refleader.ru

Конденсационные тепловые электрические станции

Кондесационными называют паровые турбины, у которых пар после отработки подвергается конденсации в специальных устройствах – конденсаторах. Соответственно и тепловые электростанции, которые снабжают потребителя только электрический энергией, называют конденсационными (КЭС).

Как и другие промышленные предприятия конденсационные электростанции тоже имеют производственные цеха и помещения. К основным цехам можно отнести котельную, зал турбогенераторов и цех распределительных электрических устройств. Все эти цеха оборудуются множеством вспомогательного оборудования (очистка воды, подача топлива, насосы, дымососы и множество другого оборудования).

Давайте рассмотрим схему производственных процессов конденсационной электростанции:

Схема работы кондесационной электрической станции

Принцип работы конденсационной электростанции не очень сложный и заключается в следующем – кусковое топливо (как правило, уголь) поступает из склада топлива 1 в топливный бункер 2 с помощью транспортера. С топливного бункера топливо поступает в дробилку (шаровую мельницу) 3. После дробления, полученное пылеобразное топливо с помощью специальных вентиляторов 4 вдувается к горелкам котла 5. Для того, что бы улучшить процесс горения топливной пыли воздух, всасываемый с атмосферы, подогревают в воздухонагревателе 7 дымовыми газами, после чего вентилятором дутьевым 8 направляется в котел. В котле происходит процесс горения с температурой 1200 – 1600 С0. В процессе горения происходит нагрев труб внутри котла, по которым течет вода. Результатом становится появление пара с температурой 540-560 С0 и давлением 13 – 25 МПа, который по паропроводу поступает в турбину 20.

Из – за разности в температуре и давлении на входе и выходе турбины пар, проходящий через нее, совершает механическую работу и вращает вал турбины, а вместе с ним и генератор 19, вырабатывающий электрический ток.

Газы, образованные в процессе горения, на выходе из котла имеют все еще довольно высокую температуру, порядка 350-450 С0. Для максимально эффективного использования их тепловой энергии на пути их следования установлен водяной экономайзер 6, он дополнительно подогревает питательную воду. После экономайзера газы попадают в золоулавливатель, после чего с помощью отсасывающего дымососа 10 выбрасывается дымовую трубу 9.

Конденсационная электростанция

Механическая работа, которая совершается паром, с увеличением разности между давлением и температурой входящего и выходящего пара будет расти. Поэтому чем больше используется энергия, выработанная на конденсационной электростанции, тем выше ее КПД. Также наряду с повышением давления пара входящего в турбину стараются параллельно и снизить давление его при выходе, то есть на выходе он должен иметь давление ниже атмосферного. После выполнения механической работы отработанный пар направляется по трубам в конденсатор 18. Конденсатор – это цилиндр, внутри которого располагают трубы, по которым циркулирует холодная вода, а пар, пришедший из турбины, омывая эти трубы, превращается в результате охлаждения в дистиллированную воду. Через подогреватель низкого давления 14 конденсат с помощью насоса 15 направляется в деаэратор 13. Деаэратор служит для очистки конденсата от различных растворенных газов, и особенно от кислорода, поскольку он вызывает интенсивную коррозию труб котла конденсационных электростанций. В деаэраторе хранится питательная вода, которая служит для восполнения потерь воды и пара, поэтому добавочная вода, поступающая в него, проходит через водоочистительные сооружения. С помощью насоса 12 из деаэратора питательная вода через подогреватель высокого давления 11 и водяной экономайзер 6 подается в котел конденсационной электрической станции.

Холодную воду из реки или другого источника 16 для конденсации пара в конденсаторе насосом 17 подают холодную воду. Так как через трубы протекает довольно большое количество воды, то ее температура на выходе с конденсатора, как правило, не превышает 25-36 0С. Воду с такой температурой невозможно использовать для обслуживания бытовых или промышленных потребителей, поэтому ее сбрасывают в пруд или реку (рисунок а):

Схема водоснабжения конденсаторных паровых турбин

Если поблизости водоемов нет, то для охлаждения используют башни-охладители (градирен) (рисунок б), или же, брызгательные бассейны (рисунок в). Таким образом, на конденсационных электрических станциях воду используют по замкнутому циклу.

