Реферат по математике ученицы 8 г класса Бисеровой Алены
Муниципальное образовательное учреждение – Гимназия № 47
г. Екатеринбург, 2000г.
Введение
Великие ученые древности считали количественные отношения основой сущности мира. Поэтому числа и их соотношения занимали величайшие умы человечества. «В дни моей юности я в свободное время развлекался тем, что составлял… магические квадраты»- писал Бенджамин Франклин. Магический квадрат- это квадрат, сумма чисел которого в каждом горизонтальном ряду, в каждом вертикальном ряду и по каждой из диагоналей одна и та же.
Некоторые выдающиеся математики посвятили свои работы магическим квадратам и полученные ими результаты оказали влияние на развитие групп, структур, латинских квадратов, определителей, разбиений, матриц, сравнений и других нетривиальных разделов математики.
Цель настоящего реферата – знакомство с различными магическими квадратами, латинскими квадратами и изучение областей их применения.
Магические квадраты.
Полного описания всех возможных магических квадратов не получено и до сего времени. Магических квадратов 2х2 не существует. Существует единственный магический квадрат 3х3, так как остальные магические квадраты 3х3 получаются из него либо поворотом вокруг центра, либо отражением относительно одной из его осей симметрии.
Расположить натуральные числа от 1 до 9 в магический квадрат 3х3 можно 8 различными способами:
9+5+1
9+4+2
8+6+2
8+5+2
8+4+3
7+6+2
7+5+3
6+5+4
В магическом квадрате 3х3 магической постоянной 15 должны быть равны сумме трех чисел по 8 направлениям: по 3 строкам, 3 столбцам и 2 диагоналям. Так как число, стоящее в центре, принадлежит 1 строке, 1 столбцу и 2 диагоналям, оно входит в 4 из 8 троек, дающих в сумме магическую постоянную. Такое число только одно: это 5. Следовательно, число, стоящее в центре магического квадрата 3х3, уже известно: оно равно 5.
Рассмотрим число 9. Оно входит только в 2 тройки чисел. Мы не можем поместить его в угол, так как каждая угловая клетка принадлежит 3 тройкам: строке, столбцу и диагонали. Следовательно, число 9 должно стоять в какой–то клетке, примыкающей к стороне квадрата в ее середине. Из-за симметрии квадрата безразлично, какую из сторон мы выберем, поэтому пишем 9 над числом 5, стоящим в центральной клетке. По обе стороны от девятки в верхней строке мы можем вписать только числа 2 и 4. Какое из этих двух чисел окажется в правом верхнем углу и какое в левом, опять – таки не имеет значения, так как одно расположение чисел переходит в другое при зеркальном отражении. Остальные клетки заполняются автоматически. Проведенное нами простое построение магического квадрата 3х3 доказывает его единственность.
Такой магический квадрат был у древних китайцев символом огромного значения. Цифра 5 в середине означала землю, а вокруг нее в строгом равновесии располагались огонь (2 и 7), вода (1 и 6),
дерево (3 и 8), металл (4 и 9).
С увеличением размеров квадрата (числа клеток) быстро растет количество возможных магических квадратов такого размера. Существует 880 магических квадратов порядка 4 и 275 305 224 магических квадратов порядка 5. Причем, квадраты 5х5 были известны еще в средние века. Мусульмане, например, очень благоговейно относились к таким квадратом с цифрой 1 в середине, считая его символом единства Аллаха.
Магический квадрат Пифагора
Великий ученый Пифагор, основавший религиозно – философское учение, провозгласившее количественные отношения основой сущности вещей, считал, что сущность человека заключается тоже в числе – дате рождения. Поэтому с помощью магического квадрата Пифагора можно познать характер человека, степень отпущенного здоровья и его потенциальные возможности, раскрыть достоинства и недостатки и тем самым выявить, что следует предпринять для его совершенствования.
Для того, чтобы понять, что такое магический квадрат Пифагора и как подсчитываются его показатели, сделаю его расчет на своем примере. А чтобы убедиться, что результаты подсчета действительно соответствуют реальному характеру той или иной личности, вначале я проверю его на себе. Для этого я буду делать расчет по своей дате рождения. Итак, моя дата рождения 20.08.1986. Сложим цифры дня, месяца и года рождения (без учета нулей): 2+8+1+9+8+6=34. Далее складываем цифры результата: 3+4=7. Затем из первой суммы вычитаем удвоенную первую цифру дня рождения: 34-4=30. И вновь складываем цифры последнего числа:
3+0=3. Осталось сделать последние сложения – 1-й и 3-й и 2-й и 4-й сумм: 34+30=64, 7+3=10. Получили числа 20.08.1986,34,7,30, 64,10.
и составляем магический квадрат так, чтобы все единицы этих чисел вошли в ячейку 1, все двойки – в ячейку 2 и т. д. Нули при этом во внимание не принимаются. В результате мой квадрат будет выглядеть следующим образом:
Ячейки квадрата означают следующее:
Ячейка 1 – целеустремленность, воля, упорство, эгоизм.
1 – законченные эгоисты, стремятся из любого положения извлечь максимальную выгоду.
11 – характер, близкий к эгоистическому.
111 – «золотая середина». Характер спокойный, покладистый, коммуникабельный.
1111 – люди сильного характера, волевые. Мужчины с таким характером подходят на роль военных – профессионалов, а женщины держат свою семью в кулаке.
11111 – диктатор, самодур.
111111 – человек жестокий, способный совершить невозможное; нередко попадает под влияние какой – то идеи.
Ячейка 2 – биоэнергетика, эмоциональность, душевность, чувственность. Количество двоек определяет уровень биоэнергетики.
Двоек нет – открыт канал для интенсивного набора биоэнергетики. Эти люди воспитаны и благородны от природы.
2 – обычные в биоэнергетическом отношении люди. Такие люди очень чувствительны к изменениям в атмосфере.
22 – относительно большой запас биоэнергетики. Из таких людей получаются хорошие врачи, медсестры, санитары. В семье таких людей редко у кого бывают нервные стрессы.
222 – знак экстрасенса.
Ячейка 3 – точность, конкретность, организованность, аккуратность, пунктуальность, чистоплотность, скупость, наклонность к постоянному «восстановлению справедливости».
Нарастание троек усиливает все эти качества. С ними человеку есть смысл искать себя в науках, особенно точных. Перевес троек порождает педантов, людей в футляре.
Ячейка 4 – здоровье. Это связано с экгрегором, то есть энергетическим пространством, наработанным предками и защищающим человека. Отсутствие четверок свидетельствует о болезненности человека.
4 – здоровье среднее, необходимо закалять организм. Из видов спорта рекомендуются плавание и бег.
44 – здоровье крепкое.
444 и более – люди с очень крепким здоровьем.
Ячейка 5 – интуиция, ясновидение, начинающееся проявляться у таких людей уже на уровне трех пятерок.
Пятерок нет – канал связи с космосом закрыт. Эти люди часто
ошибаются.
5 – канал связи открыт. Эти люди могут правильно рассчитать ситуацию извлечь из нее максимальную пользу.
55 – сильно развита интуиция. Когда видят «вещие сны», могут предугадывать ход событий. Подходящие для них профессии – юрист, следователь.
555 – почти ясновидящие.
5555 – ясновидящие.
Ячейка 6 – заземленность, материальность, расчет, склонность к количественному освоению мира и недоверие к качественным скачкам и тем более к чудесам духовного порядка.
Шестерок нет – этим людям необходим физический труд, хотя они его, как правило, не любят. Они наделены неординарным воображением, фантазией, художественным вкусом. Тонкие натуры, они тем не менее способны на поступок.
6 – могут заниматься творчеством или точными науками, но физический труд является обязательным условием существования.
66 – люди очень заземлены, тянутся к физическому труду, хотя как раз для них он не обязателен; желательна умственная деятельность либо занятия искусством.
666 – знак Сатаны, особый и зловещий знак. Эти люди обладают повышенным темпераментом, обаятельны, неизменно становятся в обществе центром внимания.
6666 – эти люди в своих предыдущих воплощениях набрали слишком много заземленности, они очень много трудились и не представляют свою жизнь без труда. Если в их квадрате есть
девятки, им обязательно нужно заниматься умственной деятельностью, развивать интеллект, хотя бы получить высшее образование.
Ячейка 7 – количество семерок определяет меру таланта.
7 – чем больше они работают, тем больше получают впоследствии.
77 – очень одаренные, музыкальные люди, обладают тонким художественным вкусом, могут иметь склонность к изобразительному искусству.
777 – эти люди, как правило, приходят на Землю ненадолго. Они добры, безмятежны, болезненно воспринимают любую несправедливость. Они чувствительны, любят мечтать, не всегда чувствуют реальность.
7777 – знак Ангела. Люди с таким знаком умирают в младенчестве, а если и живут, то их жизни постоянно угрожает опасность.
Ячейка 8 – карма, долг, обязанность, ответственность. Количество восьмерок определяет степень чувства долга.
Восьмерок нет – у этих людей почти полностью отсутствует чувство долга.
8 – натуры ответственные, добросовестные, точные.
88 – у этих людей развитое чувство долга, их всегда отличает желание помочь другим, особенно слабым, больным, одиноким.
888 – знак великого долга, знак служения народу. Правитель с тремя восьмерками добивается выдающихся результатов.
8888 – эти люди обладают парапсихологическими способностями и исключительной восприимчивостью к точным наукам. Им открыты сверхъестественные пути.
Ячейка 9 – ум, мудрость. Отсутствие девяток — свидетельство того, что умственные способности крайне ограничены.
9 – эти люди должны всю жизнь упорно трудиться, чтобы восполнить недостаток ума.
99 – эти люди умны от рождения. Учатся всегда неохотно, потому что знания даются им легко. Они наделены чувством юмора с ироничным оттенком, независимые.
999 – очень умны. К учению вообще не прикладывают никаких усилий. Прекрасные собеседники.
9999 – этим людям открывается истина. Если у них к тому же развита интуиция, то они гарантированы от провала в любом из своих начинаний. При всем этом они, как правило, довольно
приятны, так как острый ум делает их грубыми, немилосердными и жестокими.
Итак, составив магический квадрат Пифагора и зная значение всех комбинаций цифр, входящих в его ячейки, вы сможете в достаточной мере оценить те качества вашей натуры, которыми наделила матушка – природа.
Латинские квадраты.
Не смотря на то, что математиков интересовали в основном магические квадраты наибольшее применение в науке и технике нашли латинские квадраты.
Латинским квадратом называется квадрат nхn клеток, в которых написаны числа 1, 2,…, n, притом так, что в каждой строке и каждом столбце встречаются все эти числа по одному разу. На рис.3 изображены два таких квадрата 4х4. Они обладают интересной особенностью: если один квадрат наложить на другой, то все пары получившихся чисел оказываются различными. Такие пары латинских квадратов называются ортогональными.
1 | 2 | 3 | 4 |
2 | 1 | 4 | 3 |
3 | 4 | 1 | 2 |
4 | 3 | 2 | 1 |
1 | 2 | 3 | 4 |
3 | 4 | 1 | 2 |
4 | 3 | 2 | 1 |
2 | 1 | 4 | 3 |
Задачу отыскания ортогональных латинских квадратов впервые поставил Л. Эйлер, причём в такой занимательной формулировке: “ Среди 36 офицеров поровну уланов, драгунов, гусаров, кирасиров, кавалергардов и гренадеров и кроме того поровну генералов, полковников, майоров, капитанов, поручиков и подпоручиков, причем каждый род войск представлен офицерами всех шести рангов. Можно ли выстроить всех офицеров в каре 6 х6 так, чтобы в любой колонне и любой шеренге встречались офицеры всех рангов?”
