Электромашинный усилитель (ЭМУ) представляет собой электрическую машину, работающую в генераторном режиме и предназначенную для усиления электрических сигналов. Электромашинные усилители применяются в системах автоматики. Простейший ЭМУ — это генератор постоянного тока независимого возбуждения (см. рис. 28.2, а). Так как напряжение на выходе генератора зависит от тока возбуждения (см. рис. 28.2, б), то, изменяя ток возбуждения, можно управлять напряжением на выходе генератора. Следовательно, сравнительно небольшой мощностью в цепи обмотки возбуждения можно управлять значительной мощностью в цепи якоря.
Электромашинные усилители, выполненные по принципу генератора независимого возбуждения, не нашли широкого применения, так как они не могут обеспечить достаточно большого коэффициента усиления по мощности (не более 80—100), представляющего собой отношение мощности на выходе усилителя к мощности на входе обмотки управления.
Наибольшее распространение в автоматике получили электромашинные усилители поперечного поля. В отличие от обычного генератора постоянного тока в этом ЭМУ основным рабочим потоком является магнитный поток, создаваемый током обмотки якоря, — поперечный поток реакции якоря (см. рис. 26.4, б).
На коллекторе ЭМУ установлено два комплекта щеток: один комплект — (рис. 30.1, а) — расположен по поперечной оси главных полюсов, т. е. на геометрической нейтрали, а другой — по продольной оси главных, полюсов. Щетки замкнуты накоротко, а к щеткам подключена рабочая цепь ЭМУ.
Помимо обмотки якоря усилитель имеет одну или несколько обмоток управления , компенсационную обмотку (ОК), поперечную подмагничивающую обмотку (ОП) и обмотку добавочных полюсов (ОД). Якорь усилителя приводится во вращение электродвигателем.
Если к одной из обмоток управления подвести напряжение , то в этой обмотке появится ток управления , который создает МДС обмотки управления. Эта МДС, в свою очередь, создает магнитный поток, который наведет в обмотке якоря в цепи щеток ЭДС . Электродвижущая сила невелика, но так как щетки замкнуты накоротко, то ЭДС вызовет значительный ток . Ток в обмотке якоря создаст МДС и магнитный поток , который направлен по поперечной оси главных полюсов, т. е. по геометрической нейтрали, и неподвижен в пространстве. В обмотке якоря, вращающейся в неподвижном потоке, наводится ЭДС , снимаемая с продольных щеток .
Если к выходным зажимам ЭМУ подключить нагрузку , то ЭДС создаст в цепи щеток рабочий ток.
Таким образом, небольшая мощность обмотки управления проходит две ступени усиления: сначала эта мощность усиливается на ступени «цепь управления — поперечная цепь», а затем на ступени «поперечная цепь — продольная (рабочая) цепь».
Усиление мощности на каждой ступени характеризуется коэффициентом усиления, который на ступени «цепь управления — поперечная цепь» определяется отношением мощности в поперечной цепи к мощности управления :
. (30.1)
Коэффициент усиления на ступени «поперечная цепь — продольная (рабочая) цепь» определяется отношением мощностей в этих цепях:
, (30.2)
где — мощность в рабочей цепи усилителя, т. е. в цепи щеток.
Рис. 30.1 ЭМУ поперечного поля:
— принципиальная схема;
— внешние характеристики
Общий коэффициент усиления ЭМУ равен произведению частных коэффициентов усиления:
. (30.3)
Коэффициент усиления электромашинных усилителей может достигать 2000—20 000.
Следует помнить, что мощность на выходе ЭМУ представляет собой преобразованную механическую мощность приводного электродвигателя. Значение этой мощности, которое может достигать более 20 кВт, управляется небольшой мощностью управления (обычно 0,1—1,0 Вт).
Обмотка добавочных полюсов (ОД) служит для улучшения коммутации на продольных щетках . Поперечная подмагничивающая обмотка (ОП) усиливает магнитный поток по поперечной оси, что позволяет уменьшить ток в цепи щеток, следовательно, улучшить коммутацию на этих щетках (в ЭМУ малой мощности эта обмотка отсутствует).
