Реферат: Основные методы диагностики, принципы терапии и профилактики, наследственных заболеваний человека. Методы диагностики генетических заболеваний реферат


Реферат - Основные методы диагностики, принципы терапии и профилактики, наследственных заболеваний человека.

В отношении человека, как объекта генетических исследований существует две точки зрения:

1.Одни полагают, что человек является крайне неблагоприятным объектом генетических исследований.

2.Другие, наоборот, находят в человеке много преимуществ.

Почему же человек — неблагоприятный объект для генетических

исследований?

1.Невозможность экспериментальных браков, т.е. искусственного создания брака (скрещивания). Нельзя по заранее составленной схеме получить и проанализировать потомство от родителей с известным генотипом. Еще

Н.К.Кольцов в 1923 году писал «… мы не можем заставить Н. Нежданову выйти замуж за Ф. Шаляпина, чтобы посмотреть, каковы у них будут дети». При генетическом анализе человека как бы выпадает основа гибридологического метода — экспериментальное скрещивание. Этот «недостаток» можно преодолеть двумя путями: среди множества человеческих семей исследователь может найти такие, которые соответствуют его схемам исследования; успешно разрабатываемый метод гибридизации соматических клеток позволяет уже в некоторых случаях проводить генетический анализ, используя культуру клеток человека.

2.Ограниченное количество потомков (1-2-3 ребенка) в семье. Даже в государствах с большим приростом населения количество детей в семье не более 3-4, а 10-15 детей — крайне редко. В любом случае размер семьи настолько мал, что не позволяет вести анализ расщепления признаков в потомстве в пределах одной семьи. Однако, зная признак, по которому анализируется потомство, можно подобрать не одну, а необходимое количество семей.

3.Длительность смены поколений. Для смены одного поколения человека нужно в среднем 30 лет, а это значит, что генетик не может наблюдать более 1 -2поколений. Этот недостаток в известной мере устраняется большими популяциями человека, регистрацией признаков в течение длительного времени (на протяжении нескольких поколений).

4.Достаточно большой по количеству набор хромосом (групп сцепления). Он состоит из 23 пар, что затрудняет их генетическое и цитологическое картирование и снижает тем самым возможность генетического анализа.

5.Модификация наследственной изменчивости под влиянием образа жизни, социальных факторов.

6.Организационные недостатки (но они исправимы): плохая сохранность документации, неудовлетворительная регистрация браков, рождаемости, смертности, диагностики наследственных болезней и статистики.

Преимущества человека, как генетического объекта:

-Хорошая изученность фенотипа человека — анатомическая, физиологическая, иммунологическая, биохимическая, клиническая.

Специалисты различного профиля продолжают независимо от интересов генетиков изучать человека, что, несомненно, помогает генетику легко распознавать многие формы наследственных отклонений.

-Возможность использовать все методы, применяемые в медицине (биохимические, морфологические, иммунологические, электрофизиологические, клинические и др.), т.е. любые методы, которые дают возможность регистрировать признак и выражать его количественно.

Для решения сугубо генетических задач применительно к человеку в настоящее время используют следующие методы:

1.Генеалогический (генеалогия — греч. genealogia; от genea рождение, происхождение, поколение+logos слово, изложение — установление родственных связей между индивидумами в пределах одного поколения или в ряду поколений, или родословная) — метод родословных, т.е. прослеживание болезни (или признака) в семье или роду с указанием типа родственных связей между членами родословной. В медицинской генетике его часто называют клиникогенеалогическим, так как речь идет об изучении патологических признаков в семье с помощью клинических приемов обследования. Он относится к наиболее универсальным методам в генетике человека. Этот метод используется для установления наследственного характера признака, определения типа наследования и пенетрантности гена, при анализе сцепления генов и картирования хромосом, при изучении интенсивности мутационного процесса, при расшифровке механизмов взаимодействия генов, при медико-генетическом консультировании. Суть этого метода сводится к выяснению родственных связей и к прослеживанию признака или болезни среди близких и дальних, прямых и непрямых родственников. Он включает два этапа: составление родословных и генеалогический анализ.

2.Близнеиовый метод — исследование генетических закономерностей на близнецах. Он был предложен Galton в 1875 г. При использовании этого метода производится сопоставление монозиготных близнецов с дизиготными, партнеров монозиготных пар между собой, данных анализа близнецовой выборки с общей популяцией.

Диагностика основывается на анализе наиболее изученных моногенных полиморфных признаков (эритро- и лейкоцитарные антигены, группы белков сыворотки крови и т.д.). Дизиготные близнецы в отличие от монозиготных отличаются по этим признакам. Если какой-либо качественный признак встречается у обоих близнецов данной пары — это конкордантная пара, а если только у одного из них — это дискордантная пара близнецов.

3.Популяиионно-статистический метод основан на использовании наследственных признаков в больших группах населения из одной или нескольких популяций, в одном или нескольких поколениях. Изучаются выборки из конкретных популяций с применением статистической обработки полученного материала. Этот метод используется для изучения:

•частоты генов в популяции, включая частоту наследственных болезней,

•мутационного процесса,

•роли наследственности и среды в возникновении болезней, особенно болезней с наследственным предрасположением,

•роли наследственности и среды в формировании фенотипического полиморфизма по нормальным признакам,

•значения генетических факторов в антропогенезе.

Возможные ошибки этого метода могут быть связаны с недоучетом миграции населения и с тем, что выбранные группы отличаются по большему число признаков, чем сравниваются.

4.Цитогенетический метод основан на микроскопическом изучении хромосом. Его начали широко использовать в генетике человека только с 20х годов ХХ века для:

-диагностики хромосомных болезней,

-составления карт хромосом,

-изучения мутационного процесса,

-решения некоторых эволюционных проблем в генетике человека,

-изучения нормального хромосомного полиморфизма в человеческой популяции.

5.Методыг генетики соматических клеток. Поскольку соматические клетки содержат весь объем генетической информации, на них можно изучать генетические закономерности целостного организма. Соматические клетки человека характеризуются 5 основными свойствами, позволяющими их использовать в генетических исследованиях:

-быстрое размножение их на питательных средах, что позволяет получать необходимое их количество для анализа,

-они подвергаются клонированию — можно получать генетически идентичное потомство,

-разные клетки могут сливаться, образуя гибридные клоны,

-легко подвергаются селекции на специальных питательных средах,

-хорошо и долго сохраняются при глубоком замораживании.

Культуру соматических клеток человека получают для генетических

исследований из материала биопсий или аутопсий (кожа, опухоли, периферическая кровь, костный мозг, ткань эмбрионов, клетки из околоплодной жидкости). В настоящее время чаще используются фибробласты и лимфоидные клетки. В генетике человека используют 4 метода из генетики соматических клеток: простое культивирование, клонирование, гибридизация

и селекция.

В настоящее время обосновано 4 подхода в борьбе с наследственными болезнями:

1.Массовое «просеивание» новорожденных на наследственные дефекты обмена веществ.

2.Пренатальная диагностика.

3.Медико-генетическое консультирование.

4.Контроль за мутагенной опасностью факторов окружающей среды.

Генная инженерия — это направление исследований в молекулярной биологии и генетике, конечной целью которого является получение с помощью лабораторных методов организмов с новыми комбинациями наследственных свойств. В основе лежит целенаправленное манипулирование с фрагментами нуклеиновых кислот, т.е. конструируется из различных фрагментов генетического материала нужные фрагменты и вводятся в реципиентный организм.

www.ronl.ru

§ 14. Основные методы диагностики и лечения наследственных заболеваний.

Окружающая среда никогда не была постоянной. Даже в прошлом она не была абсолютно здоровой. Однако существует принципиальное отличие современного периода в истории человечества от всех предыдущих. В последнее время темпы изменения среды стали столь ускоренными, а диапазон изменения так расширился, что проблема изучения последствий стала неотложной.

Отрицательное влияние среды на наследственность человека может выражаться в двух формах:

К настоящему времени груз мутаций в популяциях человека составил 5%, а список наследственных заболеваний включает около 2000 болезней. Ощутимый вред человечеству наносят новообразования, вызванные мутациями соматических клеток. Возрастание числа мутаций влечёт за собой рост естественных выкидышей. Сегодня во время беременности погибает до 15% плодов.

Одной из важнейших задач сегодняшнего дня является задача создания службы мониторинга за генофондом человека, которая бы регистрировала число мутаций и темпы мутирования. Несмотря на кажущуюся простоту этой задачи, реальное её решение сталкивается с целым рядом трудностей. Главная трудность состоит в огромном генетическом разнообразии людей. Огромным является и число генетических отклонений от нормы.

В настоящее время отклонениями от нормы в генотипе человека и их фенотипическим проявлением занимается медицинская генетика, в рамках которой разрабатываются методы профилактики, диагностики и лечения наследственных болезней.

Методы профилактики наследственных заболеваний.

Профилактика наследственных болезней может проводиться несколькими способами.

А) Могут проводиться мероприятия, направленные на ослабление действия мутагенных факторов: уменьшение дозы облучения, снижение количества мутагенов в окружающей среде, предупреждение мутагенных свойств сывороток и вакцин.

Б) Перспективным направлением является поиск антимутагенных защитных веществ. Антимутагены – это соединения, нейтрализующие сам мутаген до его реакции с молекулой ДНК или снимающие поражение с молекулы ДНК, вызванные мутагенами. С этой целью применяют цистеин, после введения которого организм мыши оказывается способным переносить смертельную дозу радиации. Антимутагенными свойствами обладает ряд витаминов.

В) Целям профилактики наследственных болезней служит генетическое консультирование.При этом предупреждаются близкородственные браки (инбридинг), поскольку при этом резко возрастает вероятность рождения детей, гомозиготных по аномальному рецессивному гену. Выявляются гетерозиготные носители наследственных заболеваний. Врач-генетик- не юридическое лицо, он не может запретить или разрешить консультируемым иметь детей. Его цель – помочь семье реально оценить степень опасности.