Эйлер не смог найти решения этой задачи. В 1901 г. было доказано, что такого решения не сушествует. В то же время Эйлер доказал, что ортогональные пары латинских квадратов существуют для всех нечетных значений n и для таких четных значений n, которые делятся на 4. Эйлер выдвинул гипотезу, что для остальных значений n, то есть если число n при делении на 4 даст в остатке 2, ортогональных квадратов не существует. В 1901 г. было доказано, что ортогональных квадратов 6 6 не существует, и это усиливало уверенность в справедливости гипотезы Эйлера. Однако в 1959 г. помощью ЭВМ были найдены сначала ортогональные квадраты 10х10, потом 14х14, 18х18, 22х22. А затем было показано, что для любого n, кроме 6, существуют ортогональные квадраты nхn.
Магические и латинские квадраты – близкие родственники. Пусть мы имеем два ортогональных квадрата. Заполним клетки нового квадрата тех же размеров следующим образом. Поставим туда число n(a – 1)+b, где а — число в такой клетке первого квадрата, а b — число в такой же клетке второго квадрата. Нетрудно понять, что в полученном квадрате суммы чисел в строках и столбцах (но не обязательно на диагоналях) будут одинаковы.
Теория латинских квадратов нашла многочисленные применения как в самой математике, так и в ее приложениях. Приведем такой пример. Пусть мы хотим испытать 4 сорта пшеницы на урожайность в данной местности, причем хотим учесть влияние степени разреженности посевов и влияние двух видов удобрений. Для того разобьем квадратный участок земли на 16 делянок (рис.4). Первый сорт пшеницы посадим на делянках, соответствующих нижней горизонтальной полосе, следующий сорт – на четырех делянках, соответствующих следующей полосе, и т. д. (на рисунке сорт обозначен цветом). При этом максимальная густота посевов пусть будет на тех делянках, которые соответствуют левому вертикальному столбцу рисунка, и уменьшается при переходе вправо (на рисунке этому соответствует уменьшение интенсивности цвета). Цифры же, стоящие в клетках рисунка, пусть означают:
первая – количество килограммов удобрения первого вида, вносимого на этот участок, а вторая – количество вносимого удобрения второго вида. Нетрудно понять, что при этом реализованы все возможные пары сочетаний как сорта и густоты посева, так и других компонентов: сорта и удобрений первого вида, удобрений первого и второго видов, густоты и удобрений второго вида.
11 | 22 | 33 | 44 |
23 | 14 | 41 | 32 |
34 | 43 | 23 | 32 |
42 | 31 | 24 | 13 |
Использование ортогональных латинских квадратов помогает учесть все возможные варианты в экспериментах в сельском хозяйстве, физике, химии, технике.
Заключение
В настоящем реферате рассмотрены вопросы, связанные с историей развития одного из вопросов математики, занимавшего умы очень многих великих людей, — магических квадратов. Несмотря на то, что собственно магические квадраты не нашли широкого применения в науке и технике, они подвигли на занятия математикой множество незаурядных людей и способствовали развитию других разделов математики (теории групп, определителей, матриц и т.д.).
Ближайшие родственники магических квадратов – латинские квадраты нашли многочисленные применения как в математике, так и в ее приложениях при постановке и обработке результатов экспериментов. В реферате приведен пример постановки такого эксперимента.
В реферате также рассмотрен вопрос о квадрате Пифагора, представляющем исторический интерес и, возможно, полезном для составления психологического портрета личности.
Список литературы
1. Энциклопедический словарь юного математика. М., «Педагогика», 1989г.
2. М.Гарднер «Путешествие во времени», М., «Мир», 1990г.
3. Физкультура и спорт № 10, 1998г.
www.ronl.ru
357
816
9+5+1 9+4+2 8+6+2 8+5+2 8+4+3 7+6+2 7+5+3 6+5+4 В магическом квадрате 3х3 магической постоянной 15 должны быть равны сумме трех чисел по 8 направлениям: по 3 строкам, 3 столбцам и 2 диагоналям. Так как число, стоящее в центре, принадлежит 1 строке, 1 столбцу и 2 диагоналям, оно входит в 4 из 8 троек, дающих в сумме магическую постоянную. Такое число только одно: это 5. Следовательно, число, стоящее в центре магического квадрата 3х3, уже известно: оно равно 5. Рассмотрим число 9. Оно входит только в 2 тройки чисел. Мы не можем поместить его в угол, так как каждая угловая клетка принадлежит 3 тройкам: строке, столбцу и диагонали. Следовательно, число 9 должно стоять в какой–то клетке, примыкающей к стороне квадрата в ее середине. Из-за симметрии квадрата безразлично, какую из сторон мы выберем, поэтому пишем 9 над числом 5, стоящим в центральной клетке. По обе стороны от девятки в верхней строке мы можем вписать только числа 2 и 4. Какое из этих двух чисел окажется в правом верхнем углу и какое в левом, опять – таки не имеет значения, так как одно расположение чисел переходит в другое при зеркальном отражении. Остальные клетки заполняются автоматически. Проведенное нами простое построение магического квадрата 3х3 доказывает его единственность. Такой магический квадрат был у древних китайцев символом огромного значения. Цифра 5 в середине означала землю, а вокруг нее в строгом равновесии располагались огонь (2 и 7), вода (1 и 6), дерево (3 и 8), металл (4 и 9). С увеличением размеров квадрата (числа клеток) быстро растет количество возможных магических квадратов такого размера. Существует 880 магических квадратов порядка 4 и 275 305 224 магических квадратов порядка 5. Причем, квадраты 5х5 были известны еще в средние века. Мусульмане, например, очень благоговейно относились к таким квадратом с цифрой 1 в середине, считая его символом единства Аллаха. Магический квадрат Пифагора Великий ученый Пифагор, основавший религиозно – философское учение, провозгласившее количественные отношения основой сущности вещей, считал, что сущность человека заключается тоже в числе – дате рождения. Поэтому с помощью магического квадрата Пифагора можно познать характер человека, степень отпущенного здоровья и его потенциальные возможности, раскрыть достоинства и недостатки и тем самым выявить, что следует предпринять для его совершенствования. Для того, чтобы понять, что такое магический квадрат Пифагора и как подсчитываются его показатели, сделаю его расчет на своем примере. А чтобы убедиться, что результаты подсчета действительно соответствуют реальному характеру той или иной личности, вначале я проверю его на себе. Для этого я буду делать расчет по своей дате рождения. Итак, моя дата рождения 20.08.1986. Сложим цифры дня, месяца и года рождения (без учета нулей): 2+8+1+9+8+6=34. Далее складываем цифры результата: 3+4=7. Затем из первой суммы вычитаем удвоенную первую цифру дня рождения: 34-4=30. И вновь складываем цифры последнего числа: 3+0=3. Осталось сделать последние сложения – 1-й и 3-й и 2-й и 4-й сумм: 34+30=64, 7+3=10. Получили числа 20.08.1986,34,7,30, 64,10. и составляем магический квадрат так, чтобы все единицы этих чисел вошли в ячейку 1, все двойки – в ячейку 2 и т. д. Нули при этом во внимание не принимаются. В результате мой квадрат будет выглядеть следующим образом: 4492
33-7
881166
Ячейки квадрата означают следующее: Ячейка 1 – целеустремленность, воля, упорство, эгоизм. 1 – законченные эгоисты, стремятся из любого положения извлечь максимальную выгоду. 11 – характер, близкий к эгоистическому. 111 – «золотая середина». Характер спокойный, покладистый, коммуникабельный. 1111 – люди сильного характера, волевые. Мужчины с таким характером подходят на роль военных – профессионалов, а женщины держат свою семью в кулаке. 11111 – диктатор, самодур. 111111 – человек жестокий, способный совершить невозможное; нередко попадает под влияние какой – то идеи. Ячейка 2 – биоэнергетика, эмоциональность, душевность, чувственность. Количество двоек определяет уровень биоэнергетики. Двоек нет – открыт канал для интенсивного набора биоэнергетики. Эти люди воспитаны и благородны от природы. 2 – обычные в биоэнергетическом отношении люди. Такие люди очень чувствительны к изменениям в атмосфере. 22 – относительно большой запас биоэнергетики. Из таких людей получаются хорошие врачи, медсестры, санитары. В семье таких людей редко у кого бывают нервные стрессы. 222 – знак экстрасенса. Ячейка 3 – точность, конкретность, организованность, аккуратность, пунктуальность, чистоплотность, скупость, наклонность к постоянному «восстановлению справедливости». Нарастание троек усиливает все эти качества. С ними человеку есть смысл искать себя в науках, особенно точных. Перевес троек порождает педантов, людей в футляре. Ячейка 4 – здоровье. Это связано с экгрегором, то есть энергетическим пространством, наработанным предками и защищающим человека. Отсутствие четверок свидетельствует о болезненности человека. 4 – здоровье среднее, необходимо закалять организм. Из видов спорта рекомендуются плавание и бег. 44 – здоровье крепкое. 444 и более – люди с очень крепким здоровьем. Ячейка 5 – интуиция, ясновидение, начинающееся проявляться у таких людей уже на уровне трех пятерок. Пятерок нет – канал связи с космосом закрыт. Эти люди часто ошибаются. 5 – канал связи открыт. Эти люди могут правильно рассчитать ситуацию извлечь из нее максимальную пользу. 55 – сильно развита интуиция. Когда видят «вещие сны», могут предугадывать ход событий. Подходящие для них профессии – юрист, следователь. 555 – почти ясновидящие. 5555 – ясновидящие.Ячейка 6 – заземленность, материальность, расчет, склонность к количественному освоению мира и недоверие к качественным скачкам и тем более к чудесам духовного порядка. Шестерок нет – этим людям необходим физический труд, хотя они его, как правило, не любят. Они наделены неординарным воображением, фантазией, художественным вкусом. Тонкие натуры, они тем не менее способны на поступок. 6 – могут заниматься творчеством или точными науками, но физический труд является обязательным условием существования. 66 – люди очень заземлены, тянутся к физическому труду, хотя как раз для них он не обязателен; желательна умственная деятельность либо занятия искусством. 666 – знак Сатаны, особый и зловещий знак. Эти люди обладают повышенным темпераментом, обаятельны, неизменно становятся в обществе центром внимания. 6666 – эти люди в своих предыдущих воплощениях набрали слишком много заземленности, они очень много трудились и не представляют свою жизнь без труда. Если в их квадрате естьдевятки, им обязательно нужно заниматься умственной деятельностью, развивать интеллект, хотя бы получить высшее образование.Ячейка 7 – количество семерок определяет меру таланта. 7 – чем больше они работают, тем больше получают впоследствии.77 – очень одаренные, музыкальные люди, обладают тонким художественным вкусом, могут иметь склонность к изобразительному искусству. 777 – эти люди, как правило, приходят на Землю ненадолго. Они добры, безмятежны, болезненно воспринимают любую несправедливость. Они чувствительны, любят мечтать, не всегда чувствуют реальность. 7777 – знак Ангела. Люди с таким знаком умирают в младенчестве, а если и живут, то их жизни постоянно угрожает опасность. Ячейка 8 – карма, долг, обязанность, ответственность. Количество восьмерок определяет степень чувства долга. Восьмерок нет – у этих людей почти полностью отсутствует чувство долга. 8 – натуры ответственные, добросовестные, точные. 88 – у этих людей развитое чувство долга, их всегда отличает желание помочь другим, особенно слабым, больным, одиноким. 888 – знак великого долга, знак служения народу. Правитель с тремя восьмерками добивается выдающихся результатов. 8888 – эти люди обладают парапсихологическими способностями и исключительной восприимчивостью к точным наукам. Им открыты сверхъестественные пути.Ячейка 9 – ум, мудрость. Отсутствие девяток - свидетельство того, что умственные способности крайне ограничены. 9 – эти люди должны всю жизнь упорно трудиться, чтобы восполнить недостаток ума. 99 – эти люди умны от рождения. Учатся всегда неохотно, потому что знания даются им легко. Они наделены чувством юмора с ироничным оттенком, независимые. 999 – очень умны. К учению вообще не прикладывают никаких усилий. Прекрасные собеседники. 9999 – этим людям открывается истина. Если у них к тому же развита интуиция, то они гарантированы от провала в любом из своих начинаний. При всем этом они, как правило, довольно приятны, так как острый ум делает их грубыми, немилосердными и жестокими. Итак, составив магический квадрат Пифагора и зная значение всех комбинаций цифр, входящих в его ячейки, вы сможете в достаточной мере оценить те качества вашей натуры, которыми наделила матушка – природа. Латинские квадраты.Не смотря на то, что математиков интересовали в основном магические квадраты наибольшее применение в науке и технике нашли латинские квадраты. Латинским квадратом называется квадрат nхn клеток, в которых написаны числа 1, 2,, n, притом так, что в каждой строке и каждом столбце встречаются все эти числа по одному разу. На рис.3 изображены два таких квадрата 4х4. Они обладают интересной особенностью: если один квадрат наложить на другой, то все пары получившихся чисел оказываются различными. Такие пары латинских квадратов называются ортогональными. 1234
