотехнологий

6

  1. Исследование современных перспектив использования нанотехнологий в энергетике

11

11

12

12

Заключение

18

Литература

20

ВВЕДЕНИЕ

Актуальность темы. Стремительное развитие нанотехнологий позволяет их применять во многих сферах нашей жизни, и энергетическая отрасль не является исключением.

Область науки и техники, именуемая нанотехнологией, появилась сравнительно недавно. Перспективы этой науки грандиозны. Сама частица «нано» означает одну миллиардную долю какой-либо величины. Например, нанометр - одна миллиардная доля метра. Эти размеры схожи с размерами молекул и атомов. Точное определение нанотехнологий звучит так: нанотехнологии – это технологии, манипулирующие веществом на уровне атомов и молекул (поэтому нанотехнологии называют также молекулярной технологией). Толчком к развитию нанотехнологий послужила лекция Ричарда Фейнмана, в которой он научно доказывает, что с точки зрения физики нет никаких препятствий к тому, чтобы создавать вещи прямо из атомов. Для обозначения средства эффективного манипулирования атомами было введено понятие ассемблера – молекулярной наномашины, которая может построить любую молекулярную структуру. Пример природного ассемблера – рибосома, синтезирующая белок в живых организмах. Очевидно, нанотехнологии - это не просто отдельная часть знаний, это масштабная, всесторонняя область исследований, связанных с фундаментальными науками. Можно сказать, что практически любой предмет, из тех, что изучаются в школе, так или иначе будет связан с технологиями будущего. Самой очевидной представляется связь “нано” с физикой, химией и биологией. По-видимому, именно эти науки получат наибольший толчок к развитию в связи с приближающейся нанотехнической революцией.

Уже сегодня мы можем пользоваться преимуществами и новыми возможностями  нано технологий в:

  • медицине, в том числе авиационно-космической;

  • фармакологии;

  • гериатрии;

  • защите здоровья нации в условиях нарастающего экологического кризиса и техногенных катастроф;

  • глобальных вычислительных сетях и информационных коммуникациях на новых физических принципах;

  • системах сверхдальней связи;

  • автомобильной, тракторной и авиационной технике;

  • безопасности дорожного движения;

  • системах информационной безопасности;

  • решении экологических проблем мегаполисов;

  • сельском хозяйстве;

  • решении проблем питьевого водоснабжения и очистки сточных вод;

  • принципиально новых системах навигации;

  • возобновление природных минеральных и углеводородных сырьевых ресурсов.

infourok.ru

Нанотехнологии в энергетике. На этот раз при помощи нанотехнологий совершен прорыв в области прямого

На этот раз при помощи нанотехнологий совершен прорыв в области прямого преобразования радиоактивного излучения в электроэнергию. Способ прямой конвертации радиации в электроэнергию с помощью термоэлектрических наноматериалов откроет новую эру в космических полетах на сверхдальние расстояния и найдет свое применение при создании земных транспортных средств, считают ученые. Тесты показали, что разработанный материал способен вырабатывать в 20 раз большую электрическую мощность по сравнению с образцами известными ранее.

Традиционная ядерная энергетика использует энергию распада атомных ядер для нагрева теплоносителя, который, в свою очередь, нагревает воду. Вода преобразуется в пар с высокими параметрами, пар направляется в турбину, которая приводит во вращение генератор.

Естественным стремлением ученых было уменьшить число ступеней преобразования одного вида энергии в другой прежде, чем будет выработана электроэнергия. Связано это с тем, что, во-первых, на каждом этапе происходят потери энергии, во-вторых, вся технологическая цепочка занимает много места, требует габаритного и дорогого оборудования.

США и Советский Союз начали разработки ядерных батарей для космических аппаратов, начиная с первых космических полетов. В этих устройствах применялись термоэлектрические материалы, с помощью которых тепло ядерной реакции напрямую преобразовывалось в электроэнергию. Такие установки были очень компактными, так как в них отсутствовали парогенераторы, турбины, генераторы. Но эффективность подобных устройств была крайне низка.

В настоящее время, в лаборатории университета штата Алабама разработан термоэлектрический материал, повышающий эффективность всей технологии в 20 раз! Материал был создан бывшим инженером национального ядерного центра Лос-Аламос - Liviu Popa-Simil, в сотрудничестве с Claudiu Muntele из университета Алабамы.

Новый материал представляет собой множество слоев углеродных нанотрубок, наполненных золотом и окруженных гидридом лития. Радиоактивное излучение воздействует на электроны в атомах золота и заставляет их покидать свои орбиты. Электроны проходят через нанотрубки и попадают в гидрид лития, затем они движутся к электроду, создается электрический ток.

Нанотрубки под электронным микроскопом

Нанотрубки позволили существенно повысить удельную электрическую мощность термоэлектрика. С их помощью возможно наиболее эффективно использовать энергию радиационного излучения.

Термоэлектрики могут стать компактными и очень удобными источниками энергии, как для космических аппаратов, так и для земных автомобилей. Но это, как признают ученые, лишь далекая перспектива. Предстоит провести еще очень много научной работы, прежде чем технология будет готова к коммерциализации.

По материалам журнала NewScientist

 

 

 

http://1interesnoe.info/2010/09/energetika_i_nanotexnologii/

 

Энергетика и нанотехнологии

шиномонтаж мобильный .

Представьте, каким будет наш мир в 2050 г. без возобновляемых источников энергии. Практически все запасы нефти на планете будут сожжены в двигателях автомобилей. А все запасы газа израсходованы на генерацию электричества или в сжиженном состоянии использованы для перемещения автомобилей и самолетов. Человечеству придется использовать оставшиеся запасы угля с выбросом продуктов сгорания с высоким содержанием металлов и других загрязняющих веществ. Содержание углекислого газа в атмосфере превысит отметку 750 частей на миллион. Уровень воды в Мировом океане повысится так, что береговая линия сдвинется почти на 80 км вглубь континентальной части. При этом будут затоплены многие прибрежные города и густозаселенные территории. Электросети будут настолько перегружены, что перестанут надежно работать, и большинство людей смогут получать энергию всего несколько часов в неделю. Из-за невыносимой жары миллиарды вынуждены будут мигрировать.

Нищета и болезни будут расти в связи с отсутствием дешевой и экологически чистой энергии. Энергия станет элементом роскоши, доступной только богачам, которые вынуждены будут тратить большую часть своих средств на защиту от энергетически голодных орд.

Трудно себе представить, что мировые лидеры позволят осуществиться такому кошмарному сценарию. Сегодня очень важно найти новые технологические решения для поиска альтернативных источников энергии еще до того, как исчерпаются ископаемые источники энергии. В этой главе представлены некоторые пути поиска решения энергетических проблем, с которыми человечество неизбежно столкнется к 2050 г.

Открытия в области нанотехнологий вызывают эффект домино практически во всех отраслях науки и техники. По мере постижения основных свойств наномира и открытия новых нанотехнологий ученые и инженеры находят новые сферы их применения. Вероятно,

наиболее важным будет применения нанотехнологий в энергетике. Дальнейшее процветание человечества, доступность энергии и качество окружающей среды будут во многом зависеть от успеха применения нанотехнологий.