Методы диагностики наследственных заболеваний.

А) Метод массовой (просеивающей) диагностики.

Данный метод используют применительно к новорождённым с целью выявления галактоземии, серповидно-клеточной анемии, фенилкетонурии.

Б) Ультразвуковое обследование.

В 70-е годы на 1У Международном генетическом конгрессе прозвучала идея о внедрении в медицинскую практику дородовой диагностики наследственных заболеваний. Сегодня наиболее широко используется метод ультразвукового обследования. Главное его достоинство состоит в массовости обследования и возможности выявить отклонения на 18 – 23 неделе беременности, когда плод ещё самостоятельно нежизнеспособен.

В) Амниоцентез.

На сроке беременности 15-17 недель прокалывают шприцем плодный пузырь и отсасывают небольшое количество плодной жидкости, в которой есть слущенные клетки эпидермиса плода. Эти клетки 2 – 4 недели выращивают в культуре на специальных питательных средах. Затем с помощью биохимического анализа и изучения хромосомного набора можно выявить около 100 генных и практически все хромосомные и геномные аномалии. Метод амниоцентеза успешно используется в Японии. Здесь обязательно и бесплатно обследуют всех женщин старше 35 лет, а также женщин уже имеющих детей с отклонениями от нормы. Амниоцентез – относительно трудоёмкая и дорогостоящая процедура, но экономисты подсчитали, что стоимость анализа для 900 женщин намного дешевле, чем стоимость прижизненной госпитализации одного больного с наследственными аномалиями.

Г) Цитогенетический метод.

Изучаются образцы крови людей с целью определения аномалий хромосомного аппарата. Особенно важно это при определении носительства заболеваний у гетерозигот.

Д) Биохимический метод.

Основывается на генетическом контроле синтеза белков. Регистрация различных видов белков позволяет оценить частоту мутаций.

Методы лечения наследственных болезней.

А) Диетотерапия.

Заключается в установлении правильно подобранной диеты, которая снизит тяжесть проявления болезни. Например, при галактоземии патологическое изменение наступает в силу того, что нет фермента, расщепляющего галактозу. Галактоза накапливается в клетках, вызывая изменения в печени и головном мозге. Лечение болезни проводят, назначая диету, исключающую в продуктах галактозу. Генетический дефект при этом сохраняется и передаётся потомству, но обычные проявления болезни у человека, использующего данную диету, отсутствуют.

Б) Введение в организм недостающего фактора.

При гемофилии проводят инъекции белка, который временно улучшает состояние больного. В случае наследственных форм сахарного диабета в организме не вырабатывается инсулин, регулирующий углеводный обмен. В этом случае инсулин вводят в организм.

В) Хирургические методы.

Некоторые наследственные заболевания сопровождаются анатомическими отклонениями от нормы. В этом случае используется хирургическое удаление органов или их частей, коррекция, трансплантация. Например, при полипозе удаляют прямую кишку, оперируют врождённые пороки сердца.

Г) Генная терапия– устранение генетических ошибок. Для этого в соматические клетки организма включают одиночный нормальный ген. Этот ген в результате размножения клеток заменит патологический ген. Генная терапия через зародышевые клетки осуществляется в настоящее время на животных. Нормальный ген встраивается в яйцеклетку с аномальным геном. Яйцеклетка имплантируется в организм самки. Из данной яйцеклетки развивается организм с нормальным генотипом. Генная терапия планируется к применению лишь в тех случаях, когда болезнь угрожает жизни и не подлежит лечению другими способами.

►За страницами школьного учебника.

Некоторые вопросы евгенизма.

Идея искусственного улучшения человека не нова. Но только в 1880г. появилось понятие «евгенизм». Слово это ввёл двоюродный брат Ч. Дарвина – Ф. Гальтон. Он определял евгенику как науку об улучшении потомства, которая отнюдь не ограничивается вопросами разумных скрещиваний, но, особенно в случае человека, занимается всеми воздействиями, которые способны дать наиболее одарённым расам максимальные шансы преобладать над расами менее одарёнными.

Сам термин «евгенизм» происходит от греческого слова, обозначающего человека хорошего рода, знатного происхождения, хорошей расы.

Гальтон несомненно признавал определённую роль среды в развитии индивидуума, но в конечном счёте он считал, что «раса» важнее среды, т.е. он делал упор на то, что мы сегодня называем генетическим фактором.

Идея об улучшении популяции человека с помощью биологических методов имеет большое прошлое. Рассуждения подобного типа историки находили ещё у Платона. Тем не менее Гальтон был оригинален, разработав законченную теорию. Его произведения представляют собой основной источник, к которому следует обращаться при анализе того, что происходит сегодня. Согласно Гальтону, основанная им евгеника заслуживала статуса науки. Под определённым углом зрения, евгенизм действительно содержит в себе нечто научное, он использует некоторые теории и результаты из области биологии, антропологии, демографии, психологии и др. Очевидно, однако, что основа евгенизма социальная и политическая. Теория имела практическую конечную цель – сохранить наиболее «одарённые расы», увеличить численность элиты нации.

Под влиянием собственных неудач, постигших его в Кембридже, Гальтон пристально заинтересовался следующей проблемой: каково происхождение наиболее одарённых людей. Он написал работы, в которых с помощью статистики старался подтвердить гипотезу, подсказанную ему личными убеждениями, что наиболее одарённые индивидуумы часто бывают близкими родственниками людей, которые тоже одарены. Принцип проведения исследований был у Гальтона простым: он изучал популяции людей, принадлежащих к социальной элите (судьи, государственные деятели, учёные). Он выявил довольно значительное число их близких родственников, которые сами были видными деятелями. Сравнения производились методически с учётом различной степени родства. Установленные таким образом корреляции были явно нестабильными и ограниченными. В действительности интерпретация этих статистических данных в пользу тезиса о биологическом наследовании ни в коей мере не была очевидной. Но сам Гальтон принадлежал к английской элите, поэтому психологически ему было довольно легко допустить наследование гениальности.

В истории биологии роль Гальтона обычно недооценивается. Биологи не воспринимали Гальтона как специалиста: интересы биологические у него были подчинены более общим интересам. И всё же именно он за 10 лет до Вейсмана сформулировал два основных положения его теории. Гальтон проявил интерес к генетике и в связи с тем, что он приписывал наследственности важную роль в социальных явлениях.

Применение евгенизма в области науки в некоторых случаях оказывается плодотворным, но в целом евгеника лишена научной основы. Проект улучшения отдельных рас, наиболее одарённых, опирается, прежде всего, на идеологические и политические мотивы. Тот факт, что генетика может обеспечить евгенистов какими-то аргументами, абсолютно не доказывает ни истинности, ни этической правомерности этого проекта. Понятие «расы» в трактовка Гальтона весьма растяжимо. Прежде всего оно может соответствовать распространённому представлению о расе: жёлтая, белая, чёрная. Использует он понятие «раса» и более гибко: расу образует любая однородная популяция, в которой определённые признаки стойко передаются по наследству. Такая идея в высшей степени спорна. Критерии «хорошей расы» сами по себе довольно расплывчаты, но главными среди них являются такие качества как ум, энергия, физическая сила и здоровье.

В 1873г. Гальтон опубликовал статью «Об улучшении наследственности». В ней он объясняет, что первейшей обязанностью человечества является добровольное участие в общем процессе естественного отбора. По мнению Дальтона, люди должны методично и быстро делать то, что природа делает слепо и медленно, а именно: благоприятствовать выживанию наиболее достойных и замедлять или прерывать воспроизведение недостойных. Многие политические деятели благосклонно выслушивали такие высказывания. Приводились впечатляющие цифры: между 1899 и 1912г.г. в США в штате Индиана было произведено 236 операций вазэктомии умственно отсталым мужчинам. Тот же штат в 1907г. проголосовал за закон, предусматривающий стерилизацию наследственных дегенератов, затем так же поступила Калифорния и ещё 28 штатов. В 1935г. общее число операций по стерилизации достигло 21539. Не все евгенистские мероприятия были такими грубыми, хотя в основе их лежала одна и та же философия селекции наиболее одарённых людей. Заслуживает внимания тот факт, что люди науки, пользующиеся большой известностью, не колеблясь предлагали очень суровые меры. Лауреат Нобелевской премии француз Карел в 1935г. опубликовал свой труд «Это неизвестное существо человек», который имел необыкновенный успех. В этой книге автор объяснял, что учитывая ослабление естественного отбора, необходимо восстановить «биологическую наследственную аристократию». Сожалея о наивности цивилизованных наций, проявляющейся в сохранении бесполезных и вредных существ, он советовал создавать специальные заведения для осуществления эвтаназии преступников.

Таким образом, понятие «евгенизм» охватывает многообразные проявления действительности, но всё многообразие можно свести к двум формам: евгенизм воинственный (сознательный) и евгенизм «мягкий» (бессознательный). Первый наиболее опасен. Это он породил газовые камеры нацистов. Но было бы ошибкой считать второй безвредным. Ему тоже присуща двусмысленность: некоторые мероприятия, связанные с выявлением и предупреждением наследственных болезней, представляют собой зачаточную форму евгенизма.

Отличие евгенизма от социального дарвинизма.

Сторонники социального дарвинизма проповедуют невмешательство. Они полагают, что соревнование между людьми полезно и благодаря борьбе за существование будет обеспечено выживание лучших индивидуумов, поэтому достаточно не препятствовать процессу отбора, протекающему спонтанно.