Вырабатываемая электрическими генераторами на станции электрическая энергия при напряжении 10 кВ подается на открытую повышающую трансформаторную подстанции 21, на которой электрическое напряжение генератора 10 кВ  будет повышено до значений 110, 220, 500 кВ или выше и подается по линиям электропередач ЛЭП до потребителей. Тепловые конденсационные электростанции имеют очень низкий КПД порядка 30-40%. Именно из-за низкого КПД работа конденсационных электростанций на привозном топливе экономически нецелесообразна. В большинстве случаев крупные конденсационные электрические станции называют Государственными районными электрическими станциями (ГРЭС) и сооружаются в районах с большими запасами низкосортного топлива, снабжая при этом электрической энергией потребителей, которые находятся на большом расстоянии от электростанций. 

elenergi.ru

Введение. Тепловые конденсационные электрические станции

Тепловые конденсационные электрические станции

курсовая работа

Тепловые конденсационные электрические станции (КЭС)

На тепловых электростанциях химическая энергия сжигаемого топлива преобразуется в котле в энергию водяного пара, приводящего во вращение турбоагрегат (паровую турбину, соединенную с генератором). Механическая энергия вращения преобразуется генератором в электрическую. Топливом для электростанций служат уголь, торф, горючие сланцы, а также газ и мазут. В отечественной энергетике на долю КЭС приходится до 60% выработки электроэнергии.

Мощность современных КЭС обычно такова, что каждая из них может обеспечить электроэнергией крупный район страны. Отсюда еще одно название электростанций этого типа - государственная районная электрическая станция (ГРЭС).

Основными особенностями КЭС являются:

- удаленность от потребителей электроэнергии, так как передача электроэнергии на дальние расстояния к месту потребления более выгодна, чем перевозка низкосортного топлива;

- блочный принцип построения электростанции.

Энергоблок представляет собой как бы отдельную электростанцию со своим основным и вспомогательным оборудованием и центром управления - блочным щитом. Связей между соседними энергоблоками по технологическим линиям обычно не предусматривается. Построение КЭС по блочному принципу дает определенные технико-экономические преимущества, которые заключаются в следующем:

облегчается применение пара высоких и сверхвысоких параметров вследствие более простой системы паропроводов, что особенно важно для освоения агрегатов большой мощности;

упрощается и становится более четкой технологическая схема электростанции, вследствие чего увеличивается надежность работы и облегчается эксплуатация;

уменьшается, а в отдельных случаях может вообще отсутствовать резервное тепломеханическое оборудование;

сокращается объем строительных и монтажных работ;

уменьшаются капитальные затраты на сооружение электростанции;

обеспечивается удобное расширение электростанции, причем новые энергоблоки при необходимости могут отличаться от предыдущих по своим параметрам.

Наибольшие энергетические потери на КЭС имеют место в основном пароводяном контуре, а именно в конденсаторе, где отработавший пар, содержащий еще большое количество тепла, затраченного при парообразовании, отдает его циркуляционной воде. Тепло с циркуляционной водой уносится в водоемы, т. е. теряется. Эти потери в основном определяют КПД электростанции, составляющий даже для самых современных КЭС не более 40-42%.

Современные КЭС оснащаются в основном энергоблоками 200 - 800 МВт. Применение крупных агрегатов позволяет обеспечить быстрое наращивание мощностей электростанций, приемлемые себестоимость электроэнергии и стоимость установленного киловатта мощности станции.

Наиболее крупные КЭС в настоящее время имеют мощность до 4 млн. кВт. Предельная мощность КЭС определяется условиями водоснабжения и влиянием выбросов станции на окружающую среду.