Ричард Смолли, один из самых активных сторонников применения альтернативных технологий, убежден, что новые наноматериалы сыграют критически важную роль в удовлетворении будущих энергетических потребностей человечества. Он считает, что нанотехноло- гии помогут найти способ распределения энергии по всему миру, и верит, что человечество найдет и применит нужные нанотехнологии для решения всех энергетических проблем.

Новые технологии в энергетике необходимы для всеобщего благополучия человечества. После исчерпания ископаемых источников энергии человечеству придется найти экономически выгодные альтернативы, ибо в противном случае мы просто прекратим свое существование.

Энергия

Прежде чем искать решения энергетических проблем с помощью нанотехнологий, попробуем разобраться, в чем же заключаются энергетические проблемы.

С какими наибольшими проблемами столкнется человечество в ближайшие 50 лет? Достаточно большой список всех проблем имеет общий знаменатель: энергия. В таблице 11.1 перечислены 10 наиболее важных современных проблем человечества.

Таблица 11.1. Десять самых важных проблем человечества
Место Проблема
Недостаток энергии
Загрязнение вод
Недостаток пищи
Загрязнение окружающей среды
Перенаселение
Болезни
Войны/терроризм
Бедность
Неграмотность
Истощение почв

Большая часть проблем загрязнения окружающей среды связана с используемой энергией, которая генерируется за счет сжигания ископаемых ресурсов (угля, нефти и газа), древесины или продуктов жизнедеятельности человека и домашних животных. Это сжигание приводит к возрастанию в атмосфере концентрации углекислого газа, сажи и других загрязняющих веществ, которые приводят к отравлению атмосферы и глобальному потеплению.

Бедность, почти по ее определению, означает недостаток энергии. Из 6,5 млрд людей, живущих на Земле, около 2 млрд не имеют доступа к электричеству, а еще 2 млрд вынуждены использовать ограниченное количество ископаемых видов топлива, обычно древесину и продукты жизнедеятельности домашних животных. Остальные 2 млрд используют другие доступные источники энергии (например, американцы составляют всего 5% населения Земли, но используют около 25% всей расходуемой человечеством энергии). Люди без доступа к достаточному количеству энергии вступят в конфликт с теми, у кого энергии достаточно, а это приведет к росту социальной и политической напряженности. Огромный экономический разрыв между богатыми и бедными странами и народами повлечет за собой рост напряженности в отношениях между ними.

А что с войнами и терроризмом? Приходилось ли раньше людям воевать за энергию? Первое, что приходит в голову, — это война в Персидском заливе и горящие нефтяные скважины.

Причиной множества болезней является загрязнение питьевой воды. Если бы у человечества было достаточно энергии для очистки воды, уровень заболеваний можно было бы существенно снизить.

Образование также зависит от ресурсов и энергии. Трудно учиться на пустой желудок, в жаре или холоде. Не верите? Спросите у любого студента. Население Земли в 2050 г. может достигнуть 8—10 млрд человек. Отсутствие демократии и свободы может показаться меньшей проблемой, чем перенаселение и недостаток энергии, но решение энергетических проблем упростило бы решение всех остальных проблем человечества.

Какие факторы, кроме энергии, могут повлиять на решение этих проблем? При тщательном изучении может показаться, что только уменьшение населения Земли может помочь в их решении. Однако даже после самых ужасных войн и эпидемий население существенно не уменьшалось. Удалось бы решить эти проблемы, если бы население Земли составляло всего 1 млрд человек? Скорее всего, да, но куда девать остальные 5,5 млрд?

Вероятно, вы заметили, что полки книжных магазинов ломятся от книг с ужасающими заголовками: «Без газа», «Фактор нефти», «Конец нефти», «Последний энергетический кризис», «Без нефти: вид с пика Хаббарда» и др. В большинстве из них обсуждается вопрос: достигла ли пика мировая добыча нефти? Почти все соглашаются, что такой пик будет достигнут уже в 2010 г.1

М. Кинг Хаббард (M. King Habbard), геофизик компании Shell Oil, в 1957 г. проанализировал темпы добычи нефти и предсказал, что США достигнут пика добычи нефти в 1970 г. Именно так и произошло. На рисунке 11.1 предсказания Хаббарда показаны на графике.

В книге Twilight in the Desert («Сумерки в пустыне») описываются нефтяные поля Саудовской Аравии. В ней анализируется состояние крупнейших нефтяных полей мира и уровень их истощения. Согласно этому анализу, цены на нефть и нефтепродукты, вероятно, останутся такими же высокими, если не выше. Дело в том, что спрос на нефть постоянно растет быстрее предложения.

Почти 99% современных ученых согласны с тем, что повышение уровня концентрации углекислого газа в атмосфере вызовет серьезные проблемы в течение ближайших 100 лет. Все ископаемые виды топлива выделяют углекислый газ при сгорании. Поэтому если мы будем продолжать сжигать нефть, газ и уголь, то должны придумать способы снижения уровня углекислого газа в атмосфере. Многие компании разрабатывают варианты сохранения углекислого газа в подземных резервуарах, океане или в составе производных веществ, например карбонате кальция. Проблема в том, что для снижения содержания углекислого газа в атмосфере такими методами придется в течение 100 лет хоронить десятки гигатонн углекислого газа.

Доступность

Энергия неодинаково доступна всем людям на Земле. Как уже говорилось выше, около 2 млрд человек не имеют доступа к электричеству, а еще 2 млрд вынуждены использовать биомассу (то есть древесину и продукты жизнедеятельности домашних животных).

На рисунке 11.2 показаны кривые спроса и текущего потребления нефти, газа и угля. Человечество потребляет огромное их количество. По мере приближения к 2050 г. спрос на эти виды топлива будет только расти. Если учесть, что текущие прогнозы чрезвычайно занижены и не учитываются некоторые факторы, то положение может быть еще более тяжелым.

Например, ежегодные общемировые темпы роста потребления энергии равны 2%, а темпы роста потребления энергии в Китае — 20%. Поскольку население Китая превышает 1 млрд человек, то общий рост потребления энергии в мире вряд ли останется на прежнем уровне. Фактически потребление энергии растет в наиболее населенных странах мира вместе с ростом уровня жизни: люди стремятся покупать автомобили и больше путешествуют. На рисунке 11.3 показана структура основных видов топлива, которые потребляются в настоящее время.

Уровень спроса на топливо и его потребления в мире ПРОБЛЕМА ТЕРАВАТТА

Этот термин образно описывает проблемы современной энергетики. В пересчете на нефть человечество ежедневно потребляет более210 млн баррелей нефти, из которых около трети приходится на саму нефть, а остальная часть — на уголь, газ, ядерное топливо, биомассу и гидроресурсы. За исключением гидроресурсов основная часть топлива — это невозобновляемые источники энергии. Благосостояние в XX в. было связано с потреблением нефти. Что же станет основой энергетики в XXI в.?