Компенсационная обмотка (ОК), наличие которой в ЭМУ обязательно, устраняет размагничивающее влияние реакции якоря по продольной оси. Дело в том, что ток рабочей цепи ЭМУ (ток нагрузки) создает МДС по продольной оси , направленную навстречу МДС обмотки управления . Эта МДС намного меньше МДС , поэтому даже при небольшой нагрузке усилителя размагничивающее влияние реакции якоря по продольной оси настолько велико, что усилитель размагничивается и напряжение на его выводах падает до нуля. Для устранения этого явления на статоре ЭМУ располагают компенсационную обмотку, включенную последовательно в рабочую цепь якоря. С появлением тока в рабочей цепи возникает МДС компенсационной обмотки , направленная по продольной оси встречно МДС реакции якоря . Этим устраняется (компенсируется) размагничивающее влияние реакции якоря по продольной оси. Для полной компенсации необходимо, чтобы МДС и были равны, так как недокомпенсация или перекомпенсация оказывает значительное влияние на магнитный поток , а следовательно, и на свойства ЭМУ. Однако рассчитать компенсационную обмотку с требуемой точностью практически невозможно, что ведет к необходимости опытной настройки требуемого значения МДС посредством реостата , шунтирующего компенсационную обмотку.
Электромашинные усилители поперечного поля выполняют двухполюсными, при этом каждый из главных полюсов расщепляют на две части 1, между которыми располагают добавочные полюса 2 (рис. 30.2). Обмотки управления 4 выполняют сосредоточенными в виде полюсных катушек, надетых на главные полюса, что же касается компенсационной обмотки 3, то ее делают распределенной, используя для этого пазы в полюсных наконечниках главных полюсов. Этим достигается компенсация продольной реакции якоря по всему периметру статора.
Рис. 30.2. Расположение обмоток ЭМУ на статоре
При мощности до нескольких киловатт ЭМУ выполняют в общем корпусе с приводным двигателем постоянного или переменного тока. При значительной мощности ЭМУ и двигатель выполняют раздельно и монтируют на общей раме.
Рабочие свойства ЭМУ в значительной степени определяются его внешней характеристикой прии. Напряжение на выходе усилителя
, (30-4)
где сумма электрических сопротивлений в продольной цепи якоря, Ом, включающая в себя сопротивления обмотки якоря, добавочных полюсов , компенсационной обмоткии щеточного контакта.
Ввиду того, что магнитная цепь усилителя не насыщена, напряжение является линейной функцией тока нагрузки , т. е. внешняя характеристика ЭМУ представляет собой практически прямую линию (рис. 30.1,б).
Угол наклона внешней характеристики к оси абсцисс (жесткость характеристики) зависит от степени компенсации реакции якоря. При полной компенсации МДС компенсационной обмотки равна МДС реакции якоря по продольной оси . В этом случае внешняя характеристика получается достаточно жесткой (кривая 3), так как уменьшение напряжения при увеличении тока нагрузки происходит лишь за счет увеличения падения напряжения в цепи якоря по продольной оси.
При недокомпенсации внешняя характеристика получается менее жесткой (кривая 4). Объясняется это тем, что при недокомпенсации МДС , возрастая с увеличением тока , значительно ослабляет магнитный поток обмотки управления , что ведет к заметному уменьшению напряжения на выходе ЭМУ.
Если в усилителе настроить небольшую перекомпенсацию так, чтобы МДС полностью скомпенсировала не только реакцию якоря по продольной оси, но и падение напряжения , то внешняя характеристика усилителя становится абсолютно жесткой и располагается параллельно оси абсцисс (кривая2). В этом случае напряжение на выходе ЭМУ остается неизменным во всем диапазоне изменения нагрузки.