Современные КЭС весьма активно воздействуют на окружающую среду: на атмосферу, гидросферу и литосферу. Влияние на атмосферу сказывается в большом потреблении кислорода воздуха для горения топлива и в выбросе значительного количества продуктов сгорания. Наименьшее загрязнение атмосферы (для станций одинаковой мощности) отмечается при сжигании газа и наибольшее - при сжигании твердого топлива с низкой теплотворной способностью и высокой зольностью. Необходимо учесть также большие уносы тепла в атмосферу, а также электромагнитные поля, создаваемые электрическими установками высокого и сверхвысокого напряжения.

КЭС загрязняет гидросферу большими массами теплой воды, сбрасываемыми из конденсаторов турбин, а также промышленными стоками, хотя они проходят тщательную очистку.

Для литосферы влияние КЭС сказывается не только в том, что для работы станции извлекаются большие массы топлива, отчуждаются и застраиваются земельные угодья, но и в том, что требуется много места для захоронения больших масс золы и шлаков (при сжигании твердого топлива).

Влияние КЭС на окружающую среду чрезвычайно велико. Например, о масштабах теплового загрязнения воды и воздуха можно судить по тому, что около 60% тепла, которое получается в котле при сгорании всей массы топлива, теряется за пределами станции. Учитывая размеры производства электроэнергии на КЭС, объемы сжигаемого топлива, можно предположить, что они в состоянии влиять на климат больших районов страны.

турбогенератор электростанция автотрансформатор станция

radio.bobrodobro.ru

 

Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Конденсационные тепловые станции (КЭС). Конденсационные тепловые электрические станции реферат


Тепловые конденсационные электрические станции.

Количество просмотров публикации Тепловые конденсационные электрические станции. - 36

Общая энергетика.

Современные способы получения электрической энергии.

Тепловые конденсационные электрические станции.

Тепловые конденсационные электрические станции преобразовывают энергию органического топлива внача­ле в механическую, а затем в электрическую. Механиче­скую энергию упорядоченного вращения вала получают с помощью тепловых двигателœей, преобразующих энер­гию неупорядоченного движения молекул пара или газа.

Все тепловые двигатели подразделяются: по виду используемого рабочего тела - пар или газ;

по способу преобразования тепловой энергии в механическую— поршневой или ротор­ный (табл. 2.2). В поршневом способе для преобразова­ния используется потенциальная энергия рабочего тела,

Способ работы Рабочее тело
пар газ
Поршневой Паровая машина Двигатель внутреннего сгорания
Роторный Паровая турбина Газовая турбина

получаемая при его нагревании. В роторном способе используется кинœетическая энергия движущихся с боль­шой скоростью частиц рабочего тела.

Паровая машина была единственным двигателœем, используемым в промышленности и на транспорте в XVIII и XIX вв. Сегодня она практически не встречается, а широко применявшиеся в прошлом паро­возы и пароходы почти полностью сняты с производства.

Сегодня наибольшее распространение получили двигатели внутреннего сгорания, используемые на автомобильном транспорте. В стационарной энергетике двигатели внутреннего сгорания находят ограниченное применение.

На современных мощных ТЭС устанавливают паро­вые турбины,. Первая паровая турбина, предназначенная для вращения электрического трехфазного генератора, была установлена на Эльберфельдской электростанции в 1899 ᴦ. С тех пор началось развитие мощных паротур­бинных электростанций.

В качестве тепловых двигателœей на электрических станциях используют также газовые турбины.

Для повышения эффективности работы тепловых двигателœей стремятся максимально увеличить темпера­туру рабочего тела и его давление до значений, прием­лемых по условиям механической прочности конструк­ционных материалов.

В современных паровых установках, составляющих основу энергетики, используют пар при температуре— около 600°С и давлении 30 МПа. Для охлаждения рабо­чего тела (пара) обычно применяют холодную воду, которая понижает его температуру до 30— 40°С. При этом давле­ние пара резко падает.