Что касается евгенизма, то ему присуще нечто полицейское: его цель – установить авторитарную систему, способную производить «научным способом» хороших индивидуумов и хорошие гены, в которых нуждается нация. Тут легко покатиться по наклонной плоскости: начинают с установления карт генетической идентичности, увеличивают число проверок для установления пригодности к браку, перекрывают каналы, ведущие к порочным элементам, и тогда наступает очередь заключительного акта, например, эвтаназии – гуманной и экономичной. Нацистский евгенизм имел сверхнаучное обоснование. Гитлер, чтобы оправдать культ «чистой расы», недвусмысленно ссылается на биологию размножения и теорию эволюции.

Что значит быть евгенистом сегодня?

Со времён Гальтона положение сильно изменилось. Годы существования нацизма привели к тому, что евгенизму в плане идеологическом и социальном пришлось отступить. Но огромные успехи биологии и генной инженерии сделали возможным возникновение неоевгенизма. Большим новшеством была разработка методов, позволяющих выявить «плохие» гены, т.е. гены, ответственные за заболевания. Выявлять генетические дефекты можно на разных стадиях. В одних случаях обследуют людей, желающих иметь детей, в других – беременных женщин. Если у плода выявляется серьёзная аномалия, то может быть поставлен вопрос об аборте. Выявляя серьёзные генетические ошибки у новорождённых, в результате раннего лечения можно восстановить утраченную функцию. Таким образом, возникла новая ситуация: отныне можно планировать грандиозную долгосрочную операцию по капитальной очистке генофонда человечества. Это поднимает многочисленные вопросы как технического, так и этического порядка. Прежде всего, где остановиться при выбраковке генов? Идеал беспощадного генетического отбора представляется спорным в биологическом плане6 не может ли такой отбор привести к обеднению генофонда человечества? Мечта евгенистов – использовать отбор генов сродни отбору в животноводстве. Но именно животноводы имели возможность убедиться в том, что систематический отбор можно использовать лишь до определённого предела: при слишком усиленном улучшении разновидности её жизнеспособность иногда чрезмерно снижается. В настоящее время существует две основных тенденции, выступающие друг против друга. Один лагерь составляют сторонники жёстких мер. Они считают, что генная инженерия дала в руки человека оружие, которое должно быть использовано на благо человечества. Например, лауреат Нобелевской премии по физиологии и медицине Ледерберг является сторонником клонирования человеческих генов как эффективного средства для создания выдающихся людей. В другом лагере находятся те, кто требует объявить сферу генетики человека неприкосновенной. В США, благодаря частной инициативе уже организован сбор и консервация спермы лауреатов Нобелевской премии. Таким образом, если верить ответственным лицам, можно будет путём искусственного осеменения легко произвести на свет детей, имеющих выдающиеся таланты. В действительности ничто не позволяет утверждать, что такой проект научно обоснован.

Целый ряд фактов свидетельствует о том, что сегодня одновременно имеются разные причины, способствующие воскрешению евгенизма.

Тюйе П. «Соблазны евгенизма».

В кн. «Генетика и наследственность». М.: Мир, 1987.

studfiles.net

Методы диагностики наследственных заболеваний — МегаЛекции

Лекция 5. УД «Генетика человека с основами медицинской генетики» по теме «Классификация наследственных заболеваний»

Цель лекции:

Изучение основных групп наследственных заболеваний, причин и механизмов их возникновения

Изучение методов диагностики наследственных заболеваний

Изучение типов наследования заболеваний

Изучение терминологии клинической генетики

Формирование ОК:

ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.

ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.

ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения возложенных на него профессиональных задач, а также для своего профессионального и личностного развития.

ОК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.

План лекции:

Генные заболевания

Хромосомные заболевания

Мультифакториальные заболевания

Все наследственные болезни принято делить на три группы: хромосомные, обусловленные изменением числа или структуры хромосом, моногенные, обусловленные изменениями отдельных генов и мультифакториальные, обусловленные взаимодействием многих генов и факторов окружающей среды.

Самой частой и известной хромосомной болезнью является болезнь Дауна, обусловленная наличием в наборе хромосом каждой клетки лишней хромосомы 21 (трисомия 21). Всего же к настоящему времени известно более 800 хромосомных болезней. В большинстве случаев хромосомные болезни проявляются множественными врожденными пороками развития. Хромосомные болезни диагностируются с помощью специальных цитогенетических методов исследования.

Всего известно несколько тысяч разных моногенных болезней. Моногенные наследственные болезни могут проявляться поражением любых тканей, органов, или систем органов. Различают глазные, нервные, кожные, скелетные и т.д. моногенные наследственные болезни. Однако в большинстве случаев моногенные наследственные болезни проявляются в виде синдромов, когда у одного больного поражаются различные системы органов. В особую группу выделяют наследственные болезни обмена веществ. Чаще всего в этой группе изменяются гены, контролирующие синтез отдельных ферментов. Диагностика моногенных болезней осуществляется как клиническими методами, с помощью, так называемого, синдромологического подхода, так и специальными биохимическими и молекулярно-генетическими методами.

К мультифакториальным заболеваниям практически все частые хронические заболевания человека, такие как сахарный диабет, бронхиальная астма, ишемическая болезнь сердца и т.д. К мультифакториальным заболеваниям относятся также изолированные врожденные пороки развития, например, врожденные пороки сердца. Мультифакториальные заболевания диагностируются традиционными клиническими и лабораторными методами.

Эти три основные группы наследственных болезней различаются по тому, как они наследуются. Хромосомные болезни обычно не наследуются. Их причиной обычно является изменение хромосомного набора в одной половой клетке, а больные с хромосомной болезнью болеют так тяжело, что часто просто не могут оставить потомство. Моногенные наследственные болезни наследуются согласно законам, открытым более 100 лет назад Грегором Менделем. Различают доминантные, рецессивные и сцепленные с полом наследственные болезни. Доминантные заболевания могут проявлять в чреде поколений. Нередко кроме больного ребенка болен кто-то из его родителей, могут быть больны братья и сестры больного (50%). Однако нередко доминантные заблевания проявляются только у одного члена семьи в результате случайно возникшей мутации (изменение гена) в одной половой клетке кого-то из родителей. При рецессивных заболеваниях родители больного ребенка как правило здоровы, но каждый из них является носителем одного и того же измененного гена. Могут быть больны братья и сестры больного ребенка, но вероятность их заболевания вдвое ниже, чем при доминантных заболеваниях и составляет 25%. При сцепленных с полом наследственных заболеваниях болеют обычно только мальчики. В том случае, когда их мать является носителем измененного гена в одной из Х хромосом (это одна из половых хромосом), то половина рожденных ею мальчиков может быть также больна.

Для мультифакториальных заболеваний также характерно семейное накопление соответствующего заболевания, но оно выражено в значительно меньшей степени по сравнению с моногенными заболеваниями.

Следует также упомянуть еще об одном типе наследственных болезней - митохондриальных болезнях. Их известно в настоящее время около 3 десятков, а обусловлены они либо изменением генов в митохондриальной ДНК (в этом случае они наследуются по материнской линии), либо генов в ядрах клеток (в этом случае они наследуются как моногенные заболевания).

Методы диагностики наследственных заболеваний

Цитогенетические

Для выявления хромосомных болезней используются цитогенетические методы исследования, которые позволяют исследовать под микроскопом с использованием различных специфических окрасок тонкую организацию хромосом человека и ее нарушения, которые и приводят к появлению хромосомных болезней. В настоящее время, кроме традиционных методов исследования хромосом, все шире начинают применяться молекулярно-цитогенетические методы исследования, которые дают возможность выявлять такие небольшие изменения хромосом, которые не видны при использовании обычных методов исследования. В Центре используется чрезвычайно широкий набор цитогенетических методов, включая самые современные, а все цитогенетики имеют высшую квалификацию.

Биохимические

Некоторые из наследственных болезней характеризуются выраженными биохимическими изменениями, которые связаны с нарушениями определенного метаболического пути. Эта группа заболеваний объединена в особый класс, называемый наследственные нарушения обмена веществ (НБО). Диагностика НБО включает качественный и количественный анализ различных метаболитов в образцах биологических жидкостей, определение активности ферментов в культуре клеток или лейкоцитах периферической крови. Многие из этих исследований довольно сложные и проводятся с помощью таких высокотехнологичных методов как высокоэффективная жидкостная хроматография, хроматомасс-спектрометрия, тандемная масс-спектрометрия и т.д. Биохимическая диагностика наследственных болезней обмена веществ, осуществляемая в Центре, является лучшей в России.

Молекулярно-генетические

Молекулярно-генетические методы это самые современные методы исследования генетического материала клеток человека, который представлен дезоксирибунуклеиновой (ДНК) и рибунонуклеиновой (РНК) кислотами. Используемые в Центре молекулярно-генетические методы позволяют разрезать нуклеиновые кислоты, размножать их отдельные участки с помощью полимеразной цепной реакции, изучать их тонкую структуру, вплоть до последовательности нуклеотидов, составляющих нуклеиновые кислоты, и, таким образом, выявлять изменения, которые называются мутациями, в генах человека. Для этого используется современная аппаратура. Список моногенных наследственных болезней, для которых проводится молекулярно-генетическая диагностика в Центре, является самым широким в России.

Синдромологические

Большинство наследственных заболеваний характеризуется поражением многих органов и систем и разнообразной клинической симптоматикой. Кроме того, некоторые признаки у больных с наследственными заболеваниями не являются собственно патологическими и, обычно врачи не обращают на них внимание. Надо иметь ввиду, что большинство наследственных заболеваний встречается достаточно редко, и это не позволяет обычно врачу накопить собственный опыт диагностики наследственных заболеваний. Задача врача-генетика заключается в том, чтобы, используя имеющиеся у него специальные знания о проявлении наследственных болезней, и, детально обследовав больного и членов его семьи, постараться поставить диагноз наследственного синдрома. Во многих случаях врач пользуется для этого специальной литературой и компьютерными программами, которые содержат описания и фотографии больных с различными наследственными синдромами. В поликлиническом отделении Центра врачи используют для синдромологической диагностики такие программы как POSSUM и Oxford Medical Databases, содержащие описания нескольких тысяч наследственных синдромов.