При значительной перекомпенсации внешняя характеристика (кривая 1) приобретает восходящий характер, так как МДС не только компенсирует , но и создает дополнительный продольный поток, который, накладываясь на магнитный поток управления , вызывает увеличение ЭДС. Работа усилителя с перекомпенсацией становится неустойчивой, так как возникает опасность произвольного самовозбуждения ЭМУ, при котором увеличение напряжения на выходе усилителя вызывает рост тока нагрузки, что ведет к дальнейшему увеличению напряжения, т. е. происходит неограниченное увеличение тока нагрузки. Обычно в усилителе настраивают небольшую недокомпенсацию, при которой увеличение напряжения при уменьшении тока от номинального до нуля составляло бы 12—20%.
studfiles.net
Машина постоянного тока представляет собой электрическую машину с механическим преобразователем частоты в цепи якоря и поэтому имеет обращенное исполнение.
Обмотка возбуждения 3 располагается на статоре, а обмотка якоря 5 — на роторе. Преобразователь частоты выполняется в виде коллектора 7, пластины которого электрически связаны с обмоткой якоря. Система неподвижных щеток 6 обеспечивает связь вращающейся обмотки якоря с внешней сетью.
Статор обычно выполняется в виде массивной станины 1, на которой укрепляются полюсы 2 с обмоткой возбуждения. Сердечники полюсов собираются из листов конструкционной стали толщиной 1-2 мм.
Магнитопровод якоря 4 набирается из лакированных листов электротехнической стали толщиной 0,5 мм. В пазы магнитопровода укладываются изолированные секции двухслойной обмотки якоря. Выводы секции припаиваются к коллекторным пластинам, закрепленным на валу машины постоянного тока. Число коллекторных пластин равно числу секций. Коллекторные пластины изготавливаются из меди и изолируются друг от друга и от вала с помощью миканитовых прокладок. На внешней поверхности коллектора устанавливаются угольные щетки, закрепленные в щеткодержателях неподвижно относительно статора. Число щеток равно числу полюсов.
Положение щеток относительно полюсов может меняться, но, как правило, щетки устанавливаются на геометрической нейтрали — линии, перпендикулярной оси магнитного поля полюса. В этом случае процессы преобразования энергии в машинах постоянного тока аналогичны процессам преобразования в синхронных машинах при чисто активной нагрузке. Машины постоянного тока применяются как в качестве электродвигателей, так и в качестве генераторов.
Двигатели постоянного тока, в отличие от двигателей переменного тока, обладают хорошими регулировочными свойствами и могут иметь механические характеристики n = f(Mвн), удовлетворяющие требованиям большинства рабочих механизмов. Поэтому двигатели постоянного тока широко используются на транспорте (магистральные электровозы, тепловозы, пригородные электропоезда, метрополитен, трамваи, троллейбусы), в станках, прокатных станах, кранах, судовых установках. В подавляющем большинстве автомобилей, тракторов, самолетов и других летательных аппаратов двигатели постоянного тока приводят во вращение все вспомогательное оборудование.
Постоянный ток для питания двигателей получают либо с помощью полупроводниковых выпрямительных установок, преобразующих переменный ток в постоянный, либо с помощью генераторов постоянного тока. Генераторы постоянного тока используют также в технологических процессах для питания электролизных и гальванических установок. Широкое распространение получили генераторы постоянного тока специального назначения (сварочные генераторы, генераторы для освещения поездов, электромашинные усилители постоянного тока, возбудители синхронных машин).
Недостатком машин постоянного тока является их относительно высокая стоимость, а также наличие скользящего контакта между щетками и коллектором. В последние годы в связи с развитием полупроводниковой техники ведутся работы по замене механического коллектора полупроводниковым преобразователем. Однако, несмотря на большие усилия, направленные на создание полупроводниковых преобразователей частоты, электроприводы с такими преобразователями оказываются в 1,5 — 2,5 раза тяжелее и дороже электроприводов с двигателями постоянного тока. Поэтому выпуск машин постоянного тока не сокращается, и они находят все новые области применения.
www.mtomd.info
Электромашинный усилитель
Электромашинный усилитель (ЭМУ) представляет собой электрическую машину, работающую в генераторном режиме и предназначенную для усиления электрических сигналов. Электромашинные усилители применяются в системах автоматики. Простейший ЭМУ — это генератор постоянного тока независимого возбуждения (см. рис. 28.2, а). Так как напряжение на выходе генератора зависит от тока возбуждения (см. рис. 28.2, б), то, изменяя ток возбуждения, можно управлять напряжением на выходе генератора. Следовательно, сравнительно небольшой мощностью в цепи обмотки возбуждения можно управлять значительной мощностью в цепи якоря.