2143
3412
4321
1234
3412
4321
2143
Задачу отыскания ортогональных латинских квадратов впервые поставил Л. Эйлер, причём в такой занимательной формулировке: “ Среди 36 офицеров поровну уланов, драгунов, гусаров, кирасиров, кавалергардов и гренадеров и кроме того поровну генералов, полковников, майоров, капитанов, поручиков и подпоручиков, причем каждый род войск представлен офицерами всех шести рангов. Можно ли выстроить всех офицеров в каре 6 х 6 так, чтобы в любой колонне и любой шеренге встречались офицеры всех рангов?” Эйлер не смог найти решения этой задачи. В 1901 г. было доказано, что такого решения не сушествует. В то же время Эйлер доказал, что ортогональные пары латинских квадратов существуют для всех нечетных значений n и для таких четных значений n, которые делятся на 4. Эйлер выдвинул гипотезу, что для остальных значений n, то есть если число n при делении на 4 даст в остатке 2, ортогональных квадратов не существует. В 1901 г. было доказано, что ортогональных квадратов 6 6 не существует, и это усиливало уверенность в справедливости гипотезы Эйлера. Однако в 1959 г. помощью ЭВМ были найдены сначала ортогональные квадраты 10х10, потом 14х14, 18х18, 22х22. А затем было показано, что для любого n , кроме 6, существуют ортогональные квадраты nхn. Магические и латинские квадраты – близкие родственники. Пусть мы имеем два ортогональных квадрата. Заполним клетки нового квадрата тех же размеров следующим образом. Поставим туда число n(a – 1)+b, где а - число в такой клетке первого квадрата, а b - число в такой же клетке второго квадрата. Нетрудно понять, что в полученном квадрате суммы чисел в строках и столбцах (но не обязательно на диагоналях) будут одинаковы.Теория латинских квадратов нашла многочисленные применения как в самой математике, так и в ее приложениях. Приведем такой пример. Пусть мы хотим испытать 4 сорта пшеницы на урожайность в данной местности, причем хотим учесть влияние степени разреженности посевов и влияние двух видов удобрений. Для того разобьем квадратный участок земли на 16 делянок (рис.4). Первый сорт пшеницы посадим на делянках, соответствующих нижней горизонтальной полосе, следующий сорт – на четырех делянках, соответствующих следующей полосе, и т. д. (на рисунке сорт обозначен цветом). При этом максимальная густота посевов пусть будет на тех делянках, которые соответствуют левому вертикальному столбцу рисунка, и уменьшается при переходе вправо (на рисунке этому соответствует уменьшение интенсивности цвета). Цифры же, стоящие в клетках рисунка, пусть означают: первая – количество килограммов удобрения первого вида, вносимого на этот участок, а вторая – количество вносимого удобрения второго вида. Нетрудно понять, что при этом реализованы все возможные пары сочетаний как сорта и густоты посева, так и других компонентов: сорта и удобрений первого вида, удобрений первого и второго видов, густоты и удобрений второго вида.11223344
23144132
34432332
42312413
Использование ортогональных латинских квадратов помогает учесть все возможные варианты в экспериментах в сельском хозяйстве, физике, химии, технике. ЗаключениеВ настоящем реферате рассмотрены вопросы, связанные с историей развития одного из вопросов математики, занимавшего умы очень многих великих людей, - магических квадратов. Несмотря на то, что собственно магические квадраты не нашли широкого применения в науке и технике, они подвигли на занятия математикой множество незаурядных людей и способствовали развитию других разделов математики (теории групп, определителей, матриц и т.д.). Ближайшие родственники магических квадратов – латинские квадраты нашли многочисленные применения как в математике, так и в ее приложениях при постановке и обработке результатов экспериментов. В реферате приведен пример постановки такого эксперимента. В реферате также рассмотрен вопрос о квадрате Пифагора, представляющем исторический интерес и, возможно, полезном для составления психологического портрета личности. Список литературы1. Энциклопедический словарь юного математика. М., «Педагогика», 1989г. 2. М.Гарднер «Путешествие во времени», М., «Мир», 1990г. 3. Физкультура и спорт № 10, 1998г.
15
educontest.net
Реферат по математике ученицы 8 г класса Бисеровой Алены
Муниципальное образовательное учреждение – Гимназия № 47
г. Екатеринбург, 2000г.
Введение
Великие ученые древности считали количественные отношения основой сущности мира. Поэтому числа и их соотношения занимали величайшие умы человечества. «В дни моей юности я в свободное время развлекался тем, что составлял… магические квадраты»- писал Бенджамин Франклин. Магический квадрат- это квадрат, сумма чисел которого в каждом горизонтальном ряду, в каждом вертикальном ряду и по каждой из диагоналей одна и та же.
Некоторые выдающиеся математики посвятили свои работы магическим квадратам и полученные ими результаты оказали влияние на развитие групп, структур, латинских квадратов, определителей, разбиений, матриц, сравнений и других нетривиальных разделов математики.
Цель настоящего реферата – знакомство с различными магическими квадратами, латинскими квадратами и изучение областей их применения.
Магические квадраты.
Полного описания всех возможных магических квадратов не получено и до сего времени. Магических квадратов 2х2 не существует. Существует единственный магический квадрат 3х3 ,так как остальные магические квадраты 3х3 получаются из него либо поворотом вокруг центра, либо отражением относительно одной из его осей симметрии.
Расположить натуральные числа от 1 до 9 в магический квадрат 3х3 можно 8 различными способами:
9+5+1
9+4+2
8+6+2
8+5+2
8+4+3
7+6+2
7+5+3
6+5+4
В магическом квадрате 3х3 магической постоянной 15 должны быть равны сумме трех чисел по 8 направлениям: по 3 строкам, 3 столбцам и 2 диагоналям. Так как число, стоящее в центре, принадлежит 1 строке, 1 столбцу и 2 диагоналям, оно входит в 4 из 8 троек, дающих в сумме магическую постоянную. Такое число только одно: это 5. Следовательно, число, стоящее в центре магического квадрата 3х3, уже известно: оно равно 5.
Рассмотрим число 9. Оно входит только в 2 тройки чисел. Мы не можем поместить его в угол, так как каждая угловая клетка принадлежит 3 тройкам: строке, столбцу и диагонали. Следовательно, число 9 должно стоять в какой–то клетке, примыкающей к стороне квадрата в ее середине. Из-за симметрии квадрата безразлично, какую из сторон мы выберем, поэтому пишем 9 над числом 5, стоящим в центральной клетке. По обе стороны от девятки в верхней строке мы можем вписать только числа 2 и 4. Какое из этих двух чисел окажется в правом верхнем углу и какое в левом, опять – таки не имеет значения, так как одно расположение чисел переходит в другое при зеркальном отражении. Остальные клетки заполняются автоматически. Проведенное нами простое построение магического квадрата 3х3 доказывает его единственность.
Такой магический квадрат был у древних китайцев символом огромного значения. Цифра 5 в середине означала землю, а вокруг нее в строгом равновесии располагались огонь (2 и 7), вода (1 и 6),
дерево (3 и 8), металл (4 и 9).
С увеличением размеров квадрата (числа клеток) быстро растет количество возможных магических квадратов такого размера. Существует 880 магических квадратов порядка 4 и 275 305 224 магических квадратов порядка 5. Причем, квадраты 5х5 были известны еще в средние века. Мусульмане, например, очень благоговейно относились к таким квадратом с цифрой 1 в середине, считая его символом единства Аллаха.
Магический квадрат Пифагора
Великий ученый Пифагор, основавший религиозно – философское учение, провозгласившее количественные отношения основой сущности вещей, считал, что сущность человека заключается тоже в числе – дате рождения. Поэтому с помощью магического квадрата Пифагора можно познать характер человека, степень отпущенного здоровья и его потенциальные возможности, раскрыть достоинства и недостатки и тем самым выявить, что следует предпринять для его совершенствования.
Для того, чтобы понять, что такое магический квадрат Пифагора и как подсчитываются его показатели, сделаю его расчет на своем примере. А чтобы убедиться, что результаты подсчета действительно соответствуют реальному характеру той или иной личности, вначале я проверю его на себе. Для этого я буду делать расчет по своей дате рождения. Итак, моя дата рождения 20.08.1986. Сложим цифры дня, месяца и года рождения (без учета нулей): 2+8+1+9+8+6=34. Далее складываем цифры результата: 3+4=7. Затем из первой суммы вычитаем удвоенную первую цифру дня рождения: 34-4=30. И вновь складываем цифры последнего числа:
3+0=3. Осталось сделать последние сложения – 1-й и 3-й и 2-й и 4-й сумм: 34+30=64, 7+3=10. Получили числа 20.08.1986,34,7,30, 64,10.
и составляем магический квадрат так, чтобы все единицы этих чисел вошли в ячейку 1, все двойки – в ячейку 2 и т. д. Нули при этом во внимание не принимаются. В результате мой квадрат будет выглядеть следующим образом:
Ячейки квадрата означают следующее:
Ячейка 1 – целеустремленность, воля, упорство, эгоизм.
1 – законченные эгоисты, стремятся из любого положения извлечь максимальную выгоду.
11 – характер, близкий к эгоистическому.
111 – «золотая середина». Характер спокойный, покладистый, коммуникабельный.
1111 – люди сильного характера, волевые. Мужчины с таким характером подходят на роль военных – профессионалов, а женщины держат свою семью в кулаке.
11111 – диктатор, самодур.
111111 – человек жестокий, способный совершить невозможное; нередко попадает под влияние какой – то идеи.
Ячейка 2 – биоэнергетика, эмоциональность, душевность, чувственность. Количество двоек определяет уровень биоэнергетики.
Двоек нет – открыт канал для интенсивного набора биоэнергетики. Эти люди воспитаны и благородны от природы.
2 – обычные в биоэнергетическом отношении люди. Такие люди очень чувствительны к изменениям в атмосфере.
22 – относительно большой запас биоэнергетики. Из таких людей получаются хорошие врачи, медсестры, санитары. В семье таких людей редко у кого бывают нервные стрессы.
222 – знак экстрасенса.
Ячейка 3 – точность, конкретность, организованность, аккуратность, пунктуальность, чистоплотность, скупость, наклонность к постоянному «восстановлению справедливости».
Нарастание троек усиливает все эти качества. С ними человеку есть смысл искать себя в науках, особенно точных. Перевес троек порождает педантов, людей в футляре.
Ячейка 4 – здоровье. Это связано с экгрегором, то есть энергетическим пространством, наработанным предками и защищающим человека. Отсутствие четверок свидетельствует о болезненности человека.
4 – здоровье среднее, необходимо закалять организм. Из видов спорта рекомендуются плавание и бег.
44 – здоровье крепкое.
444 и более – люди с очень крепким здоровьем.
Ячейка 5 – интуиция, ясновидение, начинающееся проявляться у таких людей уже на уровне трех пятерок.
Пятерок нет – канал связи с космосом закрыт. Эти люди часто
ошибаются.
5 – канал связи открыт. Эти люди могут правильно рассчитать ситуацию извлечь из нее максимальную пользу.
55 – сильно развита интуиция. Когда видят «вещие сны», могут предугадывать ход событий. Подходящие для них профессии – юрист, следователь.