Ультразвуковая диагностика

1. Ультразвуковая диагностика наследственных болезней и врожденных пороков развития плода

Ультразвуковое исследование беременных женщин с целью диагностики наследственных болезней и врожденных пороков развития плода относительно новый метод исследования. В настоящее время в Центре для ультразвукового исследования применяется современная аппаратура экспертного класса Toshiba Apilo MX. Она позволяет по ряду ультразвуковых признаков плода выявлять грубые врожденные пороки развития плода, начиная с I-го триместра беременности, а также заподозрить наличие у плода некоторых хромосомных болезней и отнести беременную женщину в, так называемую, группу риска, которая требует к себе особого внимания и дополнительных исследований.

2. Ультразвуковое исследование органов малого таза у женщин

Позволяет выявлять различные заболевания репродуктивной системы, причины бесплодия, невынашивания беременности.

Интернет-ресурсы:

Сайт Медико-генетического научного центра. [Электронный ресурс]. – Режим доступа: http://www.med-gen.ru/clinics/nb/. Дата обращения 23.12.2015

 

Самостоятельная работа студентов:

 Выполнение УИР в разделе наследственность в «Дневнике здоровья студента», 2014 – «Наследование непатологического признака»

 Выполнение УИР в разделе наследственность в «Дневнике здоровья студента», 2014 – «Наследование патологического признака»

megalektsii.ru

Дипломная работа - Основные методы диагностики, принципы терапии и профилактики, наследственных заболеваний человека.

В отношении человека, как объекта генетических исследований существует две точки зрения:

1.Одни полагают, что человек является крайне неблагоприятным объектом генетических исследований.

2.Другие, наоборот, находят в человеке много преимуществ.

Почему же человек — неблагоприятный объект для генетических

исследований?

1.Невозможность экспериментальных браков, т.е. искусственного создания брака (скрещивания). Нельзя по заранее составленной схеме получить и проанализировать потомство от родителей с известным генотипом. Еще

Н.К.Кольцов в 1923 году писал «… мы не можем заставить Н. Нежданову выйти замуж за Ф. Шаляпина, чтобы посмотреть, каковы у них будут дети». При генетическом анализе человека как бы выпадает основа гибридологического метода — экспериментальное скрещивание. Этот «недостаток» можно преодолеть двумя путями: среди множества человеческих семей исследователь может найти такие, которые соответствуют его схемам исследования; успешно разрабатываемый метод гибридизации соматических клеток позволяет уже в некоторых случаях проводить генетический анализ, используя культуру клеток человека.

2.Ограниченное количество потомков (1-2-3 ребенка) в семье. Даже в государствах с большим приростом населения количество детей в семье не более 3-4, а 10-15 детей — крайне редко. В любом случае размер семьи настолько мал, что не позволяет вести анализ расщепления признаков в потомстве в пределах одной семьи. Однако, зная признак, по которому анализируется потомство, можно подобрать не одну, а необходимое количество семей.

3.Длительность смены поколений. Для смены одного поколения человека нужно в среднем 30 лет, а это значит, что генетик не может наблюдать более 1 -2поколений. Этот недостаток в известной мере устраняется большими популяциями человека, регистрацией признаков в течение длительного времени (на протяжении нескольких поколений).

4.Достаточно большой по количеству набор хромосом (групп сцепления). Он состоит из 23 пар, что затрудняет их генетическое и цитологическое картирование и снижает тем самым возможность генетического анализа.

5.Модификация наследственной изменчивости под влиянием образа жизни, социальных факторов.

6.Организационные недостатки (но они исправимы): плохая сохранность документации, неудовлетворительная регистрация браков, рождаемости, смертности, диагностики наследственных болезней и статистики.

Преимущества человека, как генетического объекта:

-Хорошая изученность фенотипа человека — анатомическая, физиологическая, иммунологическая, биохимическая, клиническая.

Специалисты различного профиля продолжают независимо от интересов генетиков изучать человека, что, несомненно, помогает генетику легко распознавать многие формы наследственных отклонений.

-Возможность использовать все методы, применяемые в медицине (биохимические, морфологические, иммунологические, электрофизиологические, клинические и др.), т.е. любые методы, которые дают возможность регистрировать признак и выражать его количественно.

Для решения сугубо генетических задач применительно к человеку в настоящее время используют следующие методы:

1.Генеалогический (генеалогия — греч. genealogia; от genea рождение, происхождение, поколение+logos слово, изложение — установление родственных связей между индивидумами в пределах одного поколения или в ряду поколений, или родословная) — метод родословных, т.е. прослеживание болезни (или признака) в семье или роду с указанием типа родственных связей между членами родословной. В медицинской генетике его часто называют клиникогенеалогическим, так как речь идет об изучении патологических признаков в семье с помощью клинических приемов обследования. Он относится к наиболее универсальным методам в генетике человека. Этот метод используется для установления наследственного характера признака, определения типа наследования и пенетрантности гена, при анализе сцепления генов и картирования хромосом, при изучении интенсивности мутационного процесса, при расшифровке механизмов взаимодействия генов, при медико-генетическом консультировании. Суть этого метода сводится к выяснению родственных связей и к прослеживанию признака или болезни среди близких и дальних, прямых и непрямых родственников. Он включает два этапа: составление родословных и генеалогический анализ.

2.Близнеиовый метод — исследование генетических закономерностей на близнецах. Он был предложен Galton в 1875 г. При использовании этого метода производится сопоставление монозиготных близнецов с дизиготными, партнеров монозиготных пар между собой, данных анализа близнецовой выборки с общей популяцией.

Диагностика основывается на анализе наиболее изученных моногенных полиморфных признаков (эритро- и лейкоцитарные антигены, группы белков сыворотки крови и т.д.). Дизиготные близнецы в отличие от монозиготных отличаются по этим признакам. Если какой-либо качественный признак встречается у обоих близнецов данной пары — это конкордантная пара, а если только у одного из них — это дискордантная пара близнецов.

3.Популяиионно-статистический метод основан на использовании наследственных признаков в больших группах населения из одной или нескольких популяций, в одном или нескольких поколениях. Изучаются выборки из конкретных популяций с применением статистической обработки полученного материала. Этот метод используется для изучения:

•частоты генов в популяции, включая частоту наследственных болезней,

•мутационного процесса,

•роли наследственности и среды в возникновении болезней, особенно болезней с наследственным предрасположением,

•роли наследственности и среды в формировании фенотипического полиморфизма по нормальным признакам,

•значения генетических факторов в антропогенезе.

Возможные ошибки этого метода могут быть связаны с недоучетом миграции населения и с тем, что выбранные группы отличаются по большему число признаков, чем сравниваются.

4.Цитогенетический метод основан на микроскопическом изучении хромосом. Его начали широко использовать в генетике человека только с 20х годов ХХ века для:

-диагностики хромосомных болезней,

-составления карт хромосом,

-изучения мутационного процесса,

-решения некоторых эволюционных проблем в генетике человека,

-изучения нормального хромосомного полиморфизма в человеческой популяции.

5.Методыг генетики соматических клеток. Поскольку соматические клетки содержат весь объем генетической информации, на них можно изучать генетические закономерности целостного организма. Соматические клетки человека характеризуются 5 основными свойствами, позволяющими их использовать в генетических исследованиях:

-быстрое размножение их на питательных средах, что позволяет получать необходимое их количество для анализа,

-они подвергаются клонированию — можно получать генетически идентичное потомство,

-разные клетки могут сливаться, образуя гибридные клоны,

-легко подвергаются селекции на специальных питательных средах,

-хорошо и долго сохраняются при глубоком замораживании.

Культуру соматических клеток человека получают для генетических

исследований из материала биопсий или аутопсий (кожа, опухоли, периферическая кровь, костный мозг, ткань эмбрионов, клетки из околоплодной жидкости). В настоящее время чаще используются фибробласты и лимфоидные клетки. В генетике человека используют 4 метода из генетики соматических клеток: простое культивирование, клонирование, гибридизация

и селекция.

В настоящее время обосновано 4 подхода в борьбе с наследственными болезнями:

1.Массовое «просеивание» новорожденных на наследственные дефекты обмена веществ.

2.Пренатальная диагностика.

3.Медико-генетическое консультирование.

4.Контроль за мутагенной опасностью факторов окружающей среды.

Генная инженерия — это направление исследований в молекулярной биологии и генетике, конечной целью которого является получение с помощью лабораторных методов организмов с новыми комбинациями наследственных свойств. В основе лежит целенаправленное манипулирование с фрагментами нуклеиновых кислот, т.е. конструируется из различных фрагментов генетического материала нужные фрагменты и вводятся в реципиентный организм.

www.ronl.ru

Реферат - Днк-диагностика наследственных заболеваний у детей в Российской Федерации: состояние и проблемы

ДНК-диагностика наследственных заболеваний у детей в Российской Федерации: состояние и проблемы

П.В. Новиков, О.В. Евграфов

Московский НИИ педиатрии и детской хирургии Минздрава РФ, Научный медико-генетический центр РАМН, Москва

Традиционной, но от этого не менее важной проблемой, является недостаточное финансирование ДНК-диагностики. Эта область особенно чувствительна к недостатку финансов, во-первых, потому что значительную долю расходов составляют расходы на материалы, сократить которые принципиально невозможно. Во-вторых, в ДНК-диагностике происходит, вероятно, самое быстрое обновление технологий, что также требует определенных затрат на разработку и освоение новых методов. И, наконец, самой важной является проблема кадров. Вся ДНК-диагностика в России держится на нескольких людях, имеющих необходимый опыт в данной области. Такое состояние, очевидно, крайне неустойчиво, и из-за потери кадров страна может на десятилетия лишиться наиболее перспективной и быстрорастущей составляющей медико-генетической службы.