На рис. 2.3 схемати­чески показаны стадии преобразования пер­вичной энергии органи­ческого топлива в элек­трическую.

Основные процессы теплового цикла паро­вых установок, как бы­ло показано ранее, про­исходят в следующих элементах: в парогенераторах — подвод теплоты, в турбинах — расширение пара, в кон­денсаторах— отвод теплоты, в турбинах — расширение пара, в конденсаторах — охлаждение. С помощью насо­сов высокого давления производится сжатие, при кото­ром конденсат нагнетается в парогенератор.

Схема тепловой станции, приведенная на рис. 2.1, более подробно показана на рис. 2.4 и 2.5 Работа стан­ции происходит следующим образом. Из бункера 1 (рис. 2.4) уголь поступает в дробильную установку 2, где он превращается в пыль. Угольная пыль вместе с

воздухом из воздуходувки 3' подается в топку S, Тепло­та͵ получаемая при сжигании угля, используется для преобразования воды в пар в трубах 4. Вода по змееви­ку 5 накачивается насосом 14 в барабан котла 5'. Пар, нагретый потоком горячих газов, уходящих в трубу 6, при высокой температуре и высоком давлении поступает сначала в первую ступень турбины 7, а затем во вторую ступень 8. В турбинœе энергия пара преобразуется в ме­ханическую энергию вращения ротора генератора 9, вы­рабатывающего электрическую энергию. Отработанный в турбинœе пар поступает в конденсатор 13, превращается в воду, которая насосом 14 подается в котел, и затем цикл превращения воды повторяется. Охлаждение пара в конденсаторе производится с помощью воды, забирае­мой из водоема (пруда или реки) 11, накачиваемой на­сосом 12 и вновь выбрасываемой в водоем. Продукты сгорания угля проходят через очистительные сооружения (не показанные на рис. 2.4), где выделяются зола, твер­дые частички несгоревшего угля и прочие примеси, а оставшиеся газы через трубу 6 выбрасываются в атмос­феру. Электрическая энергия, получаемая от статора генератора, отдается в электрическую систему через выводы 10.

На рис. 2.5 показана общая схема получения теплоты и преобразования ее в электрическую энергию.

Рассмотрим дополнительно работу одного из основ­ных элементов станции — парогенератора, в котором получают пар для питания станции. Современный паро­генератор представляет собой сложное техническое сооружение больших размеров, высота которого соизме­рима с высотой пятиэтажного дома. В топке парогенера­тора сжигается превращенный в мелкую пыль уголь, газ или распыленная нефть при температуре 1500—2000°С. Стоит сказать, что для наиболее полного сжигания топлива с помощью вентилятора в больших количествах подается подогре­тый воздух. Появляющаяся в процессе сгорания топлива теплота нагревает воду, превращает ее в пар и увеличи­вает его температуру и давление до расчетных значений. Использованные горячие газы дымососами вытягиваются из парогенератора и подаются в очистительные устройст­ва, а затем направляются в дымовую трубу. Вода, пода­ваемая в парогенератор, предварительно очищается от примесей, содержание которых допускается в меньшем количестве, чем в питьевой воде. Очистка воды произво­дится в специальных устройствах — питателях.

По конструктивному выполнению парогенераторы подразделяют на барабанные и прямоточные

В барабанном парогенераторе (рис. 2.6) имеется стальной барабан 3, в нижней части которого

находится вода, а в верхней части — пар. Размещено на реф.рфПо циркуляци­онной трубе 2 вода поступает в трубки экрана /, покры­вающие стенки топки 7.Трубки экрана выполняют стальными, небольшого диаметра (примерно 40 мм сна­ружи и 32 мм внутри), для того чтобы они смогли вы­держать большое давление пара. В крупном парогенера­торе каждый час испаряются сотни тонн воды и в связи с этим трубки имеют общую длину до 50 км.