555 – почти ясновидящие.
5555 – ясновидящие.
Ячейка 6 – заземленность, материальность, расчет, склонность к количественному освоению мира и недоверие к качественным скачкам и тем более к чудесам духовного порядка.
Шестерок нет – этим людям необходим физический труд, хотя они его, как правило, не любят. Они наделены неординарным воображением, фантазией, художественным вкусом. Тонкие натуры, они тем не менее способны на поступок.
6 – могут заниматься творчеством или точными науками, но физический труд является обязательным условием существования.
66 – люди очень заземлены, тянутся к физическому труду, хотя как раз
для них он не обязателен; желательна умственная деятельность либо занятия искусством.666 – знак Сатаны, особый и зловещий знак. Эти люди обладают повышенным темпераментом, обаятельны, неизменно становятся в обществе центром внимания.
6666 – эти люди в своих предыдущих воплощениях набрали слишком много заземленности, они очень много трудились и не представляют свою жизнь без труда. Если в их квадрате есть
девятки, им обязательно нужно заниматься умственной деятельностью, развивать интеллект, хотя бы получить высшее образование.
Ячейка 7 – количество семерок определяет меру таланта.
7 – чем больше они работают, тем больше получают впоследствии.
77 – очень одаренные, музыкальные люди, обладают тонким художественным вкусом, могут иметь склонность к изобразительному искусству.
777 – эти люди, как правило, приходят на Землю ненадолго. Они добры, безмятежны, болезненно воспринимают любую несправедливость. Они чувствительны, любят мечтать, не всегда чувствуют реальность.
7777 – знак Ангела. Люди с таким знаком умирают в младенчестве, а если и живут, то их жизни постоянно угрожает опасность.
Ячейка 8 – карма, долг, обязанность, ответственность. Количество восьмерок определяет степень чувства долга.
Восьмерок нет – у этих людей почти полностью отсутствует чувство долга.
8 – натуры ответственные, добросовестные, точные.
88 – у этих людей развитое чувство долга, их всегда отличает желание помочь другим, особенно слабым, больным, одиноким.
888 – знак великого долга, знак служения народу. Правитель с тремя восьмерками добивается выдающихся результатов.
8888 – эти люди обладают парапсихологическими способностями и исключительной восприимчивостью к точным наукам. Им открыты сверхъестественные пути.
Ячейка 9 – ум, мудрость. Отсутствие девяток - свидетельство того, что умственные способности крайне ограничены.
9 – эти люди должны всю жизнь упорно трудиться, чтобы восполнить недостаток ума.
99 – эти люди умны от рождения. Учатся всегда неохотно, потому что знания даются им легко. Они наделены чувством юмора с ироничным оттенком, независимые.
999 – очень умны. К учению вообще не прикладывают никаких усилий. Прекрасные собеседники.
9999 – этим людям открывается истина. Если у них к тому же развита интуиция, то они гарантированы от провала в любом из своих начинаний. При всем этом они, как правило, довольно
приятны, так как острый ум делает их грубыми, немилосердными и жестокими.
Итак, составив магический квадрат Пифагора и зная значение всех комбинаций цифр, входящих в его ячейки, вы сможете в достаточной мере оценить те качества вашей натуры, которыми наделила матушка – природа.
Латинские квадраты.
Не смотря на то, что математиков интересовали в основном магические квадраты наибольшее применение в науке и технике нашли латинские квадраты.
Латинским квадратом называется квадрат nхn клеток, в которых написаны числа 1, 2,…, n, притом так, что в каждой строке и каждом столбце встречаются все эти числа по одному разу. На рис.3 изображены два таких квадрата 4х4. Они обладают интересной особенностью: если один квадрат наложить на другой, то все пары получившихся чисел оказываются различными. Такие пары латинских квадратов называются ортогональными.
1 | 2 | 3 | 4 |
2 | 1 | 4 | 3 |
3 | 4 | 1 | 2 |
4 | 3 | 2 | 1 |
1 | 2 | 3 | 4 |
3 | 4 | 1 | 2 |
4 | 3 | 2 | 1 |
2 | 1 | 4 | 3 |
Задачу отыскания ортогональных латинских квадратов впервые поставил Л. Эйлер, причём в такой занимательной формулировке: “ Среди 36 офицеров поровну уланов, драгунов, гусаров, кирасиров, кавалергардов и гренадеров и кроме того поровну генералов, полковников, майоров, капитанов, поручиков и подпоручиков, причем каждый род войск представлен офицерами всех шести рангов. Можно ли выстроить всех офицеров в каре 6 х6 так, чтобы в любой колонне и любой шеренге встречались офицеры всех рангов?”
Эйлер не смог найти решения этой задачи. В 1901 г. было доказано, что такого решения не сушествует. В то же время Эйлер доказал, что ортогональные пары латинских квадратов существуют для всех нечетных значений n и для таких четных значений n, которые делятся на 4. Эйлер выдвинул гипотезу, что для остальных значений n, то есть если число n при делении на 4 даст в остатке 2, ортогональных квадратов не существует. В 1901 г. было доказано, что ортогональных квадратов 6 6 не существует, и это усиливало уверенность в справедливости гипотезы Эйлера. Однако в 1959 г. помощью ЭВМ были найдены сначала ортогональные квадраты 10х10, потом 14х14, 18х18, 22х22. А затем было показано, что для любого n , кроме 6, существуют ортогональные квадраты nхn.
Магические и латинские квадраты – близкие родственники. Пусть мы имеем два ортогональных квадрата. Заполним клетки нового квадрата тех же размеров следующим образом. Поставим туда число n(a – 1)+b, где а - число в такой клетке первого квадрата, а b - число в такой же клетке второго квадрата. Нетрудно понять, что в полученном квадрате суммы чисел в строках и столбцах (но не обязательно на диагоналях) будут одинаковы.
Теория латинских квадратов нашла многочисленные применения как в самой математике, так и в ее приложениях. Приведем такой пример. Пусть мы хотим испытать 4 сорта пшеницы на урожайность в данной местности, причем хотим учесть влияние степени разреженности посевов и влияние двух видов удобрений. Для того разобьем квадратный участок земли на 16 делянок (рис.4). Первый сорт пшеницы посадим на делянках, соответствующих нижней горизонтальной полосе, следующий сорт – на четырех делянках, соответствующих следующей полосе, и т. д. (на рисунке сорт обозначен цветом). При этом максимальная густота посевов пусть будет на тех делянках, которые соответствуют левому вертикальному столбцу рисунка, и уменьшается при переходе вправо (на рисунке этому соответствует уменьшение интенсивности цвета). Цифры же, стоящие в клетках рисунка, пусть означают:
первая – количество килограммов удобрения первого вида, вносимого на этот участок, а вторая – количество вносимого удобрения второго вида. Нетрудно понять, что при этом реализованы все возможные пары сочетаний как сорта и густоты посева, так и других компонентов: сорта и удобрений первого вида, удобрений первого и второго видов, густоты и удобрений второго вида.
11 | 22 | 33 | 44 |
23 | 14 | 41 | 32 |
34 | 43 | 23 | 32 |
42 | 31 | 24 | 13 |
Использование ортогональных латинских квадратов помогает учесть все возможные варианты в экспериментах в сельском хозяйстве, физике, химии, технике.
Заключение
В настоящем реферате рассмотрены вопросы, связанные с историей развития одного из вопросов математики, занимавшего умы очень многих великих людей, - магических квадратов. Несмотря на то, что собственно магические квадраты не нашли широкого применения в науке и технике, они подвигли на занятия математикой множество незаурядных людей и способствовали развитию других разделов математики (теории групп, определителей, матриц и т.д.).
Ближайшие родственники магических квадратов – латинские квадраты нашли многочисленные применения как в математике, так и в ее приложениях при постановке и обработке результатов экспериментов. В реферате приведен пример постановки такого эксперимента.
В реферате также рассмотрен вопрос о квадрате Пифагора, представляющем исторический интерес и, возможно, полезном для составления психологического портрета личности.
Список литературы
1. Энциклопедический словарь юного математика. М., «Педагогика», 1989г.
2. М.Гарднер «Путешествие во времени», М., «Мир», 1990г.
3. Физкультура и спорт № 10, 1998г.
www.litsoch.ru
Магические квадраты
Реферат по математике ученика 5 класса Ахмадиева Айнура
Муниципальное образовательное учреждение Кадыбашская средняя школа.
Введение
Великие ученые древности считали количественные отношения основой сущности мира. Поэтому числа и их соотношения занимали величайшие умы человечества. «В дни моей юности я в свободное время развлекался тем, что составлял… магические квадраты»- писал Бенджамин Франклин. Магический квадрат- это квадрат, сумма чисел которого в каждом горизонтальном ряду, в каждом вертикальном ряду и по каждой из диагоналей одна и та же.
Некоторые выдающиеся математики посвятили свои работы магическим квадратам и полученные ими результаты оказали влияние на развитие групп, структур, латинских квадратов, определителей, разбиений, матриц, сравнений и других нетривиальных разделов математики.
Цель настоящего реферата – знакомство с различными магическими квадратами, латинскими квадратами и изучение областей их применения.
Магические квадраты.
Полного описания всех возможных магических квадратов не получено и до сего времени. Магических квадратов 2х2 не существует. Существует единственный магический квадрат 3х3 ,так как остальные магические квадраты 3х3 получаются из него либо поворотом вокруг центра, либо отражением относительно одной из его осей симметрии.
Расположить натуральные числа от 1 до 9 в магический квадрат 3х3 можно 8 различными способами:
9+5+1
9+4+2
8+6+2
8+5+2
8+4+3
7+6+2
7+5+3
6+5+4
В магическом квадрате 3х3 магической постоянной 15 должны быть равны сумме трех чисел по 8 направлениям: по 3 строкам, 3 столбцам и 2 диагоналям. Так как число, стоящее в центре, принадлежит 1 строке, 1 столбцу и 2 диагоналям, оно входит в 4 из 8 троек, дающих в сумме магическую постоянную. Такое число только одно: это 5. Следовательно, число, стоящее в центре магического квадрата 3х3, уже известно: оно равно 5.
Рассмотрим число 9. Оно входит только в 2 тройки чисел. Мы не можем поместить его в угол, так как каждая угловая клетка принадлежит 3 тройкам: строке, столбцу и диагонали. Следовательно, число 9 должно стоять в какой–то клетке, примыкающей к стороне квадрата в ее середине. Из-за симметрии квадрата безразлично, какую из сторон мы выберем, поэтому пишем 9 над числом 5, стоящим в центральной клетке. По обе стороны от девятки в верхней строке мы можем вписать только числа 2 и 4. Какое из этих двух чисел окажется в правом верхнем углу и какое в левом, опять – таки не имеет значения, так как одно расположение чисел переходит в другое при зеркальном отражении. Остальные клетки заполняются автоматически. Проведенное нами простое построение магического квадрата 3х3 доказывает его единственность.
Такой магический квадрат был у древних китайцев символом огромного значения. Цифра 5 в середине означала землю, а вокруг нее в строгом равновесии располагались огонь (2 и 7), вода (1 и 6),
дерево (3 и 8), металл (4 и 9).
С увеличением размеров квадрата (числа клеток) быстро растет количество возможных магических квадратов такого размера. Существует 880 магических квадратов порядка 4 и 275 305 224 магических квадратов порядка 5. Причем, квадраты 5х5 были известны еще в средние века. Мусульмане, например, очень благоговейно относились к таким квадратом с цифрой 1 в середине, считая его символом единства Аллаха.
Магический квадрат Пифагора
Великий ученый Пифагор, основавший религиозно – философское учение, провозгласившее количественные отношения основой сущности вещей, считал, что сущность человека заключается тоже в числе – дате рождения. Поэтому с помощью магического квадрата Пифагора можно познать характер человека, степень отпущенного здоровья и его потенциальные возможности, раскрыть достоинства и недостатки и тем самым выявить, что следует предпринять для его совершенствования.