По самым скромным оценкам, в 2050 г. человечеству потребуется вдвое больше энергии, чем сегодня (а если учесть некоторые дополнительные факторы, то даже вчетверо). Это значит, что ежегодно будет тратиться 10—15 тераватт.

Тераватт — это миллион миллионов ватт (то есть 1012 ватт), что приблизительно соответствует миллиону баррелей нефти.

В настоящее время нет никаких возможностей для удовлетворения столь высоких потребностей человечества. Потребление нефти, газа и угля составит лишь малую долю от общего потребления энергии. Для удовлетворения повышенного спроса потребуется использовать новые источники энергии на основе ядерного распада и синтеза, гидроэнергетики и новых возобновляемых источников энергии. Сможет ли человечество овладеть этими новыми источниками в ближайшие десятилетия?

ЭФФЕКТИВНОСТЬ

По мнению Эймори Ловинс (Amory Lovins) из Института Роки Маунтэйн (США), решить энергетические проблемы можно с помощью повышения эффективности производства и использования новых материалов. Например, если делать автомобили из композитов, то их масса уменьшится, и потребление энергии снизится. Такие автомобили могли бы дать до 69% экономии потребляемого топлива. Использование более прочных композитных материалов также позволило бы создавать конструктивно иные грузовики и микроавтобусы и получить экономию топлива до 65%.

Компании Boeing и Airbus достигли заметного прогресса в применении новых материалов. Например, новый самолет Boeing 787 Dreamliner спроектирован на основе композитных материалов, позволяющих более эффективно использовать топливо.

Нельзя ли приостановить рост потребления энергии и удовлетвориться текущими потребностями? Большинство экспертов считают, что даже при современном уровне потребления ископаемых ресурсов человечеству надолго не хватит имеющихся запасов биомассы, чтобы прокормиться и отопить свои жилища.

 

 

 

http://popnano.ru/science/index.php?task=view&id=187

 

megaobuchalka.ru

Роль нанотехнологии в создании более эффективных преобразователей энергии

Федеральное агентство науки и образования

Пензенский государственный университет

Кафедра нано- и микроэлектроники

Курсовая работа

«Роль нанотехнологии в создании более эффективных преобразователей энергии»

Выполнили:

ст. гр. 06ЕЮ1

Сапрыкин М.С.

Сорокин О.В.

Проверила:

Гришанова В.А.

2007

Содержание

1. ВВЕДЕНИЕ

2. Эйфория по поводу нанотехнологий вполне оправдана

3. Нанотехнологии и переход к водородной энергетике

4. Не «Дюраселом» единым

5. Наноканалы генерируют электричество за счёт тока жидкости

6. Побит рекорд эффективности пластиковых солнечных элементов

7. Создан двигатель с фотонным питанием

8. Топливо для нанороботов

9. Приложение

10. Литература

1. ВВЕДЕНИЕ

Для понятия нанотехнология, пожалуй, не существует исчерпывающего определения, но по аналогии с существующими ныне микротехнологиями следует, что нанотехнологии - это технологии, оперирующие величинами порядка нанометра. Поэтому переход от "микро" к "нано" - это качественный переход от манипуляции веществом к манипуляции отдельными атомами.

Когда речь идет о развитии нанотехнологий, имеются в виду три направления:

изготовление электронных схем (в том числе и объемных) с активными элементами, размерами сравнимыми с размерами молекул и атомов;

разработка и изготовление наномашин;

манипуляция отдельными атомами и молекулами и сборка из них макрообъектов.

Разработки по этим направлениям ведутся уже давно. В 1981 году был создан туннельный микроскоп, позволяющий переносить отдельные атомы. С тех пор технология была значительно усовершенствована. Сегодня эти достижения мы используем в повседневной жизни: производство любых лазерных дисков, а тем более DVD невозможно без использования нанотехнических методов контроля.

На данный момент возможно наметить следующие перспективы нанотехнологий:

1. Медицина. Создание молекулярных роботов-врачей, которые "жили" бы внутри человеческого организма, устраняя или предотвращая все возникающие повреждения, включая генетические.

2. Геронтология. Достижение личного бессмертия людей за счет внедрения в организм молекулярных роботов, предотвращающих старение клеток, а также перестройки и улучшения тканей человеческого организма. Оживление и излечение тех безнадежно больных людей, которые были заморожены сегодня методами крионики.

3. Промышленность. Замена традиционных методов производства сборкой молекулярными роботами предметов потребления непосредственно из атомов и молекул.

4. Сельское хозяйство. Замена природных производителей пищи (растений и животных) аналогичными функционально комплексами из молекулярных роботов. Они будут воспроизводить те же химические процессы, что происходят в живом организме, однако более коротким и эффективным путем. Например, из цепочки "почва - углекислый газ - фотосинтез - трава - корова - молоко" будут удалены все лишние звенья. Останется "почва - углекислый газ - молоко (творог, масло, мясо)". Такое "сельское хозяйство" не будет зависеть от погодных условий и не будет нуждаться в тяжелом физическом труде. А производительности его хватит, чтобы решить продовольственную проблему раз и навсегда.

5. Биология. Станет возможным внедрение наноэлементов в живой организм на уровне атомов. Последствия могут быть самыми различными - от "восстановления" вымерших видов до создания новых типов живых существ, биороботов.

6. Экология. Полное устранение вредного влияния деятельности человека на окружающую среду. Во-первых, за счет насыщения экосферы молекулярными роботами-санитарами, превращающими отходы деятельности человека в исходное сырье, а во-вторых, за счет перевода промышленности и сельского хозяйства на безотходные нанотехнологические методы.

7. Освоение космоса. По-видимому, освоению космоса "обычным" порядком будет предшествовать освоение его нанороботами. Огромная армия роботов-молекул будет выпущена в околоземное космическое пространство и подготовит его для заселения человеком - сделает пригодными для обитания Луну, астероиды, ближайшие планеты, соорудит из "подручных материалов" (метеоритов, комет) космические станции. Это будет намного дешевле и безопаснее существующих ныне методов.

8. Кибернетика. Произойдет переход от ныне существующих планарных структур к объемным микросхемам, размеры активных элементов уменьшаться до размеров молекул. Рабочие частоты компьютеров достигнут терагерцовых величин. Получат распространение схемные решения на нейроноподобных элементах. Появится быстродействующая долговременная память на белковых молекулах, емкость которой будет измеряться терабайтами. Станет возможным "переселение" человеческого интеллекта в компьютер.

9. Разумная среда обитания. За счет внедрения логических наноэлементов во все атрибуты окружающей среды она станет "разумной" и исключительно комфортной для человека.