Чтобы повысить эффективность работы парогенератора, вода перед подачей в барабан нагревается в эконо­майзере 5, а воздух перед подачей в топку подогревается горячими газами в воздухоподогревателœе 6. Выходящий из барабана пар дополнительно нагревается в паропере­гревателœе 4. _

В барабанном парогенераторе происходит естествен­ная циркуляция воды и пароводяной смеси за счёт их разных плотностей. С увеличением температуры и дав­ления пара уменьшается разность в плотностях воды и пара, что ухудшает их циркуляцию.

В прямоточном парогенераторе барабана нет. Циркуляция воды и пара создается насосами (рис. 2.7). Вода через водоподогреватель 3 поступает в трубы 1, расположенные в топке, превращается в пар, который затем подается в пароперегреватель 2 и далее в турбину. В воздухоподогревателœе 4 происходит подо­грев воздуха перед подачей его в топку. Прямоточные парогенераторы требуют качественного регулирования подачи воды. Вместе с тем, к питательной воде, используе­мой в парогенераторах этого типа, предъявляют очень высокие требования в отношении ее химической чистоты.

Прямоточные котлы получили широкое распростране­ние, так как они дешевле ба­рабанных. У барабанных пароге­нераторов при высоких давлени­ях (свыше 20 МПа) нарушается естественная циркуляция воды и пара.

Прямоточные парогенераторы стали применяться в нашей стра­не в 30-е годы по инициативе Л. К. Рамзина, который разрабо­тал ряд оригинальных конструкций котлов.

Турбины. Полученный в паро­генераторах перегретый пар при температуре ~600°С и давлении 30 МПа по паропроводам переда­ется в сопла. Сопла предназначе­ны для преобразования внутренней энергии пара в ки­нетическую энергию упорядоченного движения молекул.

В случае если перед входом в сопло пар имел некоторую на­чальную скорость Со и начальное давление р1(рис. 2.8), то после выхода из сопла в результате расширения пара происходит увеличение его скорости до значения с1и уменьшение давления до значения р2. Температура пара также при этом значительно понижается.

После выхода из сопла пар подается на рабочие лопатки турбины. В случае если турбина активная, то между ее рабочими лопатками расширения пара не про­исходит, следовательно, давление пара не меняется (рис. 2.8). Абсолютная скорость движения пара умень­шается от с1 до с2вследствие вращения турбины со скоростью υ.

Конструктивно обычно турбина выполняется в виде нескольких ступеней, каждая из которых состоит из одного венца сопловых лопаток и одного венца рабочих лопаток. Сопловые и рабочие лопатки закреплены на окружностях одинакового радиуса.

У реактивной турбины или ступени происхо­дит расширение пара, проходящего через каналы рабо­чих лопаток. Учитывая зависимость отпоказателœей расширения пара в каналах турбины характе­ризуют ступенями реактивности. Сегодня турбины выполняют многоступенчатыми, причем в одной и той же турбинœе бывают как активные, так и реактивные (с различной степе­нью реактивности) ступени.

Изменение параметров пара в реактивной ступени турбины по­казано на рис. 2.9. В соплах тур­бины происходит частичное рас­ширение пара до промежуточного давления р1. Дальнейшее расши­рение пара до давления p2 проис­ходит в каналах между лопатка­ми. Абсолютная скорость пара в сопле увеличивается до значения сi, а в каналах между лопатками уменьшается из-за вращения лопаток до зна­чения С2.

Общий вид лопаток мощной паровой турбины пока­зан на рис. 2.10.

В реактивных турбинах помимо центробежных сил, возникающих при изменении скорости движения пара, на лопатки действуют реактивные силы, вызванные рас­ширением пара.

Появление реактивной силы можно показать на сле­дующем примере. Пусть в бак, установленный на телœежке (рис. 2.11), подведен пар под давлением, который в положении I равномерно действует на всœе стенки. В случае если убрать пробку, то равновесие бака сразу же нарушится. На правую стенку будет действовать неизменная сила, а сила, действующая на левую стенку, резко уменьшится, так как давление окружающей среды меньше, чем давление в баке. Пар устремится из бака, а телœежка под действием реактивной силы начнет двигаться вправо (положение II).