Для того, чтобы понять, что такое магический квадрат Пифагора и как подсчитываются его показатели, сделаю его расчет на своем примере. А чтобы убедиться, что результаты подсчета действительно соответствуют реальному характеру той или иной личности, вначале я проверю его на себе. Для этого я буду делать расчет по своей дате рождения. Итак, моя дата рождения 20.08.1986. Сложим цифры дня, месяца и года рождения (без учета нулей): 2+8+1+9+8+6=34. Далее складываем цифры результата: 3+4=7. Затем из первой суммы вычитаем удвоенную первую цифру дня рождения: 34-4=30. И вновь складываем цифры последнего числа:
3+0=3. Осталось сделать последние сложения – 1-й и 3-й и 2-й и 4-й сумм: 34+30=64, 7+3=10. Получили числа 20.08.1986,34,7,30, 64,10.
и составляем магический квадрат так, чтобы все единицы этих чисел вошли в ячейку 1, все двойки – в ячейку 2 и т. д. Нули при этом во внимание не принимаются. В результате мой квадрат будет выглядеть следующим образом:
Ячейки квадрата означают следующее:
Ячейка 1 – целеустремленность, воля, упорство, эгоизм.
1 – законченные эгоисты, стремятся из любого положения извлечь максимальную выгоду.
11 – характер, близкий к эгоистическому.
111 – «золотая середина». Характер спокойный, покладистый, коммуникабельный.
1111 – люди сильного характера, волевые. Мужчины с таким характером подходят на роль военных – профессионалов, а женщины держат свою семью в кулаке.
11111 – диктатор, самодур.
111111 – человек жестокий, способный совершить невозможное; нередко попадает под влияние какой – то идеи.
Ячейка 2 – биоэнергетика, эмоциональность, душевность, чувственность. Количество двоек определяет уровень биоэнергетики.
Двоек нет – открыт канал для интенсивного набора биоэнергетики. Эти люди воспитаны и благородны от природы.
2 – обычные в биоэнергетическом отношении люди. Такие люди очень чувствительны к изменениям в атмосфере.
22 – относительно большой запас биоэнергетики. Из таких людей получаются хорошие врачи, медсестры, санитары. В семье таких людей редко у кого бывают нервные стрессы.
222 – знак экстрасенса.
Ячейка 3 – точность, конкретность, организованность, аккуратность, пунктуальность, чистоплотность, скупость, наклонность к постоянному «восстановлению справедливости».
Нарастание троек усиливает все эти качества. С ними человеку есть смысл искать себя в науках, особенно точных. Перевес троек порождает педантов, людей в футляре.
Ячейка 4 – здоровье. Это связано с экгрегором, то есть энергетическим пространством, наработанным предками и защищающим человека. Отсутствие четверок свидетельствует о болезненности человека.
4 – здоровье среднее, необходимо закалять организм. Из видов спорта рекомендуются плавание и бег.
44 – здоровье крепкое.
444 и более – люди с очень крепким здоровьем.
Ячейка 5 – интуиция, ясновидение, начинающееся проявляться у таких людей уже на уровне трех пятерок.
Пятерок нет – канал связи с космосом закрыт. Эти люди часто
ошибаются.
5 – канал связи открыт. Эти люди могут правильно рассчитать ситуацию извлечь из нее максимальную пользу.
55 – сильно развита интуиция. Когда видят «вещие сны», могут предугадывать ход событий. Подходящие для них профессии – юрист, следователь.
555 – почти ясновидящие.
5555 – ясновидящие.
Ячейка 6 – заземленность, материальность, расчет, склонность к количественному освоению мира и недоверие к качественным скачкам и тем более к чудесам духовного порядка.
Шестерок нет – этим людям необходим физический труд, хотя они его, как правило, не любят. Они наделены неординарным воображением, фантазией, художественным вкусом. Тонкие натуры, они тем не менее способны на поступок.
6 – могут заниматься творчеством или точными науками, но физический труд является обязательным условием существования.
66 – люди очень заземлены, тянутся к физическому труду, хотя как раз для них он не обязателен; желательна умственная деятельность либо занятия искусством.
666 – знак Сатаны, особый и зловещий знак. Эти люди обладают повышенным темпераментом, обаятельны, неизменно становятся в обществе центром внимания.
6666 – эти люди в своих предыдущих воплощениях набрали слишком много заземленности, они очень много трудились и не представляют свою жизнь без труда. Если в их квадрате есть
девятки, им обязательно нужно заниматься умственной деятельностью, развивать интеллект, хотя бы получить высшее образование.
Ячейка 7 – количество семерок определяет меру таланта.
7 – чем больше они работают, тем больше получают впоследствии.
77 – очень одаренные, музыкальные люди, обладают тонким художественным вкусом, могут иметь склонность к изобразительному искусству.
777 – эти люди, как правило, приходят на Землю ненадолго. Они добры, безмятежны, болезненно воспринимают любую несправедливость. Они чувствительны, любят мечтать, не всегда чувствуют реальность.
7777 – знак Ангела. Люди с таким знаком умирают в младенчестве, а если и живут, то их жизни постоянно угрожает опасность.
Ячейка 8 – карма, долг, обязанность, ответственность. Количество восьмерок определяет степень чувства долга.
Восьмерок нет – у этих людей почти полностью отсутствует чувство долга.
8 – натуры ответственные, добросовестные, точные.
88 – у этих людей развитое чувство долга, их всегда отличает желание помочь другим, особенно слабым, больным, одиноким.
888 – знак великого долга, знак служения народу. Правитель с тремя восьмерками добивается выдающихся результатов.
8888 – эти люди обладают парапсихологическими способностями и исключительной восприимчивостью к точным наукам. Им открыты сверхъестественные пути.
Ячейка 9 – ум, мудрость. Отсутствие девяток - свидетельство того, что умственные способности крайне ограничены.
9 – эти люди должны всю жизнь упорно трудиться, чтобы восполнить недостаток ума.
99 – эти люди умны от рождения. Учатся всегда неохотно, потому что знания даются им легко. Они наделены чувством юмора с ироничным оттенком, независимые.
999 – очень умны. К учению вообще не прикладывают никаких усилий. Прекрасные собеседники.
9999 – этим людям открывается истина. Если у них к тому же развита интуиция, то они гарантированы от провала в любом из своих начинаний. При всем этом они, как правило, довольно
приятны, так как острый ум делает их грубыми, немилосердными и жестокими.
Итак, составив магический квадрат Пифагора и зная значение всех комбинаций цифр, входящих в его ячейки, вы сможете в достаточной мере оценить те качества вашей натуры, которыми наделила матушка – природа.
Латинские квадраты.
Не смотря на то, что математиков интересовали в основном магические квадраты наибольшее применение в науке и технике нашли латинские квадраты.
Латинским квадратом называется квадрат nхn клеток, в которых написаны числа 1, 2,…, n, притом так, что в каждой строке и каждом столбце встречаются все эти числа по одному разу. На рис.3 изображены два таких квадрата 4х4. Они обладают интересной особенностью: если один квадрат наложить на другой, то все пары получившихся чисел оказываются различными. Такие пары латинских квадратов называются ортогональными.
Задачу отыскания ортогональных латинских квадратов впервые поставил Л. Эйлер, причём в такой занимательной формулировке: “ Среди 36 офицеров поровну уланов, драгунов, гусаров, кирасиров, кавалергардов и гренадеров и кроме того поровну генералов, полковников, майоров, капитанов, поручиков и подпоручиков, причем каждый род войск представлен офицерами всех шести рангов. Можно ли выстроить всех офицеров в каре 6 х 6 так, чтобы в любой колонне и любой шеренге встречались офицеры всех рангов?”
Эйлер не смог найти решения этой задачи. В 1901 г. было доказано, что такого решения не сушествует. В то же время Эйлер доказал, что ортогональные пары латинских квадратов существуют для всех нечетных значений n и для таких четных значений n, которые делятся на 4. Эйлер выдвинул гипотезу, что для остальных значений n, то есть если число n при делении на 4 даст в остатке 2, ортогональных квадратов не существует. В 1901 г. было доказано, что ортогональных квадратов 6 6 не существует, и это усиливало уверенность в справедливости гипотезы Эйлера. Однако в 1959 г. помощью ЭВМ были найдены сначала ортогональные квадраты 10х10, потом 14х14, 18х18, 22х22. А затем было показано, что для любого n , кроме 6, существуют ортогональные квадраты nхn.
Магические и латинские квадраты – близкие родственники. Пусть мы имеем два ортогональных квадрата. Заполним клетки нового квадрата тех же размеров следующим образом. Поставим туда число n(a – 1)+b, где а - число в такой клетке первого квадрата, а b - число в такой же клетке второго квадрата. Нетрудно понять, что в полученном квадрате суммы чисел в строках и столбцах (но не обязательно на диагоналях) будут одинаковы.
Теория латинских квадратов нашла многочисленные применения как в самой математике, так и в ее приложениях. Приведем такой пример. Пусть мы хотим испытать 4 сорта пшеницы на урожайность в данной местности, причем хотим учесть влияние степени разреженности посевов и влияние двух видов удобрений. Для того разобьем квадратный участок земли на 16 делянок (рис.4). Первый сорт пшеницы посадим на делянках, соответствующих нижней горизонтальной полосе, следующий сорт – на четырех делянках, соответствующих следующей полосе, и т. д. (на рисунке сорт обозначен цветом). При этом максимальная густота посевов пусть будет на тех делянках, которые соответствуют левому вертикальному столбцу рисунка, и уменьшается при переходе вправо (на рисунке этому соответствует уменьшение интенсивности цвета). Цифры же, стоящие в клетках рисунка, пусть означают:
первая – количество килограммов удобрения первого вида, вносимого на этот участок, а вторая – количество вносимого удобрения второго вида. Нетрудно понять, что при этом реализованы все возможные пары сочетаний как сорта и густоты посева, так и других компонентов: сорта и удобрений первого вида, удобрений первого и второго видов, густоты и удобрений второго вида.
Использование ортогональных латинских квадратов помогает учесть все возможные варианты в экспериментах в сельском хозяйстве, физике, химии, технике.
Заключение
В настоящем реферате рассмотрены вопросы, связанные с историей развития одного из вопросов математики, занимавшего умы очень многих великих людей, - магических квадратов. Несмотря на то, что собственно магические квадраты не нашли широкого применения в науке и технике, они подвигли на занятия математикой множество незаурядных людей и способствовали развитию других разделов математики (теории групп, определителей, матриц и т.д.).
Ближайшие родственники магических квадратов – латинские квадраты нашли многочисленные применения как в математике, так и в ее приложениях при постановке и обработке результатов экспериментов. В реферате приведен пример постановки такого эксперимента.
В реферате также рассмотрен вопрос о квадрате Пифагора, представляющем исторический интерес и, возможно, полезном для составления психологического портрета личности.
Список литературы
1. Энциклопедический словарь юного математика. М., «Педагогика», 1989г.
2. М.Гарднер «Путешествие во времени», М., «Мир», 1990г.
3. Физкультура и спорт № 10, 1998г.
nsportal.ru
Моу Гимназия №5.
Реферат
На тему:
«Магические Квадраты»
Выполнил: Ондар Монге,
ученик 7Д класса
Учитель: Леонтьева Евгения Ивановна
Г. Кызыл 2012год.
Содержание
Введение 3-5 стр.
I.Теоретическая часть.
1.История появления магических квадратов 5-6 стр.
II.Практическая часть.
2.Способы заполнения магических квадратов:
2.1.Метод А.де ла Лубера 6-7 стр.
2.2.Метод Ф.де ла Ира 7 стр.
2.3.Достраивание до
симметричной ступенчатой ромбовидной фигуры 7-9 стр.
3.Выводы 9-10 стр.
Литература 10 стр.
Введение
Однажды за 3 минуты до конца урока математики учитель предложил одному классу решить следующую задачу.
Задача: заполнить квадрат 3´3 натуральными числами от 1 до 9 включительно, так, чтобы были использованы все цифры и сумма чисел на всех строках, столбцах и диагоналях была одинакова.