2. Эйфория по поводу нанотехнологий вполне оправданна

Тот факт, что нанотехнологии способны внести важнейший вклад в решение проблем как энергетики, так и связанных с ними задач по сохранению окружающей среды, сомнений не вызывает. Линии электропередачи, да и вообще все проводники электроэнергии, аккумуляторы и солнечные фотопреобразователи становятся благодаря им мощнее и повышают свой КПД. Именно это обстоятельство побудило руководство германской земли Гессен, как отмечает еженедельная газета VDI-Nachrichten перейти к организации постоянного диалога между представителями различных энергетических отраслей и нано-учеными. Гессен, по словам земельного министра экономики Алоиса Риля делает ставку на надежную, экологически чистую энергию по доступным для населения ценам и именно достижению этой цели могут помочь нанотехнологии.

Проведенный по инициативе министерства в кооперации с таким научным учреждением Institut fur Solare Кnergieversorgungstechnik форум под названием «Нано-Энергия» продемонстрировал возможности нанотехнологий не только в сфере повышения качественного использования традиционных энергоносителей, в частности ископаемых, включая и ядерную энергетику, таких возобновляемых видов энергии, как тепло земли, солнце, ветер, вода, биомасса. Речь при всём этом может идти, например, об использовании новых технологий для производства более стойкого к износу бурового оборудования, применяемого для освоения нефтяных и газовых месторождений, для изготовления более легких и стабильных лопастей для роторов ветряных электростанций, для увеличения КПД солнечных панелей за счет роста объема поглощения света на электростанциях, использующих энергию нашего светила. Уже созданы «интеллигентные» окна, способные либо абсорбировать энергию солнца, либо отражать ее в зависимости от времени года и потребности жилища. Перспективным направлением применения нанотехнологий ученые считают работы по улучшению поглощающих свойств традиционных солнечных панелей с использованием кремния или созданию новых видов покрытия из полимерных пленок. Полимеры позволят не только снизить цену таких панелей, но и даже использовать их для энергоснабжения мобильных электронных устройств.

Широкое применение наноматериалы найдут в процессах превращения первичных видов энергоресурсов в другие виды энергии, в том числе в электроэнергию. В автомобильной промышленности это снизит потребление топлива за счет применения наноматериалов в генераторах, в шинах, в специальных добавках в бензин или за счет оптимизации сгорания топлива в моторах, изготовленных на базе наноматериалов. В электроэнергетике предполагается применение покрытий из нановещества в турбинах, топливных элементах. Можно добиться повышения емкости электрических батарей, аккумуляторов и конденсаторов за счет применения при их создании наноэлементов.

Сегодня ученые работают над применением наноматериалов при термоэлектрических превращениях энергии. Речь идет о создании полупроводников с наночастицами, что позволит использовать остаточное тепло как в автомобильных моторах, так и тепло человеческого тела с помощью специальных текстильных наноматериалов.

Потерь энергии можно будет в перспективе избежать за счет применения в системах электропередачи углеродных проводников с добавками наноэлементов.

При этом не только в высокотехнологичных областях возможно применение наноматериалов. Например, в спорте можно резко повысить энергетику мяча для гольфа. Смысл состоит в физических свойствах ротации мяча, благодаря которым он достигает наибольшей высоты. При этом если ротация неравномерно воздействует на ось мяча, то он отклоняется влево или вправо. Использование нанотехнологий при изготовлении таких мячей позволяет им равномерно достигать больших высот без каких-либо отклонений. Возможно, что подобная технология может применяться и при конструировании летательных аппаратов.

3. Нанотехнологии и переход к водородной энергетике

Если рассмотреть «водородные программы» правительств разных стран, становится видно, что их целью является достижение «технологической готовности» такого уровня, на котором станет возможным принимать решения о коммерциализации этой технологии и сателлитных разработок в масштабах промышленности.

На достижение столь амбициозных целей отпущено крайне мало времени: в качестве дат полного перехода к повсеместному использованию водородного топлива называются 2015, 2020 и 2025 гг. Нанотехнологии могут существенно помочь разработкам в этом направлении, поскольку уже сейчас предоставляют решения для каждого из трех ключевых аспектов водородной энергетики - производства водорода, его хранения и создания эффективных топливных ячеек.

Чтобы избежать терминологической путаницы, заметим, что «водородный автомобиль», о котором идет речь в настоящей статье - это не автомобиль с двигателем внутреннего сгорания, использующим в качестве горючего водород или смесь водорода с природным газом. Имеется в виду «водородный автомобиль» как машина с электрическим приводом, где химическая энергия топлива напрямую преобразуется в электрическую энергию, без механических или тепловых процессов. Чистый выхлоп - тепло и вода.

Первая существенная проблема, которую необходимо решить для перехода на водородную основу - это собственно производство водорода. Топливные ячейки на водороде заряжаются водородом через преобразование жидких топлив (бензин, этанол, метанол) в водород прямо внутри самой ячейки, либо используют водород, произведенный где-то в другом месте и хранящийся в баке автомобиля.

Второй способ влечет за собой серьезную инфраструктурную задачу: поскольку пока еще не существует заправочных станций с водородной колонкой, их потребуется построить, а также создать и отладить всю логистическую цепочку - от завода по выработке водорода до бака автомобиля.

Производство водорода может осуществляться с использованием самых разных источников. Наиболее экологически чистые технологии находятся довольно далеко в стороне от главного направления разработок. Эти технологии используют возобновляемую энергию для обеспечения электричеством процесса электролиза воды, получая в итоге водород и кислород.

Технологией с самым высоким уровнем отходов является газификация угля. Как минимум до того времени, когда будут разработаны высокоэффективные способы захвата и отделения углерода. Разумеется, еще можно использовать атомную энергию для обеспечения электролизных станций электричеством - АЭС строятся, и на обеспечение безопасности эксплуатации этих станций тратится много усилий.

Если взять в качестве примера США, чей «водородный комплекс» можно считать одним из самых передовых, и попытаться выяснить, каким способом получают водород в этой стране, то получается следующая картина. Порядка 95 % производимого на сегодняшний день в США водорода (это составляет около 50 % мирового производства) - порядка 9 млн. тонн ежегодно - производится из метана при помощи высокотемпературного пара.

Становится понятно, зачем нефтяникам водородные технологии. Пока политики и энергетики говорят о «чистом будущем», которое наступит в эру водородной экономики, технологический маршрут Министерства энергетики США в данном направлении предусматривает подавляющее большинство - 90 % - водородной генерации на основе ископаемых энергоносителей - угля, газа и нефти - с дополнительной опорой на атомные электростанции.

Другими словами, выбросы парниковых газов останутся на прежнем уровне - только уже не из автомобильных выхлопных труб, а со станций генерации водорода. Существенным препятствием в создании чистых технологий производства водорода является их цена. Пока правительство не утвердит использование водорода в качестве основного топлива, или не увеличит в разы налоги на использование топлив на базе ископаемых энергоносителей, «эквивалент литра бензина» будет основным эталоном для водителей при принятии решения, какое топливо им покупать. А производство водорода из нефти, газа и угля на сегодняшний день является наиболее экономически оправданным методом.