Электромашинные усилители, выполненные по принципу генератора независимого возбуждения, не нашли широкого применения, так как они не могут обеспечить достаточно большого коэффициента усиления по мощности (не более 80—100), представляющего собой отношение мощности на выходе усилителя к мощности на входе обмотки управления.
Наибольшее распространение в автоматике получили электромашинные усилители поперечного поля. В отличие от обычного генератора постоянного тока в этом ЭМУ основным рабочим потоком является магнитный поток, создаваемый током обмотки якоря, — поперечный поток реакции якоря (см. рис. 26.4, б).
На коллекторе ЭМУ установлено два комплекта щеток: один комплект — (рис. 30.1, а)— расположен по поперечной оси главных полюсов, т. е. на геометрической нейтрали, а другой — по продольной оси главных, полюсов. Щетки замкнуты накоротко, а к щеткам подключена рабочая цепь ЭМУ.
Помимо обмотки якоря усилитель имеет одну или несколько обмоток управления ,компенсационную обмотку (ОК), поперечную подмагничивающую обмотку (ОП) и обмотку добавочных полюсов (ОД). Якорь усилителя приводится во вращение электродвигателем.
Если к одной из обмоток управления подвести напряжение , то в этой обмотке появится ток управления , который создает МДС обмотки управления . Эта МДС, в свою очередь, создает магнитный поток , который наведет в обмотке якоря в цепи щеток ЭДС . Электродвижущая сила невелика, но так как щетки замкнуты накоротко, то ЭДС вызовет значительный ток . Ток в обмотке якоря создаст МДС и магнитный поток , который направлен по поперечной оси главных полюсов, т. е. по геометрической нейтрали, и неподвижен в пространстве. В обмотке якоря, вращающейся в неподвижном потоке ,наводится ЭДС ,снимаемая с продольных щеток .
Если к выходным зажимам ЭМУ подключить нагрузку ,то ЭДС создаст в цепи щеток рабочий ток .
Таким образом, небольшая мощность обмотки управления проходит две ступени усиления: сначала эта мощность усиливается на ступени «цепь управления — поперечная цепь», а затем на ступени «поперечная цепь — продольная (рабочая) цепь».
Усиление мощности на каждой ступени характеризуется коэффициентом усиления, который на ступени «цепь управления — поперечная цепь» определяется отношением мощности в поперечной цепи к мощности управления :
. (30.1)
Коэффициент усиления на ступени «поперечная цепь — продольная (рабочая) цепь» определяется отношением мощностей в этих цепях:
, (30.2)
где — мощность в рабочей цепи усилителя, т. е. в цепи щеток .
Рис. 30.1 ЭМУ поперечного поля:
— принципиальная схема;
— внешние характеристики
Общий коэффициент усиления ЭМУ равен произведению частных коэффициентов усиления:
. (30.3)
Коэффициент усиления электромашинных усилителей может достигать 2000—20 000.
Следует помнить, что мощность на выходе ЭМУ представляет собой преобразованную механическую мощность приводного электродвигателя. Значение этой мощности, которое может достигать более 20 кВт, управляется небольшой мощностью управления (обычно 0,1—1,0 Вт).
Обмотка добавочных полюсов (ОД) служит для улучшения коммутации на продольных щетках . Поперечная подмагничивающая обмотка (ОП) усиливает магнитный поток по поперечной оси, что позволяет уменьшить ток в цепи щеток ,следовательно, улучшить коммутацию на этих щетках (в ЭМУ малой мощности эта обмотка отсутствует).