^ Одной из важнейших задач ДНК-диагностики является пренатальная (дородовая) диагностика. Количество инвазивных процедур, выполняемых для целей пренатальной диагностики, ежегодно возрастает. Так, если в 1996 г. таких процедур было выполнено 1655, то в 1997 г. - 3094. Однако если количество цитогенетических исследований плодного материала за этот период также возросло с 1483 до 3513, то биохимических - осталось примерно на том же уровне (279 и 251), а ДНК-исследований в целом по России уменьшилось (в 1996 г. - 364, в 1997 г. - 161). Наибольшее количество инвазивных процедур проводилось в медико-генетических учреждениях Москвы, С.-Петербурга, Томска, Новосибирска, Н.Новгорода, Краснодара, Воронежа и ряда других [4].

В настоящее время можно с уверенностью сказать, что ДНК-диагностика вышла за стены научных учреждений и во многих странах становится рутинной процедурой, стандартным анализом, показанным для семей со многими наследственными заболеваниями [5].

Внедрение молекулярно-генетических методов диагностики врожденных и наследственных заболеваний как в пренатальном, так и в постнатальном периоде является одним из основных направлений в деятельности медико-генетической службы Минздрава РФ [6].

Однако до сих пор не определены потребности в использовании методов ДНК-диагностики наследственных болезней у детей, в том числе и в зависимости от региональных особенностей распределения патологии, оснащенности медико-генетических консультаций и/или федеральных центров, осуществляющих диагностику наследственных заболеваний.

Учитывая, что многие наследственные патологии относятся к наиболее тяжелым и пока неизлечимым заболеваниям, а также их заметный удельный вес в общей младенческой и детской смертности, во многих развитых странах программы, направленные на разработку, совершенствование и внедрение в здравоохранение методов молекулярной генетики, имеют ярко выраженный приоритет. С молекулярной генетикой связывают также создание принципиально новых эффективных методов лечения многих болезней.

Методы ДНК-диагностики не являются дешевыми, однако их стоимость, как правило, не выше других высокотехнологичных лабораторных исследований, таких, как цитогенетический анализ и некоторые биохимические исследования.

Учитывая, что ДНК-диагностика является единственным способом профилактики большинства наследственных болезней, чисто экономическая эффективность этой технологии оказывается рекордно высокой, обеспечивая привлечение значительных средств в развитых странах.

ДНК-диагностика является относительно молодой областью, и важной проблемой является ее интеграция в структуру медицинской помощи населению.

В табл. 1 указаны наиболее важные наследственные заболевания, для которых известен соответственный ген, и возможно проведение ДНК-диагностики в Россий,ской Федерации. Из таблицы видно, что в наших условиях возможности диагностики ограничиваются двумя десятками нозологических форм, идентификация которых проводится в нескольких лабораториях.

Таблица 1. Спектр наследственных болезней, выявляемых с помощью методов ДНК-диагностики в Российской Федерации

Наследственные заболевания

Локализация генов

Регионы и учреждения, осуществляющие ДНК-диагностику

^ X- и Y-сцепленные формы

Гемофилия А

Xq28

Москва (ГНЦ)

С.-Петербург (ИАГ)

Гемофилия В

Хр27.1-27.2

Москва (ГНЦ)

С.-Петербург (ИАГ)

Ломкость Х-хромосомы

Xq27.3

Москва (МГНЦ)

С.-Петербург (ИАГ)

Миодистрофия Дюшенна-Беккера

Хр21.2

Москва (МГНЦ)

С.-Петербург (ИАГ)

Томск (ТИМГ)

Уфа (УНЦ)

Болезнь Хантера

Xq28

С.-Петербург (ИАГ)

Болезнь Леша-Нихена

Xq26-q27.2

С.-Петербург (ИАГ)

Агаммаглобулинемия

Xq21.3-q22

Москва (МГНЦ)

Х-сцепленная невральная амиотрофия

Xql3.1

Москва (МГНЦ)

Спинально-бульбарная амиотрофия

Xq11-ql2

Москва (МГНЦ)

С.-Петербург (ИАГ)

Чистая дисгенезия гонад, XX-мужчины и некоторые другие нарушения полового развития

Москва (МГНЦ)

^ Аутосомные формы

Муковисцидоз

7q31.2

С.-Петербург (ИАГ, ИЭМ)

Москва (МГНЦ)

Томск (ТИМГ)

Невральная амиотрофия

1q22, 17р11.2

Москва (МГНЦ)

Хорея Гентингтона

4pter-pl6.3

Москва (МГНЦ, НИИН)

С.-Петербург (ИАГ)

-талассемия

11р15.5

Москва (ГНЦ)

С.-Петербург (ПМА)

Недостаточность 1-антитрипсина

14q31-q32.3

С.-Петербург (ИЭМ)

Недостаточность 21-гидроксилазы (гиперплазия коры надпочечников)

6р21.3

Москва (МГНЦ, ЦОМ-ЗМиР)

Семейная гиперхолестеринемия

19р13.2-р13.1

Москва (ГНЦ)

С.-Петербург (ИЭМ, ПМА)

Болезнь Вильсона-Коновалова (гепатолентикулярная дегенерация)

13q14.3-q21.1

Москва (МГНЦ)

Миотоническая дистрофия

19ql3.2-ql3.3

С.-Петербург (ИАГ)

Болезнь Виллебранда

12pter-pl2

Москва (ГНЦ)

С.-Петербург (ИАГ)

Фенилкетонурия

12q24.1

С.-Петебург (ИАГ, ПМА)

Москва (МГНЦ)

Уфа (УНЦ)

Атаксия-телеангиэктазия

11q23.1

Москва (МГНЦ)

Атаксия Фридрейха

9ql3-q21.1

Москва (МГНЦ)

Спинальная амиотрофия

5ql3

Москва (МГНЦ)

Недостаточность ацил-СоА-дегидрогеназы

lp31

С.-Петербург (ПМА)

Примечание. ГНЦ - гематологический научный центр Минздрава РФ, ИАГ - Институт акушерства и гинекологии им. Д.О. Отта РАМН, МГНЦ - Медико-генетический центр РАМН, ТИМГ - Томский институт медицинской генетики РАМН, УНЦ - Уфимский научный центр РАН, ИЭМ - Институт экспериментальной медицины РАМН, НИИН - научно-исследовательский институт неврологии РАМН, ПМА - Петербургская медицинская академия, ЦОЗДМиР - центр охраны здоровья матери и ребенка.

Координацию организационно-методической работы по этой проблеме возложено осуществлять Консультативно-методическому совету медико-генетической службы Минздрава РФ.

Необходимо также учитывать и региональные особенности медико-генетической службы, исторически сложившиеся структуры научных и высших учебных заведений, наличие подготовленных кадров. Стимулом для более широкого внедрения молекулярных методов в педиатрическую практику могут служить разработки федеральных центров по проблемам ранней диагностики наследственных болезней с использованием ДНК-технологий, однако недофинансирование научных исследований, невозможность оснащения лабораторий современными приборами угрожает уже самому существованию высококвалифицированных лабораторий, обеспечивающих всю систему ДНК-диагностики в России. Большую помощь в развитии этого вида помощи детям и семьям с наследственной патологией могут оказывать действующие медико-генетические консультации путем создания регистров семей с определенной патологией, что позволит определить потребности в молекулярной диагностике заболеваний в региональном масштабе. С этой целью необходимо более широкое распространение информации о возможностях отечественных центров в диагностике наследственных заболеваний как среди врачей различных специальностей, так и среди населения, а также формирование регистров наследственных болезней с использованием компьютерных технологий.

Внедрение новейших достижений в области ДНК-диагностики наследственной патологии и прежде всего в детском возрасте не только решает текущие вопросы диагностики наследственных болезней, но и поднимает ряд новых проблем - медицинских, этических, юридических, социальных и др. Решать их необходимо при тесном взаимодействии специалистов различных профилей, опираясь на уже достигнутый опыт передовых стран мира.

Российский вестник перинатологии и педиатрии, N5-1999, с.9-14

Литература

1. Вельтищев Ю.Е., Зелинская Д.И. Детская инвалидность. Лекция. Рос вест перинатол и педиатр М 1995; 53.

2. Горбунова В.Н., Баранов B.C. Введение в молекулярную диагностику и генотерапию наследственных заболеваний. Спб 1997; 287.

3. Евграфов О.В., Макаров В.Б. ДНК-диагностика наследственных заболеваний. Итоги науки и техники: Генетика человека 1991; 9: 53-126.

4. Новиков П.В. Итоги работы медико-генетической службы Российской Федерации за 1997 г. и дальнейшие задачи ее развития. Бюлл рос общества мед генетиков 1998; 1: 7: 2-6.

5. Lebo R.V., Cunningham G"., Simons M.J., Shapiro L.J. Defining DNA diagnostic tests appropriate for standart clinical care. Am J Hum Genet 1990; 46: 583-590.

6. Стуколова Т.И., Зелинская Д.И., Новиков П.В. Основные направления деятельности медико-генетической службы Минздрава в области профилактики наследственной патологии и оказания медико-генетической помощи детям в Российской Федерации. Актуальные проблемы диагностики, лечения и профилактики наследственных заболеваний у детей. М 1998; 125-126.

www.ronl.ru

23. Основные методы диагностики наследственных заболеваний человека, принципы терапии и профилактики.

В отношении человека, как объекта генетических ис­следований существует две точки зрения:

  1. Одни полагают, что человек является крайне небла­гоприятным объектом генетических исследований.

  1. Другие, наоборот, находят в человеке много преимуществ.

Почему же человек – неблагоприятный объект для генетических исследований?