Основной вклад нанотехнологий в «чистое» производство водорода заключается в том, что материалы, созданные с их помощью, могут использоваться в солнечных батареях. Также известны применения результатов нанотехнологических разработок в области катализаторов для процесса электролиза. Основные поиски сейчас нацелены на то, чтобы создать высокоэффективное устройство, которое можно заправить водой, выставить на солнце и получить водород без использования каких-либо внешних энергетических источников.

У солнечных батарей есть потенциал, который поможет воплотить эту идею в жизнь, однако пока мешает этому их низкая эффективность и, наоборот, слишком высокая цена. Правда, похоже, что солнечная энергетика не может покрыть все потребности в обеспечении станций генерации водорода нужным количеством энергии. Если представить, что вся солнечная энергия будет без потерь запасаться в топливные ячейки, то даже при всём этом условии получаются результаты, которые вряд ли удовлетворят потребителей энергии.

Статистика утверждает, что мировое потребление энергии в 2004 году составило около 404 квадриллионов британских тепловых единиц, или 427,4 млрд. ГДж. С одного квадратного метра поверхности можно в среднем получить 250 Вт за 1 секунду. Для выработки требуемого количества энергии потребуется площадь солнечных батарей в размере 95 млн. кв.км., что составляет около 2/3 всей поверхности суши планеты. А по прогнозу, потребление энергии к 2025 вырастет более чем в 1,5 раза - и тогда придется покрыть почти всю поверхность суши солнечными батареями.

Таким образом, вопрос повышения КПД выходит на первый план. Есть два основных типа солнечных батарей. Один из них производит водород напрямую посредством электрохимического процесса, преобразовывающего солнечную энергию в химическую. Для повышения КПД этого типа батарей существует материал с наноразмерными электродами, который увеличивает отношение поверхности к объему и тем самым повышает эффективность установки.

Другой тип солнечных батарей - фотоэлектрический. С помощью установок этого типа получаемое электричество может направляться на производство водорода путем электролиза воды. Эксперименты с массивами нанопроводов и другими наноструктурными материалами показали, что их применение может увеличить эффективность и таких батарей.

Не вдаваясь в детали, можно сказать, что нанотехнологии в будущем сыграют значительную роль в разработке высокоэффективных типов солнечных батарей, требующихся для создания жизнеспособной альтернативы добыче водорода при помощи ископаемых энергоносителей.

Проблема хранения водорода

Следующая важная задача - это задача хранения водорода. Хранение водорода на борту автомобиля в количестве, необходимом для передвижения, представляет собой серьезный вызов инженерам. По самым грубым подсчетам, для перемещения на расстояние в 100 км требуется около 1 кг водорода. Это значит, что необходимо возить в баке около 5 кг водорода, чтобы иметь возможность покрыть средний дневной пробег. Плотность водорода составляет 0,1 грамма на литр объема при комнатной температуре, следовательно, потребуется разместить 50 тыс. литров водорода в баке.

Есть три способа хранения такого объема: в виде сжатого газа с высокой степенью компрессии, в качестве жидкости (что требует сильного охлаждения), или в твердом виде.

Первый способ использовался в ранних моделях автомобилей, работающих на водороде. Конструкторы разных автомобильных платформ пытаются создать хранилища, которые бы соответствовали техническим требованиям, и при всём этом имели бы приемлемую цену, но пока рано говорить о каких-то значительных подвижках в этой области.

В прошлом году автомобильная компания Honda анонсировала концепт-кар FCX, который может хранить на борту 5 кг водорода при давлении около 350 кг/см2, причем его бак имеет размеры, позволяющие разместить его на автомобиле средних габаритов.

Использовать давление в десятки килограммов на кв. см. для хранения сжатого водорода, или охлаждение в до минус 252 градусов Цельсия для превращения его в жидкость представляет определенную угрозу безопасности потребителей. В этом свете подходящим альтернативным способом является хранение водорода в виде металлогидридов в хранилище, основанном на принципах адсорбции. В такой емкости водород впитывается во внутренние поверхности пористого материала, и может высвобождаться при помощи тепла, электричества или химической реакции. Известно довольно много металлов, которые могут выступать в качестве наполнителя, способного запасать водород.

Нанотехнологии и здесь могут помочь в решении таких задач. Методы, используемые при создании наноматериалов, позволяют управлять физическими характеристиками получаемых композитов. Это дает возможность формировать удерживающие эффекты нужной силы и получать большое соотношение площади поверхности адсорбента к его объему.

Подобные свойства полезны для разработки наполнителей для хранилищ водорода «третьего типа» - на базе адсорбции. Например, исследователи сейчас изучают свойства полимерных наноструктурированных материалов с целью разработки нового типа адсорбентов для хранилищ водорода. На сегодняшний день идет предварительное тестирование новых материалов, и результаты испытаний выглядят вполне обнадеживающими.

Одностенные углеродные нанотрубки обладают большой поверхностной площадью и при всём этом имеют относительно малую массу. Эти характеристики нанотрубок, согласно общему убеждению, позволяют считать их одним из наиболее перспективных материалов для создания хранилищ водорода большой вместимости.

Теоретически, в таком хранилище может быть запасено около 7,7 массового процента, поскольку хемосорбция такого материала очень велика: на каждый атом углерода в нанотрубке возможно адсорбировать один атом водорода. В дополнение, последующая физическая адсорбция увеличивает вместимость хранилища еще больше. Так или иначе, некоторый скепсис в отношении хранилищ водорода на базе углеродных наонтрубок был обусловлен ошибками ранних, экспериментальных, стадий и разумная основа для разработки хранилищ водорода высокой вместимости уже заложена.

Создание эффективных топливных ячеек

Теперь перейдем к последней задаче. Это создание эффективных топливных ячеек, в которых химическая энергия водорода будет преобразовываться в кинетическую энергию движения с высоким КПД. Топливные ячейки, в принципе, являются зеркальным отображением батарей электролиза. В последних за счет воздействия электричества происходит разделение молекул воды на водород и кислород, а в топливных ячейках соединение водорода с кислородом производит электричество.

Главным препятствием для массового выпуска автомобилей на базе топливных ячеек сейчас является цена такого автомобиля. Стоимость топливной ячейки сейчас колеблется между $1 тыс. и $3 тыс. за киловатт установленной мощности. Чтобы выдержать конкуренцию с обычными автомобилями, использующими двигатели внутреннего сгорания, эта цифра должна снизиться более чем в 30 раз - до $30.

Существует несколько различных типов топливных ячеек, но кандидат номер один на применение в автомобилях - ячейки на основе полимерных электролитических мембран, также называемых «мембранами протонного обмена».

И установки электролиза, и топливные ячейки используют для работы дорогие платиновые электроды. Исследователи работают в двух направлениях снижения цены: минимизировать использование платины путем повышения каталитической отдачи через структуризацию катализаторов на наноуровне. Другое направление разработок ставит целью вообще исключить дорогие платиновые катализаторы, заменив их каким-нибудь другим катализатором, в котором наноструктурированная поверхность будет иметь те же каталитические свойства при более низкой цене.