Компенсационная обмотка (ОК), наличие которой в ЭМУ обязательно, устраняет размагничивающее влияние реакции якоря по продольной оси. Дело в том, что ток рабочей цепи ЭМУ (ток нагрузки) создает МДС по продольной оси ,направленную навстречу МДС обмотки управления . Эта МДС намного меньше МДС ,поэтому даже при небольшой нагрузке усилителя размагничивающее влияние реакции якоря по продольной оси настолько велико, что усилитель размагничивается и напряжение на его выводах падает до нуля. Для устранения этого явления на статоре ЭМУ располагают компенсационную обмотку, включенную последовательно в рабочую цепь якоря. С появлением тока в рабочей цепи возникает МДС компенсационной обмотки ,направленная по продольной оси встречно МДС реакции якоря . Этим устраняется (компенсируется) размагничивающее влияние реакции якоря по продольной оси. Для полной компенсации необходимо, чтобы МДС и были равны, так как недокомпенсация или перекомпенсация оказывает значительное влияние на магнитный поток , а следовательно, и на свойства ЭМУ. Однако рассчитать компенсационную обмотку с требуемой точностью практически невозможно, что ведет к необходимости опытной настройки требуемого значения МДС посредством реостата ,шунтирующего компенсационную обмотку.
Электромашинные усилители поперечного поля выполняют двухполюсными, при этом каждый из главных полюсов расщепляют на две части 1, между которыми располагают добавочные полюса 2 (рис. 30.2). Обмотки управления 4 выполняют сосредоточенными в виде полюсных катушек, надетых на главные полюса, что же касается компенсационной обмотки 3, то ее делают распределенной, используя для этого пазы в полюсных наконечниках главных полюсов. Этим достигается компенсация продольной реакции якоря по всему периметру статора.
Рис. 30.2. Расположение обмоток ЭМУ на статоре
При мощности до нескольких киловатт ЭМУ выполняют в общем корпусе с приводным двигателем постоянного или переменного тока. При значительной мощности ЭМУ и двигатель выполняют раздельно и монтируют на общей раме.
Рабочие свойства ЭМУ в значительной степени определяются его внешней характеристикой при и . Напряжение на выходе усилителя
, (30-4)
где сумма электрических сопротивлений в продольной цепи якоря, Ом, включающая в себя сопротивления обмотки якоря ,добавочных полюсов , компенсационной обмотки и щеточного контакта .
Ввиду того, что магнитная цепь усилителя не насыщена, напряжение является линейной функцией тока нагрузки , т. е. внешняя характеристика ЭМУ представляет собой практически прямую линию (рис. 30.1, б).
Угол наклона внешней характеристики к оси абсцисс (жесткость характеристики) зависит от степени компенсации реакции якоря. При полной компенсации МДС компенсационной обмотки равна МДС реакции якоря по продольной оси . В этом случае внешняя характеристика получается достаточно жесткой (кривая 3), так как уменьшение напряжения при увеличении тока нагрузки происходит лишь за счет увеличения падения напряжения в цепи якоря по продольной оси .
При недокомпенсации внешняя характеристика получается менее жесткой (кривая 4). Объясняется это тем, что при недокомпенсации МДС ,возрастая с увеличением тока ,значительно ослабляет магнитный поток обмотки управления , что ведет к заметному уменьшению напряжения на выходе ЭМУ.
Если в усилителе настроить небольшую перекомпенсацию так, чтобы МДС полностью скомпенсировала не только реакцию якоря по продольной оси, но и падение напряжения , то внешняя характеристика усилителя становится абсолютно жесткой и располагается параллельно оси абсцисс (кривая 2). В этом случае напряжение на выходе ЭМУ остается неизменным во всем диапазоне изменения нагрузки.
При значительной перекомпенсации внешняя характеристика (кривая 1) приобретает восходящий характер, так как МДС не только компенсирует , но и создает дополнительный продольный поток, который, накладываясь на магнитный поток управления , вызывает увеличение ЭДС . Работа усилителя с перекомпенсацией становится неустойчивой, так как возникает опасность произвольного самовозбуждения ЭМУ, при котором увеличение напряжения на выходе усилителя вызывает рост тока нагрузки, что ведет к дальнейшему увеличению напряжения, т. е. происходит неограниченное увеличение тока нагрузки. Обычно в усилителе настраивают небольшую недокомпенсацию, при которой увеличение напряжения при уменьшении тока от номинального до нуля составляло бы 12—20%.
Читайте также:
lektsia.com