а) Невозможность экспериментальных браков, т.е. искус­ственного создания брака (скрещивания). Нельзя по заранее составленной схеме получить и проанализировать потомство от родителей с известным генотипом. Еще Н.К.Кольцов в 1923 году писал "... мы не можем заставить Н.Нежданову выйти замуж за Ф.Шаляпина, чтобы посмотреть, каковы у них будут дети". При генетическом анализе человека как бы выпадает основа гибридологического метода – экспериментальное скрещивание. Этот "недостаток" можно преодолеть двумя путями: 1) среди множества человеческих семей исследователь может найти такие, которые соответствуют его схемам исследования; 2) успешно разрабатываемый метод гибридизации соматических клеток позволяет уже в некоторых случаях проводить генетический анализ, используя культуру клеток человека.

б) Ограниченное количество потомков (1–2–3 ребенка) в семье. Даже в государствах с большим приростом населения количество детей в семье не более 3–4, а 10–15 детей – крайне редко. В любом случае размер семьи настолько мал, что не позволяет вести анализ расщепления признаков в потомстве в пределах одной семьи. Однако, зная признак, по которому анализируется потомство, можно подобрать не одну, а необходимое количество семей.

в) Длительность смены поколений. Для смены одного поколения человека нужно в среднем 30 лет, а это значит, что генетик не может наблюдать более 1–2 поколений. Этот недостаток в известной мере устраняется большими популяциями человека, регистрацией признаков в течение длительного времени (на протяжении нескольких поколений).

г) Достаточно большой по количеству набор хромосом (групп сцепления). Он состоит из 23 пар, что затрудняет их генетическое и цитологическое картирование и снижает тем самым возможность генетического анализа.

д) Модификация наследственной изменчивости под влиянием образа жизни, социальных факторов.

е) Организационные недостатки (но они исправимы): плохая сохранность документации, неудовлетворительная регистрация браков, рождаемости, смертности, диагностики наследственных болезней и статистики.

Преимущества человека, как генетического объекта:

а) Хорошая изученность фенотипа человека – анатомическая, физиологическая, иммунологическая, биохимическая, клиническая. Специалисты различного профиля продолжают независимо от интересов генетиков изучать человека, что несомненно помогает генетику легко распознавать многие формы наследственных отклонений.

б) Возможность использовать все методы, применяемые в медицине (биохимические, морфологические, иммунологические, электрофизиологические, клинические и др.), т.е. любые методы, которые дают возможность регистрировать признак и выражать его количественно.

Для решения сугубо генетических задач применительно к человеку в настоящее время используют следующие методы:

  1. Генеалогический (генеалогия – греч. genealogia; от genea рождение, происхождение, поколение + logos слово, изложение – установление родственных связей между индивидумами в пределах одного поколения или в ряду поколений, или родословная) – метод родословных, т.е. прослеживание болезни (или признака) в семье или роду с указанием типа родственных связей между членами родословной. В медицинской генетике его часто называют клинико-генеалогическим, так как речь идет об изучении патологических признаков в семье с помощью клинических приемов обследования. Он относится к наиболее универсальным методам в генетике человека. Этот метод используется для установления наследственного характера признака, определения типа наследования и пенетрантности гена, при анализе сцепления генов и картирования хромосом, при изучении интенсивности мутационного процесса, при расшифровке механизмов взаимодействия генов, при медико–генетическом консуль­тировании. Суть этого метода сводится к выяснению родственных связей и к прослеживанию признака или болезни среди близких и дальних, прямых и непрямых родственников. Он включает два этапа: составление родословных и генеалогический анализ.

Составление родословной начинается с пробанда (лицо, первое попавшее в поле зрения исследователя). Чаще всего это больной или носитель изучаемого признака. Дети одной родительской пары называются сибсами (братья–сестры). Семьей в узком смысле называют родительскую пару и их детей. Обычно родословная собирается по одному или нескольким признакам. Она может быть полной (составление по восходящему, нисходящему и боковым направлениям) и ограниченной. Для наглядности готовят графическое изображение родословной. Грубой ошибкой является искусственное укорочение звеньев родословной в связи с трудностями обследованных родственников II и III степени. Генеалогический анализ позволяет установить генетические закономерности: наследственный характер признака и тип наследования.

Недостатки и ошибки при использовании генеалогического метода могут быть обусловлены неправильной диагностикой болезни (признака) и возможностью неправильного определения отцовства за счет внебрачных связей (от 1–3 до 10%).

  1. Близнецовый метод – исследование генетических закономерностей на близнецах. Он был предложен Gallon в 1875 г. При использовании этого метода производится сопоставление монозиготных близнецов сдизиготными, партнеров монозиготных пар между собой, данных анализа близнецовой выборки с общей популяцией.

Монозиготными близнецами (однояйцевые, идентичные) называются индивиды, выросшие из одной зиготы, раз­делившейся на ранних стадиях дробления на 2 части; они обладают поэтому идентичными генотипами. Дизиготные близнецы (двуяйцевые, неидентичные) возникают за счет оплодотворения двух яйцеклеток, развивающихся в течение одной беременности. Они имеют в среднем 50% идентичных генов, но отличаются от обычных сибсов значительно большей общностью факторов среды.

Общая частота родов двойнями равна приблизительно 1%, из которых 1/4–1/3 приходится на рождение монозиготных близнецов. Близнецовый метод применяется для:

Этот метод включает 3 этапа: 1) сопоставление близнецовой выборки, 2) установление зиготности, 3) сопоставление пар и групп близнецов по рассматриваемым признакам.

Диагностика основывается на анализе наиболее изученных моногенных полиморфных признаков (эритро– и лейкоцитарные антигены, группы белков сыворотки крови и т.д.). Дизиготные близнецы в отличие от монозиготных отличаются по этим признакам. Если какой–либо качественный признак встречается у обоих близнецов данной пары – это конкордантная пара, а если только у одного из них – это дискордантная пара близнецов.

  1. Популяционно-статистический метод основан на использовании наследственных признаков в больших группах населения из одной или нескольких популяций, в одном или нескольких поколениях. Изучаются выборки из конкретных популяций с применением статистической обработки полученного материала. Этот метод используется для изучения:

а) частоты генов в популяции, включая частоту нас­ледственных болезней,

б) мутационного процесса,

в) роли наследственности и среды в возникновении болезней, особенно болезней с наследственным предрасположением,

г) роли наследственности и среды в формировании фенотипического полиморфизма по нормальным признакам,

д) значения генетических факторов в антропогенезе, в частности в расообразовании.

Возможные ошибки этого метода могут быть связаны с недоучетом миграции населения и с тем, что выбранные группы отличаются по большему числу признаков, чем сравниваются.

  1. Цитогенетический метод основан на микро­скопическом изучении хромосом. Его начали широко использовать в генетике человека только с 20–х годов XX века для:

Именно с этим методом связано открытие всех форм хромосомных болезней. С его помощью изучается частота хромосомных и геномных мутаций в зародышевых клетках и частота хромосомных аберраций в соматических клетках. Культуры соматических клеток человека являются хорошими объектами для проверки мутагенности факторов среды (физических, химических, биологических). Цитогенетическими методами изучаются механизмы мутагенеза.

Основные сведения о морфологии хромосом человека получены при их изучении в метафазе митоза и профазе–метафазе мейоза. Для прямого хромосомного анализа можно использовать клетки костного мозга и гонад (семенников), полученные путем биопсии, что ограничивает цитогенетические исследования без культивирования. Поэтому основные цитогенетические работы выполнены на культурах клеток человека, особенно на лимфоцитах периферической крови.

Культивирование лейкоцитов периферической крови в течение 2–3 суток в присутствии ФГА позволяет получить большое число метафаз. Кроме лейкоцитов, можно культивировать клетки эпидермиса, амниотической жидкости. "Сортировка" хромосом (во время метафазы) прямо под микроскопом или чаще всего на микрофотографиях позволяет построить кариотип – т.е. упорядоченно расположить хромосомы по их отличительным признакам. В основе идентификации хромосом лежит два признака: общая длина хромосомы и расположение центромера; но он не позволяет индивидуально идентифицировать все хромосомы. Поэтому используются более точные методы: радиоавтографический, окраску хромосом флуорохромами, красителем Гимзы, гибридизации нуклеиновых кислот на цитологических препаратах.

  1. Методы генетики соматических клеток. Поскольку соматические клетки содержат весь объем генетической информации, на них можно изучать генетические закономерности целостного организма. Соматические клетки человека характеризуются 5 основными свойствами, позволяющими их использовать в генетических исследованиях:

Культуру соматических клеток человека получают для генетических исследований из материала биопсий или аутопсий (кожа, опухоли, периферическая кровь, костный мозг, ткань эмбрионов, клетки из околоплодной жидкости). В настоящее время чаще используются фибробласты и лимфоидные клетки. В генетике человека используют 4 метода из генетики соматических клеток: простое культивирование, клонирование, гибридизация и селекция.

В настоящее время обосновано 4 подхода в борьбе с наследственными болезнями:

  1. Массовое "просеивание" новорожденных на нас­ледственные дефекты обмена веществ.

  1. Пренатальная диагностика.

  1. Медико-генетическое консультирование.

  2. Контроль за мутагенной опасностью факторов окружающей среды.

  1. Массовое "просеивание" новорожденных на наследственные болезни обмена веществ наряду с другими методами является основой профилактики наследственных болезней в популяциях. "Просеивание" (аналог – "скрининг") означает предположительное выявление недиагностированной ранее болезни с помощью тестов, обследований или других процедур, дающих быстрый ответ.

Проще говоря, просеивание – это обследование контингентов с целью подразделения их на группы с высокой и низкой вероятностью заболевания. "Просеивают" заболевания, для которых установлена связь между мутантным геном и поврежденной биохимической функцией. Изменения в биохимических параметрах по срокам своего проявления предшествуют возникновению клинических симптомов.