Нанотехнологии непременно сыграют главную роль в будущей водородной экономике. вопрос только в том, когда эта экономика перейдет с генерации водорода из ископаемых энергоносителей на возобновляемые источники энергии. Судя по всему, это случится никак не раньше 2020 года.

4. Не «Дюраселом» единым…

Разработкой химических источников тока (и первичных, «батареек», и вторичных, «аккумуляторов») с использованием наночастиц занимаются явно или неявно уже не один десяток лет. Сейчас этому разделу науки (а точнее, практики), который часто называют наноионикой, посвящены целые разделы конференций, организуются новые фирмы и компании. Это связано, очевидно, с тем, что все более востребованными становятся надежные, долговечные, безопасные и дешевые химические источники тока (ХИТ) для многочисленных устройств микроэлектроники, таких как сотовые телефоны, карманные компьютеры, кардиостимуляторы, устройства «двойного назначения». Мировой рынок таких продуктов превысил в 2006 г. 50 млрд. долларов и чрезвычайно перспективен с точки зрения привлечения инвестиций.

В России направление «наноионики» также начинает развиваться. В начале апреля закончился один из этапов реализации Федеральной Целевой Программой по критическим технологиям развития РФ. По нашим подсчетам, около 10 «свежих» проектов в этой программе так или иначе связаны с исследованием ионного и электронного транспорта в наносистемах. Например, совсем недавно совместный проект по наноионике ("Разработка фундаментальных основ технологии получения нанокристаллических и наноструктурированных материалов с суперионной и смешанной проводимостью для новых поколений химических источников тока"), предложенный Институтом Физической Химии и Электрохимии и Факультетом Наук о Материалах МГУ им.М.В.Ломоносова, был поддержан ФЦП.

Важной целью проекта является создание новых типов энергоемких, высокоэффективных и безопасных портативных источников тока и интегрированных устройств наноионики для преобразования и хранения энергии. Задачи работы достаточно амбициозны: разработка новых методов получения нанокристаллических и наноструктурированных систем с ионной и ионно-электронной проводимостью, фундаментальные исследования структуры и морфологических (микроструктурных) особенностей нанокомпозитов, нанотубуленов и нановискеров с высокой ионной и электронной проводимостью, достижение контролируемого уровня и заданной кросс-корреляции структурно-чувствительных функциональных свойств, разработка научных основ технологий получения гаммы расходных материалов для микропечатной электроники и компьютерного дизайна интегрированных устройств наноионики. Огромное количество проектов по данной тематике традиционно проходит и через Российский Фонд Фундаментальных Исследований.

Развитие новой области знаний о поведении наноразмерных систем с ионной и смешанной проводимостью - наноионики, таким образом, действительно относится к ключевым направлениям современных исследований. С фундаментальной точки зрения представляет значительный интерес разработка новых и оптимизация существующих методов получения таких материалов, а также исследование особенностей ионного и электронного транспорта в таких уникальных системах в зависимости от структуры и микроморфологии используемых наноматериалов. С практической точки зрения, решение основных задач наноионики связано с борьбой за существенное повышение функциональных характеристик суперионных материалов при снижении их себестоимости. Подъем уровня эффективности и конкурентоспособности отечественных электропроизводящих и электропотребляющих отраслей промышленности и транспорта, микроэлектроники, медицины, научных исследований, специальной техники, значительное снижение вредного воздействия на окружающую среду во многом определяются уровнем разработок в области суперионных проводников. Разработка нового поколения электроэнергетического оборудования на базе современных супериоников с повышенными показателями по эффективности, надежности, безопасности, в несколько раз меньшего по массогабаритным показателям по сравнению с традиционным оборудованием, с практически отсутствующим загрязнением окружающей среды позволит создать принципиально недостижимые в традиционном исполнении виды устройств, широко востребованные в прорывных областях современных науки и техники.

Разработка новых «умных» поколений ХИТ основана на том, что свойства ультрадисперсных частиц в существеннейшей степени изменяются по сравнению с объемным телом. И причина этого не только в доступности поверхности и облегчении диффузионных потоков, но и в изменении концентрации дефектов, а главное - в разнообразных «размерных эффектах», которые связаны с тем, что размер частицы становится меньше некоторой критической величины, сопоставимой с так называемой корреляционной длиной или радиусом взаимодействия, характерным для того или иного физического явления. В результате возникают новые закономерности, что проявляется в уникальном физико-химическом и электрохимическом поведении таких наноматериалов.

Переходные элементы, имеющие переменные степени окисления и находящиеся в различных спиновых состояниях в формируемых ими сложных кристаллических структурах, играют важную роль при создании современных функциональных материалов. Одними из наиболее известных адаптивных химических систем, обладающих к тому же широкой распространенностью и низкой стоимостью, малой токсичностью и экологической безопасностью, являются системы Mn-O, Ti-O, V-O (и некоторые другие).

За счет изменения дисперсности самый дешевый и самый известный (еще с 1867 г.!) марганец-цинковый элемент француза Жоржа Лекланше “Zn-MnO2” получает вторую жизнь в виде … всемирно разрекламированной щелочной батарейки Дюраселл! В настоящее время по всему миру сделано большое количество экспериментов, позволяющих получить известный всем диоксид марганца в виде наночастиц, нанопластин, наноусов и даже нанотрубок. Такие материалы работают в батарейках дольше, лучше и, конечно, быстрее перезаряжаются в аккумуляторах, если в них интеркалировать литий.

Так, подобный литий-ионный аккумулятор фирмы Toshiba способен зарядиться на 80% за 60 секунд!. Это значительно быстрее, чем обычные коммерческие литий-ионные аккумуляторы, которым для зарядки требуется от одного до десяти часов. Аккумуляторы с наночастицами теряют только 1% емкости после 1000 циклов зарядка-разрядка, они могут работать при температуре -40°C, при 45°C срок службы начинает сокращаться, но при всём этом теряется лишь 5% свойств после тысячного цикла. Прототип Toshiba 600mAh разрабатывался с учетом применения с компактными устройствами, размеры его всего 6.2 x 3.5 x 0.4 см.

Еще одна важная черта наночастиц - они не «растрескиваются» и не изменяются при циклировании аккумулятора (в циклах зарядка-разрядка). Раньше считалось, что это явление серьезно ограничивает ресурс обычных химических источников тока, поскольку разрушается или даже химически изменяется электрод, при всём этом теряется «связность» между отдельными частями электрохимической цепи «батарейки». Другая проблема - электроды могут прорастать друг в друга через разделяющую мембрану («усы» и «дендриты» металлического лития), что приводит к короткому замыканию, иногда - даже к «вскипанию» аккумулятора, как было в недавней истории с изъятием из эксплуатации «ноутбуков» одной очень известной фирмы. Все, аккумулятор можно выбрасывать! При использовании наночастиц в виде «пасты» с тесно контактирующими частицами эти проблемы во многом снимаются. Кроме того, новые литиевые аккумуляторы, выходящие в свет под маркой NanoSafe, среди прочего отличаются и новым материалом для отрицательного электрода, использующего наночастицы так называемых титановых «бронз». Это также позволило существенно повысить срок жизни аккумуляторов. После 15 тысяч циклов глубокого разряда и полной зарядки ёмкость аккумуляторов сохранилась на уровне 85% от первоначального значения. И это при том, что обычные литий-ионные и литий-полимерные батареи имеют жизненный цикл длиной примерно в 300-500 полных циклов заряда и разряда, после чего их ёмкость быстро и существенно падает. Если представить, что батареи NanoSafe появятся на мобильных телефонах, зарядка один раз в три дня будет означать, что аккумулятор проработает 123 года.