Так как никто не справился с заданием за такое короткое время, решение задачи было предложено на дом. Из 25 учеников этого класса с ней справился только один. Он изобразил заполненный квадрат на доске, сказав, что на его заполнение у него ушло минут 10-15. Он перебирал различные варианты, пока не пришел к нужному.
Меня заинтересовала предложенная задача. Но метод перебора мне не понравился: он отнимает очень много времени, хотя и позволяет тренировать свои вычислительные навыки. Это побудило меня заняться работой.
Тема : заполнение магических квадратов.
Объект : магический квадрат.
Гипотеза: для заполнения магического квадрата существуют специальные приемы, позволяющие это сделать быстро.
Цели: изучить способы заполнения магических квадратов и историю их появления
Задачи:
- Познакомиться с историей появления и названия магических квадратов
- изучить известные способы заполнения магических квадратов
Методы : Анализ литературы и Интернет-ресурсов.
Этапы:
1. знакомство с литературой и Интернет-ресурсами
2. апробация найденных методов
3. оформление работы
Оборудование:
- компьютер
- проектор для демонстрации презентации
- сопроводительная презентация
1. История появления магических квадратов
МАГИЧЕСКИЙ КВАДРАТ, квадратная таблица из целых чисел, в которой суммы чисел вдоль любой строки, любого столбца и любой из двух главных диагоналей равны одному и тому же числу.
Магический квадрат – древнекитайского происхождения. Согласно легенде, во времена правления императора Ю (ок. 2200 до н.э.) из вод Хуанхэ (Желтой реки) всплыла священная черепаха, на панцире которой были начертаны таинственные иероглифы (рис. 1,а ), и эти знаки известны под названием ло-шу и равносильны магическому квадрату, изображенному на рис. 1,б . В 11 в. о магических квадратах узнали в Индии, а затем в Японии, в 15 в. О магических квадратах узнали европейцы. Первым квадратом , придуманным европейцем , считается квадрат Дюрера ( рис.2 ) изображен на его знаменитой гравюре Меланхолия 1. Дата создания гравюры (1514) указана числами, стоящими в двух центральных клетках нижней строки. Магическим квадратам приписывали различные мистические свойства. Бытовало поверье, что выгравированный на серебре магический квадрат защищает от чумы. Даже сегодня среди атрибутов европейских прорицателей можно увидеть магические квадраты.
рис.1 рис.2
В 19 и 20 вв. интерес к магическим квадратам вспыхнул с новой силой. Их стали исследовать с помощью методов высшей алгебры .
2. Способы заполнения магических квадратов
Магические квадраты нечетного порядка
Магические квадраты нечетного порядка можно построить с помощью метода французского геометра 17 в. А.де ла Лубера . Рассмотрим этот метод на примере квадрата 5-го порядка (рис. 4). Число 1 помещается в центральную клетку верхней строки. Все натуральные числа располагаются в естественном порядке циклически снизу вверх в клетках диагоналей справа налево. Дойдя до верхнего края квадрата, продолжаем заполнять диагональ, начинающуюся от нижней клетки следующего столбца (по ломаной диагонали). Дойдя до правого края квадрата, продолжаем заполнять диагональ, идущую от левой клетки строкой выше. Дойдя до заполненной клетки или угла, траектория спускается на одну клетку вниз .
рис.4
Метод Ф.де ла Ира (1640–1718) основан на двух первоначальных квадратах. На рис. 5 показано, как с помощью этого метода строится квадрат 5-го порядка. В клетку первого квадрата вписываются числа от 1 до 5 так, что число 3 повторяется в клетках главной диагонали, идущей вправо вверх, и ни одно число не встречается дважды в одной строке или в одном столбце. То же самое мы проделываем с числами 0, 5, 10, 15, 20 с той лишь разницей, что число 10 теперь повторяется в клетках главной диагонали, идущей сверху вниз (рис. 5,б ). Поклеточная сумма этих двух квадратов (рис. 5,в ) образует магический квадрат.
Достраивание до симметричной ступенчатой ромбовидной фигуры
Сначала исходный пустой квадрат достраивается до симметричной ступенчатой ромбовидной фигуры как показано на следующем рисунке.
255 | ||||||||
24 | 20 | |||||||
23 | 19 | 15 | ||||||
22 | 18 | 14 | 10 | |||||
21 | 17 | 13 | 9 | 5 | ||||
16 | 12 | 8 | 4 | |||||
11 | 7 | 3 | ||||||
6 | 2 | |||||||
25 |
Сначала исходный пустой квадрат достраивается до симметричной ступенчатой ромбовидной фигуры как показано на следующем рисунке.
Полученная на шаге 1 фигура заполняется по косым рядам снизу-вверх-направо целыми числами от 1 до n2 последовательно.
Каждое число, расположенное в фигуре вне исходного квадрата, переносится по вертикали или горизонтали внутрь исходного квадрата в самую удаленную клетку.
Выводы
1. Магический квадрат – древнекитайского происхождения.
2. Универсального способа заполнения магических квадратов нет.
3. Способ заполнения магического квадрата, зависит от его порядка.
4. Для квадратов нечетного порядка существует 3 способа: метод Ф.де ла Ира (на двух квадратах), метод А.де ла Лубера и достраивание до симметричной ступенчатой ромбовидной фигуры.
Литература:
1. http://cad.narod.ru/methods/cadsystems/software/kvadrat/html
2. http://ru.wikipedia.org/wiki
3. И. Я. Депман, Н.Я. Виленкин. Учебник математики. Москва. Просвещение. 1989г.
4. Энциклопедический словарь юного математика. М., «Педагогика»,
www.yurii.ru
Магические квадраты
Реферат по математике ученицы 8 г класса Бисеровой Алены
Муниципальное образовательное учреждение – Гимназия № 47
г. Екатеринбург, 2000г.
Введение
Великие ученые древности считали количественные отношения основой сущности мира. Поэтому числа и их соотношения занимали величайшие умы человечества. «В дни моей юности я в свободное время развлекался тем, что составлял… магические квадраты»- писал Бенджамин Франклин. Магический квадрат- это квадрат, сумма чисел которого в каждом горизонтальном ряду, в каждом вертикальном ряду и по каждой из диагоналей одна и та же.
Некоторые выдающиеся математики посвятили свои работы магическим квадратам и полученные ими результаты оказали влияние на развитие групп, структур, латинских квадратов, определителей, разбиений, матриц, сравнений и других нетривиальных разделов математики.
Цель настоящего реферата – знакомство с различными магическими квадратами, латинскими квадратами и изучение областей их применения.
Магические квадраты.
Полного описания всех возможных магических квадратов не получено и до сего времени. Магических квадратов 2х2 не существует. Существует единственный магический квадрат 3х3 ,так как остальные магические квадраты 3х3 получаются из него либо поворотом вокруг центра, либо отражением относительно одной из его осей симметрии.
Расположить натуральные числа от 1 до 9 в магический квадрат 3х3 можно 8 различными способами:
9+5+1
9+4+2
8+6+2
8+5+2
8+4+3
7+6+2
7+5+3
6+5+4
В магическом квадрате 3х3 магической постоянной 15 должны быть равны сумме трех чисел по 8 направлениям: по 3 строкам, 3 столбцам и 2 диагоналям. Так как число, стоящее в центре, принадлежит 1 строке, 1 столбцу и 2 диагоналям, оно входит в 4 из 8 троек, дающих в сумме магическую постоянную. Такое число только одно: это 5. Следовательно, число, стоящее в центре магического квадрата 3х3, уже известно: оно равно 5.
Рассмотрим число 9. Оно входит только в 2 тройки чисел. Мы не можем поместить его в угол, так как каждая угловая клетка принадлежит 3 тройкам: строке, столбцу и диагонали. Следовательно, число 9 должно стоять в какой–то клетке, примыкающей к стороне квадрата в ее середине. Из-за симметрии квадрата безразлично, какую из сторон мы выберем, поэтому пишем 9 над числом 5, стоящим в центральной клетке. По обе стороны от девятки в верхней строке мы можем вписать только числа 2 и 4. Какое из этих двух чисел окажется в правом верхнем углу и какое в левом, опять – таки не имеет значения, так как одно расположение чисел переходит в другое при зеркальном отражении. Остальные клетки заполняются автоматически. Проведенное нами простое построение магического квадрата 3х3 доказывает его единственность.
Такой магический квадрат был у древних китайцев символом огромного значения. Цифра 5 в середине означала землю, а вокруг нее в строгом равновесии располагались огонь (2 и 7), вода (1 и 6),
дерево (3 и 8), металл (4 и 9).
С увеличением размеров квадрата (числа клеток) быстро растет количество возможных магических квадратов такого размера. Существует 880 магических квадратов порядка 4 и 275 305 224 магических квадратов порядка 5. Причем, квадраты 5х5 были известны еще в средние века. Мусульмане, например, очень благоговейно относились к таким квадратом с цифрой 1 в середине, считая его символом единства Аллаха.
Магический квадрат Пифагора
Великий ученый Пифагор, основавший религиозно – философское учение, провозгласившее количественные отношения основой сущности вещей, считал, что сущность человека заключается тоже в числе – дате рождения. Поэтому с помощью магического квадрата Пифагора можно познать характер человека, степень отпущенного здоровья и его потенциальные возможности, раскрыть достоинства и недостатки и тем самым выявить, что следует предпринять для его совершенствования.
Для того, чтобы понять, что такое магический квадрат Пифагора и как подсчитываются его показатели, сделаю его расчет на своем примере. А чтобы убедиться, что результаты подсчета действительно соответствуют реальному характеру той или иной личности, вначале я проверю его на себе. Для этого я буду делать расчет по своей дате рождения. Итак, моя дата рождения 20.08.1986. Сложим цифры дня, месяца и года рождения (без учета нулей): 2+8+1+9+8+6=34. Далее складываем цифры результата: 3+4=7. Затем из первой суммы вычитаем удвоенную первую цифру дня рождения: 34-4=30. И вновь складываем цифры последнего числа:
3+0=3. Осталось сделать последние сложения – 1-й и 3-й и 2-й и 4-й сумм: 34+30=64, 7+3=10. Получили числа 20.08.1986,34,7,30, 64,10.
и составляем магический квадрат так, чтобы все единицы этих чисел вошли в ячейку 1, все двойки – в ячейку 2 и т. д. Нули при этом во внимание не принимаются. В результате мой квадрат будет выглядеть следующим образом:
Ячейки квадрата означают следующее:
Ячейка 1 – целеустремленность, воля, упорство, эгоизм.
1 – законченные эгоисты, стремятся из любого положения извлечь максимальную выгоду.
11 – характер, близкий к эгоистическому.
111 – «золотая середина». Характер спокойный, покладистый, коммуникабельный.
1111 – люди сильного характера, волевые. Мужчины с таким характером подходят на роль военных – профессионалов, а женщины держат свою семью в кулаке.
11111 – диктатор, самодур.
111111 – человек жестокий, способный совершить невозможное; нередко попадает под влияние какой – то идеи.
Ячейка 2 – биоэнергетика, эмоциональность, душевность, чувственность. Количество двоек определяет уровень биоэнергетики.
Двоек нет – открыт канал для интенсивного набора биоэнергетики. Эти люди воспитаны и благородны от природы.
2 – обычные в биоэнергетическом отношении люди. Такие люди очень чувствительны к изменениям в атмосфере.
22 – относительно большой запас биоэнергетики. Из таких людей получаются хорошие врачи, медсестры, санитары. В семье таких людей редко у кого бывают нервные стрессы.
222 – знак экстрасенса.
Ячейка 3 – точность, конкретность, организованность, аккуратность, пунктуальность, чистоплотность, скупость, наклонность к постоянному «восстановлению справедливости».
Нарастание троек усиливает все эти качества. С ними человеку есть смысл искать себя в науках, особенно точных. Перевес троек порождает педантов, людей в футляре.