Современные программы массового просеивания предусматривают выявление фенилкетонурии, гипотиреоза, врожденной гипоплазии надпочечников, галактоземию, муковисцидоз, гомоцистинурию, лейциноз, гистидинемию, аминоацидопатии, недостаточность альфа–1–антитрипсина. В практике массового просеивания на наследственные болезни обмена веществ используется кровь (пуповинная, капиллярная, венозная) и сыворотка крови.

Просеивание в зависимости от искомого дефекта проводят среди различного контингента с учетом возраста, национальной и расовой принадлежности. Просеивание на наследственные аминоацидопатии и гипотиреоз необходимо проводить в первые дни жизни, чтобы терапия оказалась эффективной; просеивание на носительство гемоглобинопатии и болезни Тея–Сакса – у вступающих в брак. Просеивание на гемоглобинопатию целесообразно в популяциях или расовых группах, подвергшихся действию малярийного фактора отбора, а просеивание на носительство болезни Тея–Сакса (в Израиле) – у евреев–ашкенази, у которых мутантный ген встречается в 10 раз чаще, чем в других популяциях.

Например, в программах массового просеивания на фенилуксусную кислоту и другие аминоацидопатии используют три метода: микробиологический по Гатри (на его долю приходится 90%), хроматографический и флюорометрический.

  1. Пренатальная диагностика осуществляется с помощью разных методов исследования в I и II триместрах беременности. В ней нуждается 10–15% семей, обращающихся в медико–генетическую консультацию. Показания к проведению пренатальной диагностики:

Пренатальная диагностика представляет собой комплексное исследование, основанное на использовании лабораторных и инструментальных методов:

  1. ультразвуковое исследование (врожденные пороки развития),

  1. фетоскопия используется для взятия образцов крови, кожи или других органов плода (показания – токсоплазмоз, вирусная краснуха, гемофилия, талассемия, осложнения связанные с самопроизвольным прерыванием беременности),

  1. фетоамниография использовалась до появления УЗИ для диагностики врожденных пороков развития костной системы, спинномозговых и пупочных грыж и особенно атрезий желудочно–кишечного тракта. Использование контрастных веществ вызывает осложнения как у беременной, так и у плода,

  2. диагностический амниоцентез (в сроки 14–20 недель беременности) – это акушерско–хирургическая процедура, позволяющая получить амниотическую жидкость для после­дующих лабораторных исследований (в 1–2% случаев после амниоцентеза наблюдается гибель плода). Амниотические клетки используют для культивирования и цитогенетических исследований, для диагностики лизосомных болезней, альфа–фетопротеина, для диагностики более 60 форм наследственных ферментопатий,

  3. диагностическая биопсия хориона (хориоцентез). Оптимальный срок для биопсии – 17–я неделя беременности, а результаты, связанные с культивированием амниотических клеток, могут быть получены спустя 3–5 недель. Используют 3 основных методики получения биоптата хориона: с помощью щипцов, методом эндоцервикальной аспирации и с помощью браши (по типу лабораторного ершика для пробирок). Этот метод используют для диагностики хромосомных и биохимических (молекулярных) нарушений.

  1. Медико-генетическое консультирование включает:

  1. Контроль за мутагенной опасностью факторов окружающей среды осуществляют генетики, экологи, врачи гигиенического профиля, учитывая естественный фон радиации и его колебания, дрейф мутаций и т.п.

Принципы лечения наследственных заболеваний:

  1. Симптоматическое лечение – хирургическое лечение расщелины верхней губы и твердого неба, сросшихся пальцев, коррегирующие линзы при близорукости и др.

  1. Патогенетическая терапия – воздействие на те механизмы, которые формируют наследственное заболевание:

  1. Генная инженерия – это направление исследований в молекулярной биологии и генетике, конечной целью которого является получение с помощью лабораторных методов организмов с новыми комбинациями наследственных свойств. В основе лежит целенаправленное манипулирование с фрагментами нуклеиновых кислот, т.е. конструируются из различных фрагментов генетического материала нужные фрагменты и вводятся в реципиентный организм.

studfiles.net

Реферат - Генетическое обследование - Биология

 

Значение. Выявление роли наследственности в происхождении заболевания имеет большое значение для выбора метода лечения данного больного, для прогноза потомства у него и у его родителей.

 

Например, у женщины, носительницы гена гемофилии, в браке со здоровым мужчиной половина сыновей будет больна гемофилией, а все дочери будут здоровы (половина из них будет носительницами патологического гена). При выяснении таких обстоятельств женщине можно дать совет сохранять только ту беременность, при которой установлен женский пол плода. У человека с брахидактилией (доминантный признак) вероятность появления этого дефекта у детей равна 50%. У гомозиготного обладателя этого гена все дети будут рождаться с этим же уродством. Если мутация возникла во время беременности, то повторение такой же мутации при очередной беременности маловероятно. Если установлено, что причина рождения больного ребенка заключается в акушерской патологии, то повторения этого можно полностью избежать при следующей беременности. Проявление мультифакториальных болезней, как уже говорилось, зависит от условий внешней среды. При этом большое значение приобретают средства гигиенической профилактики. Имеется множество болезней, развитие которых обусловлено факторами внешней среды, а клиническая картина напоминает таковую при наследственных болезнях. Эти болезни называются фенокопиями. Наследственная передача их полностью исключена.

 

Здесь следует уточнить термин «врожденные заболевания». Он означает только то, что заболевание обнаружено сразу после рождения, а роль генетических факторов в его возникновении еще следует уточнять. Например, врожденный сифилис у ребенка является результатом инфицирования от больной матери в родах и не является наследственным. Наследственные болезни могут быть врожденными (определяются сразу после рождения), но могут проявляться значительно позже.

 

Все эти вопросы решает медико-генетическая консультация с помощью методов генетического обследования.

 

Методы. Установление наследственной природы заболевания проводится с помощью демографо-статистического метода, который заключается в сравнении частоты возникновения заболевания в семье больного с частотой этого заболевания в популяции по данным медицинской статистики. Небольшое число членов семьи обычно затрудняет применение этого метода. При подсчетах, однако, можно условно считать больными тех членов семьи, которые клинически здоровы, но лабораторные анализы или функциональные пробы обнаруживают неблагоприятные показатели.

 

После установления наследственной природы заболевания необходимо изучить тип наследования, чтобы определить вероятность повторения его в потомстве. Это решается с помощью генеалогического метода, т. е. составления родословной.

 

Близнецовый метод дает возможность разграничить роль наследственных факторов и факторов внешней среды. Однояйцовые близнецы, как известно, генетически абсолютно одинаковы и различие между ними определяется только факторами внешней среды. Двуяйцовые близнецы генетически не более сходны, чем братья и сестры, рожденные в разное время, поэтому анализ их заболеваемости отражает влияние сходных условий на различные генотипы (табл. 1). Из табл. 1, например, видно, что в развитии слабоумия и некоторых психических заболеваний генетические факторы играют более важную роль, чем при аномалиях развития скелета и мягких тканей.

 

Цитологические методы. Исследование кариотипа в ядрах делящихся клеток. В стадии профазы хромосомы становятся видимыми под микроскопом, а в стадии метафазы отчетливо выявляются их число и морфологические особенности. Кариотип, как правило, исследуют в делящихся клетках костного мозга, но более подходящими для этой цели являются специально приготовленные культуры из лейкоцитов. На рис. 4.1 представлены патологические кариотипы.

 

Исследование полового хроматина. Половой хроматин в интерфазных ядрах (тельца Барра) представляет собой Х-хромосому в том случае, если в хромосомном наборе их две. Естественно, что в норме половой хроматин можно обнаружить только у особей женского пола. При наличии в клетке нескольких Х-хромосом количество полового хроматина равно их числу минус единица.

 

Не каждая соматическая клетка женщины содержит половой хроматин. Процент хроматинположительных ядер обычно отражает функциональное состояние организма и уменьшается при болезнях.

 

Исследование «барабанных палочек» в ядрах сегментоядерных нейтрофильных гранулоцитов. В норме у женщин около 3% нейтрофильных гранулоцитов имеют эти характерные выросты в ядре. Иногда их число в клетке может быть более одного; оно равно количеству Х-хромосом минус единица.

 

Биохимические методы. По мере изучения наследственных заболеваний появляются новые методы их биохимической идентификации. Ферментопатии устанавливаются путем определения активности фермента или продуктов реакции, катализируемой этим ферментом.

 

В настоящее время разработано несколько экспресс-методов диагностики наследственных аномалий обмена веществ при помощи исследования мочи младенца или капли крови, взятой из пятки. Например, фенилкетонурию обнаруживают при помощи реактивного карандаша, которым проводят по мокрой пеленке младенца. Исследование эритроцитов младенца на наличие фермента, необходимого для обмена галактозы, помогает раннему обнаружению галактоземии.

 

Экспериментальное моделирование наследственных болезней у животных.С этой целью выводят мутантные линии животных, имеющих наследственные дефекты, аналогичные таковым у человека (гемофилия у собак, дефекты губы и неба у мышей, атеросклероз у голубей, мышечная дистрофия у хомяков и кур).

 

В связи с тем, что клиницистов не удовлетворяет диагностика наследственной патологии после рождения, разрабатываются методы диагностики в период внутриутробного развития. Так, при исследовании амниотической жидкости (амниоцентез), в которой определяют содержание различных продуктов обмена и активность ферментов, а в клеточных элементах — половой хроматин и кариотип, можно установить около 70 наследственных заболеваний. При обнаружении опасной наследственной патологии беременность можно прервать.

Хромосомные и генные болезни. Характеристика. Понятие о наследственной предрасположенности. Принципы профилактики и лечения наследственной патологии. Понятие об эмбрио- и фетопатиях.