В то же время, конечно, возникают и новые «камни преткновения». Например, из-за высокой реакционной способности наночастиц они с удовольствием реагируют с электролитом и вообще со всем, с чем соприкасаются. При этом эту проблему химики успешно решают, если судить по большому числу «свежих» патентов, полученных по этой тематике.

В последнее время все больше систем становятся потенциальными или реальными кандидатами для использования в наноионике. Одна из них - материал состава LiFePO4 со структурой минерала оливина. По словам некоторых разработчитков, срок службы таких аккумуляторов увеличится по сравнению с предыдущими образцами в 10 раз, мощность возрастет в 5 раз, значительно уменьшится время заряда (более 90% емкости через 5 минут). Ожидается, что новинка будет использоваться в различных устройствах, включая электроинструменты, медицинские приборы и гибридные электромобили.

Другие системы, которые упоминаются в литературе в последнее время:

«Вискеры» с туннельной структурой

Ванадиевые бронзы

Микропористые системы оксидов переходных металлов типа

Наноструктурированный диоксид титана

Углеродные нанотрубки

Еще одна важная черта использования наночастиц - возможность создания специальных «чернил» для струйной микропечати плоских батареек и вообще готовых «лабораторий - на - микросхеме» (lab-on-chip). Подробнее об этом (и многом другом) можно посмотреть, например, на сайте Массачусетского Технологического Института (знаменитого MIT).

Экзотические «нано» батарейки (в буквальном смысле «нано» по своим размером) также пытаются создать, но это уже область биомиметики и молекулярной электроники. Так, в Национальной Лаборатории Sandia работают над созданием батареи нано-размеров, которую можно будет имплантировать в человеческий глаз. Эти батареи предназначены для снабжения энергией различных имплантируемых устройств, одним из которых является искусственная сетчатка глаза.

Таким образом, использование наночастиц и нанокомпозитов в химических источниках тока, в том числе тех, что уже гордо пришли на рынок к нам с вами, становится вполне реальным и эффективным. Это один из примеров, когда нанотехнологии действительно выполняют то, что ими обещано и что от них ждут.

5. Наноканалы генерируют электричество за счёт тока жидкости

Мельчайшие каналы, создаваемые на субстрате, всегда ассоциировались с «лабораториями на чипе». При этом, наноразмерная геометрия может использоваться и иначе -- для выработки электричества.

Учёные из Нидерландов продемонстрировали эффективность преобразования энергии с КПД 3.25% при течении солевого раствора через канал 75 нм глубиной, 50 мкм шириной и 4.5 мм длиной.

В перспективе группа из Технологического Университета Дельфта рассчитывает добиться эффективности 10%. Исследователи считают, что этот метод может обеспечить микро- и нанофлюидные устройства «бортовыми» источниками энергии.

Метод электрокинетической генерации электроэнергии основан на разности давлений вдоль наноканала, прокачивающей водный раствор KCl или LiCl от одного конца к другому. Движение жидкости индуцирует ток, пропускаемый через внешнее сопротивление, совершая, таким образом, работу.

Возле стенки канала, на поверхности раздела жидкость-субстрат, зарядовая нейтральность жидкости нарушается, что и делает возможной выработку электрической энергии. А поскольку наноразмерные каналы имеют высокое отношение поверхности к объёму, в них этот эффект особенно силён. Сама идея получения электроэнергии с помощью жидкости, текущей через узкий канал, не нова, но теперь достижения технологий изготовления нанообъектов позволяют создавать и испытывать реальные устройства.

Учёные наносили каналы непосредственно на поверхность плавленого кварца. Как оказалось, плотность поверхностного заряда этого материала практически оптимальна для таких экспериментов. При этом, дальнейшее повышение эффективности метода требует поисков материала или покрытия с такой же плотностью поверхностного заряда, но меньшей штерновской проводимостью -- за счёт этого эффекта сам материал действует, как параллельно включённый проводник, через который идёт утечка электрической энергии.

6. Побит рекорд эффективности пластиковых солнечных элементов

В Центре Нанотехнологий и Молекулярных Материалов Университета Уейк Форест (Wake Forest University, Center for Nanotechnology and Molecular Materials) достигнуты значительные успехи в области возобновляемы источников энергии.

Исследователи Центра объявили о создании пластиковых солнечных элементов с эффективностью более 6%. Такая высокая эффективность была достигнута за счёт внедрения нановолокон в светопоглощающий пластик, аналогично жилам в листьях растений. Такой подход позволяет создавать устройства с более толстым светопоглощающим слоем, улавливающие больше солнечного света.

Эффективные пластиковые солнечные батареи важны для создания недорогих и лёгких элементы питания -- особенно в сравнении с традиционными кремниевыми солнечными батареями, которые обладают большим весом и размерами. Благодаря гибкости и простоте в обращении, пластиковые солнечные батареи могут использоваться в качестве покрытий на домах и автомобилях. А поскольку такие элементы намного легче обычных, отпадает необходимость в прочных опорных конструкциях.

Современные кремниевые элементы достигают эффективности преобразования света в электрическую энергию порядка 12%. Максимальная эффективность пластиковых солнечных элементов не превышала 3%, пока в 2005 году директор Центра Дэвид Кэрролл (David Carroll) и его группа не объявили о создании устройств с эффективностью почти 5%, а теперь, спустя чуть более года, они превзошли отметку 6%. Таким образом за два года им удалось более чем вдвое повысить эффективность элементов. Исследователи ожидают добиться ещё больших успехов в течение следующих двух лет, что наконец сделает пластиковые солнечные элементы лидерами среди солнечных батарей. Для коммерческой рентабельности эффективность солнечных элементов должна быть не ниже 8%; исследователи из Уейк Форест ожидают достигнуть 10% отметки в следующем году.

7. Создан нанодвигатель с фотонным питанием

Создан нанодвигатель с фотонным питанием Ученые из университетов Болоньи и Калифорнии создали первый молекулярный двигатель, работающий от солнечного света.