Ячейка 4 – здоровье. Это связано с экгрегором, то есть энергетическим пространством, наработанным предками и защищающим человека. Отсутствие четверок свидетельствует о болезненности человека.
4 – здоровье среднее, необходимо закалять организм. Из видов спорта рекомендуются плавание и бег.
44 – здоровье крепкое.
444 и более – люди с очень крепким здоровьем.
Ячейка 5 – интуиция, ясновидение, начинающееся проявляться у таких людей уже на уровне трех пятерок.
Пятерок нет – канал связи с космосом закрыт. Эти люди часто
ошибаются.
5 – канал связи открыт. Эти люди могут правильно рассчитать ситуацию извлечь из нее максимальную пользу.
55 – сильно развита интуиция. Когда видят «вещие сны», могут предугадывать ход событий. Подходящие для них профессии – юрист, следователь.
555 – почти ясновидящие.
5555 – ясновидящие.
Ячейка 6 – заземленность, материальность, расчет, склонность к количественному освоению мира и недоверие к качественным скачкам и тем более к чудесам духовного порядка.
Шестерок нет – этим людям необходим физический труд, хотя они его, как правило, не любят. Они наделены неординарным воображением, фантазией, художественным вкусом. Тонкие натуры, они тем не менее способны на поступок.
6 – могут заниматься творчеством или точными науками, но физический труд является обязательным условием существования.
66 – люди очень заземлены, тянутся к физическому труду, хотя как раз для них он не обязателен; желательна умственная деятельность либо занятия искусством.
666 – знак Сатаны, особый и зловещий знак. Эти люди обладают повышенным темпераментом, обаятельны, неизменно становятся в обществе центром внимания.
6666 – эти люди в своих предыдущих воплощениях набрали слишком много заземленности, они очень много трудились и не представляют свою жизнь без труда. Если в их квадрате есть
девятки, им обязательно нужно заниматься умственной деятельностью, развивать интеллект, хотя бы получить высшее образование.
Ячейка 7 – количество семерок определяет меру таланта.
7 – чем больше они работают, тем больше получают впоследствии.
77 – очень одаренные, музыкальные люди, обладают тонким художественным вкусом, могут иметь склонность к изобразительному искусству.
777 – эти люди, как правило, приходят на Землю ненадолго. Они добры, безмятежны, болезненно воспринимают любую несправедливость. Они чувствительны, любят мечтать, не всегда чувствуют реальность.
7777 – знак Ангела. Люди с таким знаком умирают в младенчестве, а если и живут, то их жизни постоянно угрожает опасность.
Ячейка 8 – карма, долг, обязанность, ответственность. Количество восьмерок определяет степень чувства долга.
Восьмерок нет – у этих людей почти полностью отсутствует чувство долга.
8 – натуры ответственные, добросовестные, точные.
88 – у этих людей развитое чувство долга, их всегда отличает желание помочь другим, особенно слабым, больным, одиноким.
888 – знак великого долга, знак служения народу. Правитель с тремя восьмерками добивается выдающихся результатов.
8888 – эти люди обладают парапсихологическими способностями и исключительной восприимчивостью к точным наукам. Им открыты сверхъестественные пути.
Ячейка 9 – ум, мудрость. Отсутствие девяток - свидетельство того, что умственные способности крайне ограничены.
9 – эти люди должны всю жизнь упорно трудиться, чтобы восполнить недостаток ума.
99 – эти люди умны от рождения. Учатся всегда неохотно, потому что знания даются им легко. Они наделены чувством юмора с ироничным оттенком, независимые.
999 – очень умны. К учению вообще не прикладывают никаких усилий. Прекрасные собеседники.
9999 – этим людям открывается истина. Если у них к тому же развита интуиция, то они гарантированы от провала в любом из своих начинаний. При всем этом они, как правило, довольно
приятны, так как острый ум делает их грубыми, немилосердными и жестокими.
Итак, составив магический квадрат Пифагора и зная значение всех комбинаций цифр, входящих в его ячейки, вы сможете в достаточной мере оценить те качества вашей натуры, которыми наделила матушка – природа.
Латинские квадраты.
Не смотря на то, что математиков интересовали в основном магические квадраты наибольшее применение в науке и технике нашли латинские квадраты.
Латинским квадратом называется квадрат nхn клеток, в которых написаны числа 1, 2,…, n, притом так, что в каждой строке и каждом столбце встречаются все эти числа по одному разу. На рис.3 изображены два таких квадрата 4х4. Они обладают интересной особенностью: если один квадрат наложить на другой, то все пары получившихся чисел оказываются различными. Такие пары латинских квадратов называются ортогональными.
1 |
2 |
3 |
4 |
2 |
1 |
4 |
3 |
3 |
4 |
1 |
2 |
4 |
3 |
2 |
1 |
1 |
2 |
3 |
4 |
3 |
4 |
1 |
2 |
4 |
3 |
2 |
1 |
2 |
1 |
4 |
3 |
Задачу отыскания ортогональных латинских квадратов впервые поставил Л. Эйлер, причём в такой занимательной формулировке: “ Среди 36 офицеров поровну уланов, драгунов, гусаров, кирасиров, кавалергардов и гренадеров и кроме того поровну генералов, полковников, майоров, капитанов, поручиков и подпоручиков, причем каждый род войск представлен офицерами всех шести рангов. Можно ли выстроить всех офицеров в каре 6 х6 так, чтобы в любой колонне и любой шеренге встречались офицеры всех рангов?”
Эйлер не смог найти решения этой задачи. В 1901 г. было доказано, что такого решения не сушествует. В то же время Эйлер доказал, что ортогональные пары латинских квадратов существуют для всех нечетных значений n и для таких четных значений n, которые делятся на 4. Эйлер выдвинул гипотезу, что для остальных значений n, то есть если число n при делении на 4 даст в остатке 2, ортогональных квадратов не существует. В 1901 г. было доказано, что ортогональных квадратов 6 6 не существует, и это усиливало уверенность в справедливости гипотезы Эйлера. Однако в 1959 г. помощью ЭВМ были найдены сначала ортогональные квадраты 10х10, потом 14х14, 18х18, 22х22. А затем было показано, что для любого n , кроме 6, существуют ортогональные квадраты nхn.
Магические и латинские квадраты – близкие родственники. Пусть мы имеем два ортогональных квадрата. Заполним клетки нового квадрата тех же размеров следующим образом. Поставим туда число n(a – 1)+b, где а - число в такой клетке первого квадрата, а b - число в такой же клетке второго квадрата. Нетрудно понять, что в полученном квадрате суммы чисел в строках и столбцах (но не обязательно на диагоналях) будут одинаковы.
Теория латинских квадратов нашла многочисленные применения как в самой математике, так и в ее приложениях. Приведем такой пример. Пусть мы хотим испытать 4 сорта пшеницы на урожайность в данной местности, причем хотим учесть влияние степени разреженности посевов и влияние двух видов удобрений. Для того разобьем квадратный участок земли на 16 делянок (рис.4). Первый сорт пшеницы посадим на делянках, соответствующих нижней горизонтальной полосе, следующий сорт – на четырех делянках, соответствующих следующей полосе, и т. д. (на рисунке сорт обозначен цветом). При этом максимальная густота посевов пусть будет на тех делянках, которые соответствуют левому вертикальному столбцу рисунка, и уменьшается при переходе вправо (на рисунке этому соответствует уменьшение интенсивности цвета). Цифры же, стоящие в клетках рисунка, пусть означают:
первая – количество килограммов удобрения первого вида, вносимого на этот участок, а вторая – количество вносимого удобрения второго вида. Нетрудно понять, что при этом реализованы все возможные пары сочетаний как сорта и густоты посева, так и других компонентов: сорта и удобрений первого вида, удобрений первого и второго видов, густоты и удобрений второго вида.
11 |
22 |
33 |
44 |
23 |
14 |
41 |
32 |
34 |
43 |
23 |
32 |
42 |
31 |
24 |
13 |
Использование ортогональных латинских квадратов помогает учесть все возможные варианты в экспериментах в сельском хозяйстве, физике, химии, технике.
Заключение
В настоящем реферате рассмотрены вопросы, связанные с историей развития одного из вопросов математики, занимавшего умы очень многих великих людей, - магических квадратов. Несмотря на то, что собственно магические квадраты не нашли широкого применения в науке и технике, они подвигли на занятия математикой множество незаурядных людей и способствовали развитию других разделов математики (теории групп, определителей, матриц и т.д.).
Ближайшие родственники магических квадратов – латинские квадраты нашли многочисленные применения как в математике, так и в ее приложениях при постановке и обработке результатов экспериментов. В реферате приведен пример постановки такого эксперимента.
В реферате также рассмотрен вопрос о квадрате Пифагора, представляющем исторический интерес и, возможно, полезном для составления психологического портрета личности.
Список литературы
1. Энциклопедический словарь юного математика. М., «Педагогика», 1989г.
2. М.Гарднер «Путешествие во времени», М., «Мир», 1990г.
3. Физкультура и спорт № 10, 1998г.
www.referatmix.ru
Муниципальное общеобразовательное бюджетное учреждение гимназия №1 муниципального района Мелеузовский район
Республики Башкортостан
Исследовательская работа
по информатике
«Использование Microsoft Excel
для решения математической задачи –
составление магических квадратов»
Выполнила: Кормакова Яна,
ученица 7А класса
Руководитель: Животова Е.П.
учитель математики и информатики
2009 г.
План
ведение
1. История появления магических квадратов
2. Способы заполнения магических квадратов
3. Реализация способов заполнения магических квадратов с помощью программы Microsoft Excel.
4. Исследование количества решений поставленной задачи.
5. Выводы
Используемые источники
Введение
Однажды за 3 минуты до конца урока математики учитель предложил нам решить следующую задачу.
Задача: заполнить квадрат 3´3 натуральными числами от 1 до 9 включительно, так, чтобы были использованы все цифры и сумма чисел на всех строках, столбцах и диагоналях была одинакова.
Так как никто не справился с заданием за такое короткое время, решение задачи было предложено на дом. Из 25 учеников нашего класса с ней справился только один. Он изобразил заполненный квадрат на доске, сказав, что на его заполнение у него ушло минут 10-15. Он перебирал различные варианты, пока не пришел к нужному.
Меня заинтересовала предложенная задача. Но метод перебора мне не понравился: он отнимает очень много времени, хотя и позволяет тренировать свои вычислительные навыки. Это побудило меня заняться исследовательской работой.
Тема исследования: заполнение магических квадратов.
Объект исследования: магический квадрат.
Гипотеза: для заполнения магического квадрата существуют специальные приемы, позволяющие это сделать быстро.
Цели исследования: изучить способы заполнения магических квадратов и историю их появления
Задачи исследования:
- Познакомиться с историей появления и названия магических квадратов
- изучить известные способы заполнения магических квадратов
- познакомиться с программой Microsoft Excel
- разработать в Microsoft Excel шаблоны для заполнения магических квадратов
- исследовать количество решений для магических квадратов 3 и 5 порядка.
Методы исследования: анализ литературы и Интернет-ресурсов, эксперимент.
Этапы исследования:
1. знакомство с литературой и Интернет-ресурсами
2. опробация найденных методов
3. изучение программы Microsoft Excel на уровне необходимом для заполнения квадратов и вычисления их сумм
4. оформление работы
Оборудование:
- компьютер
- проектор для демонстрации презентации
- сопроводительная презентация
- документ Microsoft Excel с подготовленными шаблонами по различным методам.
1. История появления магических квадратов
МАГИЧЕСКИЙ КВАДРАТ, квадратная таблица из целых чисел, в которой суммы чисел вдоль любой строки, любого столбца и любой из двух главных диагоналей равны одному и тому же числу.