 

Генные болезни (молекулярно-генетические)

 

Поскольку генная мутация по сравнению с хромосомной затрагивает сравнительно небольшой участок генетического материала, она обычно сопровождается менее грубыми нарушениями. Репродуктивная функция носителя при этом сохраняется, и поэтому такие заболевания чаще передаются в поколениях, т.е. являются наследственными в полном смысле слова.

 

По доминантному типу наследуются различные скелетные и другие аномалии, не препятствующие размножению, не сокращающие продолжительность жизни и поэтому мало подверженные отбору. Такими аномалиями могут быть короткопалость, много-палость, сросшиеся и искривленные пальцы, искривление ногтей, отсутствие боковых резцов, близорукость, дальнозоркость, астигматизм.

 

Из тяжелых болезней по доминантному типу наследования передаются врожденная катаракта, отосклероз, некоторые формы мышечной атрофии, прогрессирующая хорея Гетингтона, ахондропла-зия, характеризующаяся карликовым ростом и непропорциональным сложением тела.

 

К наиболее опасным болезням этой группы можно отнести множественный полипоз толстой кишки, имеющий тенденцию к злокачественному перерождению, и нейрофиброматоз (болезнь Рек-лингаузена).

 

Большинство наследственных болезней передаются по рецессивному типу. Болезнь проявляется тогда, когда дети получают патологический ген от обоих родителей. Сами же родители, являясь гетерозиготными носителями признака, остаются фенотипически здоровыми. Большое значение для проявления этих болезней у потомства имеет кровное родство родителей, у которых есть большая вероятность обладания одинаковым рецессивным патологическим геном. К таким болезням относятся дефекты аминокислотного обмена (фенилкетонурия, альбинизм, алкаптанурия), врожденная глухонемота, микроцефалия, пигментопатии (дефицит фермента и блок на определенном этапе метаболизма). Так, повышенная чувствительность к алкоголю иногда связана с низкой активностью фермента алкогольдегидрогеназы. Дефекты ферментов лекарственного метаболизма приводят к повышенной чувствительности к лекарственным препаратам и т.д.

 

Известны такие типы наследования:

1.аутосомно-доминантный — фенотипически патологическое состояние — обнаруживается у гетерозигот;

2.аутосомно-рецессивный — фенотипически патологическое состояние — обнаруживается в гомозиготном состоянии;

3.Х-сцепленное наследование — гены локализованы в Х-хромосоме (Х-сцепленный тип наследования, Х-сцепленный доминантный тип наследования).

 

Этиологическим фактором генных болезней являются генные мутации. У человека примерно 50-100 тысяч генов, и каждый ген может мутировать и обусловливать другое строение белка.

 

Следовательно, количество наследственных болезней генной природы может быть очень большим. Каждая генная мутация обусловливает изменение или отсутствие белка. Например, при галактоземии резко снижена активность фермента галактозо-1-фосфат-уридилтрансферазы, в результате чего в клетках накапливается галактозо-1-фосфат. Это соединение подавляет ферментативные реакции углеводного обмена с участием фосфорилирован-ных промежуточных продуктов. За этим следует поражение печени, мозга, общее нарушение развития. Катаракты, характерные для этого заболевания, образуются за счет высокой концентрации галактозо-1-фосфата в жидкостях организма и образования галак-титола.

 

Для многих генных болезней уже идентифицирован первичный аномальный продукт гена — ключевое патогенетическое звено на биохимическом уровне. Исходя из этого они классифицируются по биохимическому принципу в зависимости от того, какие белки поражены — структурные, транспортные или ферментные.

 

Примером заболевания, при котором изменения касаются структурных белков, может служить синдром Элерса-Данлоса, при котором нарушена структура коллагена. Синдром характеризуется повышенной эластичностью кожи, увеличенной подвижностью суставов, повышенной растяжимостью хорд сердечных клапанов, отслойкой сетчатки, подвывихом хрусталика.

 

Поражение транспортных белков отмечается, например, при ли-зинурической непереносимости белка, при которой нарушается транспорт диаминокислот (лизина, аргинина, орнитина) в почечных канальцах.

 

Наиболее обширная и достаточно изученная группа моногенных заболеваний — это энзимопатии. Вооружение гипотезой «один ген — один фермент» привело к расшифровке многих из них. Энзимопатии, при которых расшифрован первичный дефект фермента, подразделяются на болезни накопления липидов, гликогена, гликопротеинов, нарушений аминокислотного, углеводного, пуринового и пиримидинового обменов, нарушений гормоногене-за и др.

 

Общая частота генных болезней в популяциях в целом равна 1-2. Частота отдельных форм колеблется от 1:2000-3000 (муковисцидоз) до 1:100000 (атаксия-телеангиоэктазия). Условно частоту генной болезни можно считать высокой, если встречается один больной на 10000 новорожденных и чаще, средней — 1:10000-40000 и низкой — 1:40000. Так, по ряду наследственных болезней обмена веществ (фенилкетонурия, тирозинемия, галактоземия и др.) частоту проявлений относят к категории средних и низких.

 

Хромосомные болезни. В отличие от генных возникновение хромосомных болезней связано с более грубыми изменениями генетического материала, вызванными нарушением числа или структуры хромосом, т.е. геномными или хромосомными мутациями (см. выше) Хромосомная болезнь может возникнуть в результате мутаций в гаметах родителей ил1/ в клетках эмбриона на стадии дробления зиготы.

 

Общее количество хромосомных аномалий у человека только гаметического происхождения — около 750, из которых около 50 — количественные и свыше 700 — структурные изменения хромосом.

Наиболее часто встречающимися и хорошо распознаваемыми яв-ляются следующие хромосомные синдромы.

 

Синдром Шерешевского—Тернера (Х-моносомия) характеризуется наличием 44 аутосом + Х0 и отсутствием полового хроматина (телец Барра) в ядрах клеток. У женщин с этим синдромом выявляются низкий рост, широкая короткая шея (часто с характерными крыловидными складками), врожденные пороки сердца, множественные пигментные пятна, недораз-витие молочныхжелез и яичников, первичная аменорея и бесплодие, ум-ственное развитие нормальное.

 

Синдром Y-моносимии (44 + Y0) — организм нежизнеспособен.

 

Синдром Трипло-Х (44 аутосомы + XXX) фенотипически может не проявляться или, наоборот, характеризуется задержкой физического, по-лового и умственного развития (слабоумие, шизофрения). Часто обнаруживаются высокое твердое небо и эпикант (поперечная складка кожи у внутреннего угла глаза). В ядрах клеток таких женщин имеется два тельца Барра.

 

Синдром Клайнфельтера (44 аутосомы + XXY, или + XXXY и т.п.). Для мужчин с таким синдромом характерны высокий рост, астеническое телосложение евнухоидного типа, гинекомастия, атрофия яичек и бесплодие, часто остеопороз, возможно гомосексуальное и асоциальное поведение. В отличие от нормальных мужчин в ядрах клеток у них обнаруживается половой хроматин (телец Барра столько, сколько лишних Х-хромосом).

 

Синдром Дауна в 94 % случаев характеризуется трисомией в 21-й паре аутосом (45 аутосом + XX у девочек или + XY у мальчиков). В остальных случаях может быть транслокационный вариант хромосомной аномалии (например, перенос фрагмента 21 -й хромосомы на 13-ю или на 14-ю, или на 15-ю, или на 22-ю пары). Для этого синдрома характерны олигофрения разной степени выраженности (имбицильность, дебильность или идиотия), низкий рост, разболтанность суставов, мышечная гипотония, короткие пальцы (может быть синдактилия), поперечная «обезьянья» складка на ладони, монголоидный разрез глаз, эпикантус, увеличенный язык, уменьшение размеров мозга, часто встречаются пороки сердца и аномалии других внутренних органов, недоразвитие половых признаков. Для этих больных характерны также резкое снижение клеточного и гуморального иммунитета, повышенный риск развития лейкоза и формирование ранней катаракты.

 

Патогенез многих проявлений синдрома Дауна связывают с генами полосы д-22 в 21-й хромосоме. Ген Gart кодирует синтез фермента, уча-ствующего в синтезе пуринов. Повышенным содержанием пуринов у этих больных объясняют развитие неврологических расстройств, умственной отсталости, дефектов иммунной системы. С геном ets-2 (онкоген) связывают повышенный риск развития лейкоза. Ген, кодирующий синтез а-А- кристаллина, повинен в развитии катаракты, а кодирующий синтез кера- тинсульфата — в развитии офтальмопатии. Ген, кодирующий синтез супероксиддисмутазы (СОД), участвует в развитии умственной отсталости и преждевременного старения. Развитие олигофрении связано также с геном 21-й хромосомы, кодирующим синтез (3-амилоида. У больных с синдромом Дауна к 30 годам в головном мозге обнаруживаются сениль- ные бляшки и дегенеративные изменения, как и при болезни Альцгеймера (патогенетическое сходство).

 

В 20-е годы больные с синдромом Дауна доживали до 9 лет, в 80-е — до 30 лет, в настоящее время благодаря успехам медицины 25 % больных доживает до 50 лет.

 

Синдром Патау (трисомия по 13-й паре аутосом) характеризуется микроцефалией, аномикрофтальмом, деформацией ушных раковин, рас-щелиной верхней губы и нёба, полидактилией, недоразвитием обеих че-люстей, пороками сердца.

 

Синдром Эдвардса (трисомия по 18-й паре аутосом) проявляется деформацией ушных раковин, узкими глазными щелями, гипоплазией нижней челюсти, микроцефалией, пороками сердца, почек и органов пи-щеварения.

 

Следует заметить, что для всех аутосомных анеуплоидий характер- натриада: множественные пороки развития органов, олигофрения и зна-чительное сокращение продолжительности жизни.

www.ronl.ru


Смотрите также