Нанодвигатель разрабатывался более шести лет исследователями из университета Болоньи и Калифорнийского университета. По форме он напоминает гантель длиной 6 нм, на рукоятке которой находится кольцо диаметром 1,3 нм. Кольцо может двигаться вдоль рукоятки, но не может соскользнуть из-за двух ограничителей на концах «гантели». Кольцо занимает один из двух участков на «рукоятке». Когда один из ограничителей поглощает солнечный свет, электрон перемещается к одному из этих участков, что вызывает перемещение кольца к другому участку. Когда электрон перемещается обратно, кольцо возвращается на место, и, таким образом, цикл повторяется много раз. Микромотор размером всего несколько нанометров двигается подобно микроскопическому поршню. «Эти нанодвигатели можно использовать в качестве ячеек памяти в молекулярной фотонике и электронике -- двух перспективных направлениях, нацеленных на создание химического компьютера», -- говорит доктор Винченцо Бальцани (Vincenzo Balzani) из университета Болоньи.

Наномоторы можно использовать и в качестве клапанов для пор наночастиц на основе кварца. Ученые с помощью световых импульсов управляют открытием и закрытием этих клапанов, регулируя заполнения пор молекулами определенного вида -- к примеру, молекулами лекарств для лечения рака, сообщает Physorg. «Когда такие наноконтейнеры достигнут цели, свет может использоваться как переключатель доставки лекарства», -- комментирует доктор Дж. Фрейзер Стоддарт (J. Fraser Stoddart) из Калифорнийского университета в Лос-Анджелесе, соавтор изобретения.

Нанодвигатель работает очень быстро. Полный цикл занимает менее тысячной доли секунды. Как считают авторы изобретения, процесс можно сравнить с работой автомобильного двигателя, совершающего 60 тыс. тактов в минуту. По мнению ученых, примечателен тот факт, что молекулярный двигатель подобного типа не нуждается в химическом топливе. Новый нанодвигатель берет энергию непосредственно из солнечного света, не требует доставки топлива и не производит отходов. Его можно сравнить с солнечным автомобилем. Специалисты едины в своих оценках и считают изобретение нанодвигателя важным этапом на пути к созданию молекулярных машин. В настоящее время исследователи заняты созданием поверхностных покрытий и мембран из подобных нанодвигателей, где все они будут работать согласованно и производить механическую работу на макроуровне.

8. Топливо для нанороботов

Учеными из Белорусского государственного университета информатики и радиоэлектроники обнаружен эффект горения и взрыва в слоях наноструктурированного пористого кремния.

Наноструктурированный пористый кремний, полученный методами электрохимического анодирования, при определенных условиях способен гореть и взрываться, при всём этом энергетический эффект этих процессов выше, чем у углеводородных материалов. Обнаруженный эффект открывает возможность обеспечения энергией MEMS или NEMS на микроуровне непосредственно внутри полупроводниковой схемы.

Активизация микроисточника энергии может осуществляться электрическим, термическим или механическим сигналом. Интересно, что при толщине слоя пористого кремния меньше 60 мкм наблюдается процесс горения. А при толщине больше 60 мкм происходит взрыв. Размер световой вспышки, наблюдаемый при горении и взрыве пористого кремния, максимален для свежеприготовленных образцов.

Изготовление наноструктурированных кремниевых пленок может быть осуществлено на основе кремниевой технологии, используемой при изготовлении интегральных микросхем, что особенно важно для миниатюрных изделий.

Были изготовлены кремниевые микроактюаторы, способные преодолевать расстояния в несколько метров. Оценочные расчеты показывают, что эффективность преобразования энергии горения в кинетическую энергию достигает 50%. То есть, даже предварительные результаты позволяют говорить о возможности использования процессов горения пористого кремния в микромашинах, изготавливаемых на основе кремниевой технологии.

Более высокая удельная энергия при взрыве открывает принципиально новые возможности для использования пористого кремния. На рис. 3 показаны этапы процесса разделения кремниевой пластины на отдельные чипы при помощи взрыва слоя пористого кремния. По сравнению с традиционными методами лазерного и алмазного разделения кремниевых пластин данный метод имеет ряд преимуществ:

* ширина разделительной дорожки может быть уменьшена до 40 мкм; * при помощи этого метода можно вырезать кремниевые кристаллы любой формы, в том числе и круглые и овальные, так как линия разреза формируется при помощи операций фотолитографии.

К другим возможным практическим применениям процесса взрыва пористого кремния следует отнести изготовление самоуничтожающихся кремниевых чипов, а также экологически безопасных пиротехнических схем.

Следует отметить, что наноструктурированный кремний является энергоносителем, альтернативным углеводородным видам топлива. В частности, кремень, использовавшийся в древности как источник огня, есть не что иное, как наноструктурированное минеральное образование из кварца и халцедона. Минерал халцедон отличается от кварца нестехиометричностью состава - повышенным массовым содержанием водорода, т.е. этот минерал является “недоокисленным” по сравнению с кварцем, что и объясняет его необычные свойства, позволяющие его микрочастицам воспламеняться после механического воздействия.

9. Приложение

Новые эффекты, возникающие в нанокомпозитах: Электростатические эффекты разделения зарядов в нанокомпозитах металл (рутений) - оксид (Li2O), J.Maier, Nature materials, vol.4, 2005)

Новые эффекты, возникающие в нанокомпозитах:поведение «ионной жидкости» («шарики» и «ионы»), распределенной в прочной нанопористой непроводящей матрице (обозначено зеленым цветом). (J.Maier, Nature materials, vol.4, 2005)

Различные формы MnO2 для марганец-цинковых батареек (Journal of Solid State Chemistry 179 (2006) 1757-1761)

Уникальные нанотрубки на основе MnO2 для химических источников тока (Adv. Mater. 2005, 17, 2753-2756).

Нанотрубки пентаксида ванадия, полученные гидротермальным методом (Факультет Наук о Материалах МГУ)

Аккумуляторная батарейка фирмы Toshiba, содержащая наночастицы.

Частицы диоксида титана TiO2 различного размера для использования в литий-ионных аккумуляторах нового поколения (Adv. Mater. 2006, 18, 1421-1426).

Аккумулятор Nanosafe, содержащий наночастицы диоксида титана.

Нанопористая структура композита «LiFePO4 - углерод» (Solid State Ionics 176 (2005) 1801 - 1805).

Кристаллическая структура минерала оливина.

Интеркаляция лития в структуру фосфата железа.

Модель американского Белого Дома, «напечатанная» с помощью технологии трехмерной струйной печати с использованием чернил, содержащих высокодисперсные частицы.

Жидкостный наногенератор

Солнечная нанобатарея

Так выглядит основа новой нанобатареи -- кристалл теллурида кадмия

Кремниевый микроактюатор, использующий энергию горения пористого кремния для перемещения в пространстве

Метод лазерного и алмазного разделения кремниевых пластин

Фрагменты поведения шарообразной вспышки при взрыве наноструктурированного гидрированного кремния, пропитанного KNO3

10. Литература

1. www.nanonewsnet.ru

2. www.paramatma.ru

3. www.cnews.ru

4. www.nanometer.ru

5. www.rian.ru

6. www.ng.ru

7. Р.С. Ерофеев. Роль нанотехнологии в создании более эффективных преобразователей энергии. Нанотехника. № 3, 2005 г.

referatwork.ru


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.