Магический квадрат – древнекитайского происхождения. Согласно легенде, во времена правления императора Ю (ок. 2200 до н.э.) из вод Хуанхэ (Желтой реки) всплыла священная черепаха, на панцире которой были начертаны таинственные иероглифы (рис. 1,а), и эти знаки известны под названием ло-шу и равносильны магическому квадрату, изображенному на рис. 1,б. В 11 в. о магических квадратах узнали в Индии, а затем в Японии, где в 16 в. магическим квадратам была посвящена обширная литература. Европейцев с магическими квадратами познакомил в 15 в. византийский писатель Э.Мосхопулос. Первым квадратом, придуманным европейцем, считается квадрат А.Дюрера (рис. 2), изображенный на его знаменитой гравюре Меланхолия 1. Дата создания гравюры (1514) указана числами, стоящими в двух центральных клетках нижней строки. Магическим квадратам приписывали различные мистические свойства. В 16 в. Корнелий Генрих Агриппа построил квадраты 3-го, 4-го, 5-го, 6-го, 7-го, 8-го и 9-го порядков, которые были связаны с астрологией 7 планет. Бытовало поверье, что выгравированный на серебре магический квадрат защищает от чумы. Даже сегодня среди атрибутов европейских прорицателей можно увидеть магические квадраты.
рис.1 рис.2
В 19 и 20 вв. интерес к магическим квадратам вспыхнул с новой силой. Их стали исследовать с помощью методов высшей алгебры .
Основная терминология
Каждый элемент магического квадрата называется клеткой. Квадрат, сторона которого состоит из n клеток, содержит n2 клеток и называется квадратом n-го порядка.
В большинстве магических квадратов используются первые n последовательных натуральных чисел. Сумма S чисел, стоящих в каждой строке, каждом столбце и на любой диагонали, называется постоянной квадрата и равна S = n(n2 + 1)/2. Доказано, что n 3. Зависимость постоянной квадрата от его порядка можно проследить с помощью тадлицы.
Две диагонали, проходящие через центр квадрата, называются главными диагоналями.
Ломаной называется диагональ, которая, дойдя до края квадрата, продолжается параллельно первому отрезку от противоположного края (такую диагональ образуют заштрихованные клетки на рис. 3).
Клетки, симметричные относительно центра квадрата, называются кососимметричными. Таковы, например, клетки a и b на рис. 3.
рис.3
Правила построения магических квадратов делятся на три категории в зависимости от того, каков порядок квадрата: нечетен, равен удвоенному нечетному числу или равен учетверенному нечетному числу. Общий метод построения всех квадратов неизвестен, хотя широко применяются различные схемы, некоторые из которых мы рассмотрим ниже.
2. Способы заполнения магических квадратов
Магические квадраты нечетного порядка
Магические квадраты нечетного порядка можно построить с помощью метода французского геометра 17 в. А.де ла Лубера (сиамский метод). Рассмотрим этот метод на примере квадрата 5-го порядка (рис. 4). Число 1 помещается в центральную клетку верхней строки. Все натуральные числа располагаются в естественном порядке циклически снизу вверх в клетках диагоналей справа налево. Дойдя до верхнего края квадрата, продолжаем заполнять диагональ, начинающуюся от нижней клетки следующего столбца (по ломаной диагонали). Дойдя до правого края квадрата, продолжаем заполнять диагональ, идущую от левой клетки строкой выше. Дойдя до заполненной клетки или угла, траектория спускается на одну клетку вниз, после чего процесс заполнения продолжается.
рис.4
Для облегчения заполнения квадрата данным методом, а именно определения места заполнения следующей клетки, после края квадрата можно воспользоваться следующей схемой
Поставим 1 в среднюю клетку верхнего ряда и продолжим последовательность по диагонали вправо-вверх. Если очередное число на диагонали выходит за границы квадрата, мы его переставляем в соответствующее поле в квадрат (см. рис.5).
Изучая различные источники, мы обратили внимание на то, что можно заполнять квадраты и в другом направлении и не обязательно 1 стоит в данной позиции.
Метод Ф.де ла Ира (1640–1718) основан на двух первоначальных квадратах. На рис. 5 показано, как с помощью этого метода строится квадрат 5-го порядка. В клетку первого квадрата вписываются числа от 1 до 5 так, что число 3 повторяется в клетках главной диагонали, идущей вправо вверх, и ни одно число не встречается дважды в одной строке или в одном столбце. То же самое мы проделываем с числами 0, 5, 10, 15, 20 с той лишь разницей, что число 10 теперь повторяется в клетках главной диагонали, идущей сверху вниз (рис. 5,б). Поклеточная сумма этих двух квадратов (рис. 5,в) образует магический квадрат. Этот метод используется и при построении квадратов четного порядка.
Проанализировав данную схему заполнения по рисунку, мы пришли к следующему алгоритму.
1. В первом квадрате размещаем числа от 1 до n (порядок квадрата), так, чтобы на побочной диагонали стоял средний элемент этой последовательности.
2. Все остальные элементы располагаем параллельно этой диагонали по ломаным диагоналям. Элементы на ломаной диагонали равны. Числа в сроке и столбце не должны повторяться.
3. Во втором квадрате размещаем последовательные числа, кратные порядку квадрата, начиная с 0, (количество элементов равно порядку квадрата) так, чтобы на главной диагонали стоял средний элемент этой последовательности.
4. Все остальные элементы располагаем параллельно этой диагонали по ломаным диагоналям. Элементы на ломаной диагонали равны.
Достраивание до симметричной ступенчатой ромбовидной фигуры
Сначала исходный пустой квадрат достраивается до симметричной ступенчатой ромбовидной фигуры как показано на следующем рисунке.
|
|
|
|
25 |
|
|
|
|
|
|
|
24 |
|
20 |
|
|
|
|
|
23 |
6 |
19 |
2 |
15 |
|
|
|
22 |
10 |
18 |
1 |
14 |
22 |
10 |
|
21 |
|
17 |
5 |
13 |
21 |
9 |
|
5 |
|
16 |
4 |
12 |
25 |
8 |
16 |
4 |
|
|
|
11 |
24 |
7 |
20 |
3 |
|
|
|
|
|
6 |
|
2 |
|
|
|
|
|
|
|
1 |
|
|
|
|
Полученная на шаге 1 фигура заполняется по косым рядам снизу-вверх-направо целыми числами от 1 до n2 последовательно. Результат заполнения показан на следующем рисунке:
|
|
|
|
25 |
|
|
|
|
|
|
|
24 |
|
20 |
|
|
|
|
|
23 |
|
19 |
|
15 |
|
|
|
22 |
|
18 |
|
14 |
|
10 |
|
21 |
|
17 |
|
13 |
|
9 |
|
5 |
|
16 |
|
12 |
|
8 |
|
4 |
|
|
|
11 |
|
7 |
|
3 |
|
|
|
|
|
6 |
|
2 |
|
|
|
|
|
|
|
1 |
|
|
|
|
Каждое число, расположенное в фигуре вне исходного квадрата, переносится по вертикали или горизонтали внутрь исходного квадрата в самую удаленную клетку (на n клеток).
Способы заполнения магических квадратов порядка, кратного четырем
Универсальные методы составления магических квадратов произвольного четного порядка пока неизвестны. Однако, разработаны индивидуальные подходы для различных частных случаев. Ниже рассмотрен метод составления магических квадратов, порядок кратен 4. Этот метод удобно рассмотреть на примере магического квадрата 8-го порядка из натуральных чисел от 1 до 64. Метод включает следующую последовательность шагов.
1. Исходный квадрат делится на соответствующее число квадратов порядка 4. В данном случае таких квадратов будет 4. В каждом подквадрате закрашиваются диагональные элементы (главная и побочная).
2. Остальные элементы построчно заполняются порядковыми целыми числами в направлении слева -направо и сверху -вниз по закрашенным клеткам и справа -налево и снизу-вверх по не закрашенным клеткам.
3. Переход между цветами при заполнении происходит, если следующая для заполнения клетка меняет цвет
3. Реализация способов заполнения магических квадратов
с помощью программы Microsoft Excel.
Так как для составления магических квадратов необходимо всегда проверять контрольные суммы по строкам, столбцам и диагоналям, мы пришли к выводу, что этот процесс лучше автоматизировать. Для автоматизации мы выбрали программу Excel.
Используя функцию автосуммирования, мы подготовили шаблоны для вычисления контрольных сумм магических квадратов 3, 5 и 7 порядка по каждому из методов. А для метода Ф.де ла Ира еще и вычисление элементов третьего квадрата, как сумм соответствующих элементов первых двух квадратов.
В ходе экспериментальной части по методу Ф.де ла Ира , мы заметили, что в первых двух квадратах, элементы на ломаных диагоналях равны, и пришли в выводу, что процесс заполнения этих квадратов можно также автоматизировать. Достаточно указать только по одному элементу на каждой из ломаной диагонали.
Также для квадрата заданного порядка однозначны элементы на выделенных главных диагоналях, согласно алгоритму заполнения, поэтому их также можно занести в шаблон заполнения.
Внеся эти дополнения в шаблон, мы получили следующую заготовку для магических квадратов:
Теперь достаточно в первом квадрате на главной диагонали (в розовых клетках) разместить элементы с 1 до n. А во втором квадрате в первом столбце (так же в розовых клетках) элементы, кратные порядку квадрата.
В ходе экспериментальной части по способу достраивания до симметричной ступенчатой ромбовидной фигуры, мы заметили, процесс переноса чисел, вышедших за поле квадрата, также можно автоматизировать.
Элементы по диагонали каждый раз увеличиваются на единицу от предыдущего элемента, стоящего в этой диагонали. С учетом этого, достаточно вручную ввести только первые их элементы, а все остальные рассчитать по формулам.
Внеся эти дополнения в шаблон, мы получили следующую заготовку для магических квадратов данным способом:
Для построения магического квадрата, в клетки розового цвета внесем первых n чисел, которые при делении на порядок квадрата дают в остатке 1.
Для сиамского метода также можно автоматизировать заполнение и перенос чисел, вышедших за пределы квадрата.
4. Исследование количества решений магических квадратов.
Изучая литературу по теме, мы установили факт, что с увеличением размеров квадрата быстро растет количество возможных магических квадратов. Так, например, для 3 порядка – единственный, для 4 - 880, для 5 – приближается к четверти миллиона.
Изучив алгоритмы заполнения магических квадратов, нам захотелось экспериментировать: что произойдет, если мы поменяем местами элементы? Получится ли магическая сумма? Получим мы такой же квадрат или другой?
Вот некоторые магические квадраты, полученные методом Ф.де ла Ира.
Можно заметить, что все эти квадраты различны. Это только малая доля из всех возможных квадратов. С помощью программы Excel и подготовленных нами шаблонов, на их построение у нас уходит несколько секунд.
Выводы
1. Магический квадрат – древнекитайского происхождения.
2. Универсального способа заполнения магических квадратов нет.
3. Способ заполнения магического квадрата, зависит от его порядка.
4. Для квадратов нечетного порядка существует 3 способа: метод Ф.де ла Ира (на двух квадратах), метод А.де ла Лубера (сиамский метод) и достраивание до симметричной ступенчатой ромбовидной фигуры.
5. Для квадратов, порядок которых кратен 4 существует способ разбиения на подквадраты порядка 4.
6. Известные методы для заполнения нечетных квадратов можно автоматизировать. Для этого идеально подходит программа Excel.
7. Эффективные шаблоны получаются для двух методов: Ф.де ла Ира и достраивания до симметричной ступенчатой ромбовидной фигуры.
8. С помощью подготовленных нами шаблонов можно создавать различные магические квадраты для одного и того же порядка.
Перспектива
В литературе есть ссылка, что метод, основанный на двух первоначальных квадратах, можно применить и для заполнения квадратов четного порядка. Экспериментируя, мы не пришли к нужному результату и оставляем это для дальнейшего исследования.
Использованные Интернет-ресурсы и литература:
1. http://cad.narod.ru/methods/cadsystems/software/kvadrat.html
2. http://www.krugosvet.ru/articles/15/1001543/1001543a1.htm
3. http://ru.wikipedia.org/wiki
4. И. Я. Депман, Н.Я. Виленкин. За страницами учебника математики. Москва. Просвещение. 1989г.
www.referatmix.ru