(Конденсаторы. Пар, выходящий из турбины, направ­ляют для охлаждения и конденсации в специальное устройство называемое конденсатором. Конденсатор пред­ставляет собой цилиндрический корпус, внутри которого имеется большое число латунных трубок. По трубкам протекает охлаждающая вода, поступающая в конден­сатор обычно при температуре 10—15°С и выходящая из него при температуре 20—25°С. Пар обтекает трубки сверху вниз, конденсируется и снизу удаляется. Давле­ние в конденсаторе поддерживается в пределах 3— 4 кПа, что достигается охлаждением пара.

Расход охлаждающей воды составляет примерно 50—100 кг на 1 кг пара. На электростанции мощностью 1 ГВт расходуется 40 м3/с охлаждающей воды, что при­мерно равно расходу воды в Москве-реке.

В случае если воду для охлаждения пара забирают из реки, подают в конденсатор, а затем сбрасывают в реку, то такую систему водоснабжения называют прямоточной. В случаях, когда воды в реке не хватает, сооружают пруд. С одной стороны пруда вода подается в конденса­тор, а с другой стороны пруда сбрасывается нагретая в конденсаторе вода.

В замкнутых системах водоснабжения для охлажде­ния воды, нагретой в конденсаторе, сооружают градир­ни, представляющие собой устройства высотой при­мерно 50 м. Вода вытека­ет струйками из отверстий лотков, разбрызгивается и, стекая вниз, охлажда­ется. Внизу расположен бассейн, в котором вода собирается и затем насо­сами подается в конден­сатор.

Тепловой баланс кон­денсационной электриче­ской станции. На ТЭС происходят многократные преобразования энергии, сопровождающиеся поте­рями. Экономичность про­цесса преобразования хи­мической энергии топлива в электрическую и потери на различных стадиях производства можно выявить из ана­лиза теплового баланса электрической станции. В случае если за 100% принять химическую энергию, получаемую при сжигании угля в топках котлов, то в среднем только 25% этой энергии превращается в электрическую (рис. 2.12). Наибольшие потери теплоты происходят в конденсаторе. С охлаждающей водой конденсатора уносится 55% теп­лоты.

referatwork.ru

Конденсационные тепловые станции (КЭС)

Лекция 2

Конденсационные тепловые станции (КЭС)

Зарисуем принципиальную схему КЭС.

В котел Кт подается топливо (уголь, газ, торф, сланцы), подогретый воздух и питательная вода (ее потери компенсируют химически очищенной водой ХОВ). Подача воздуха осуществляется дутьевым вентилятором ДВ, питательной воды – питательным насосом ПН. Образующиеся при сгорании топлива газы отсасываются из котла дымососом Д и выбрасываются в атмосферу через дымовую трубу высотой 100-250 м. Острый пар из котла подается в паровую турбину Тб, где, проходя через ряд ступеней, он совершает механическую работу – вращает турбину и жестко связанный с ней ротор генератора. Отработанный пар конденсируется в конденсаторе К, благодаря пропуску через него значительного количества холодной (5÷25°С) циркуляционной воды (расход этой воды в 50- 80 раз больше расхода пара через конденсатор).

Источником холодной воды могут быть река, озеро, искусственное водохранилище, а также специальные установки с охлаждающими башнями (градирнями) или брызгательными бассейнами (на мелких станциях), из которых охлаждающая вода подается в К циркуляционными насосами ЦН. Воздух, попадающий в К через неплотности, удаляется с помощью эжектора Э. Конденсат, образующийся в К, с помощью конденсаторного насоса КН подается в деаэратор Др, который предназначен для удаления из питательной воды газов, и, в первую очередь, кислорода, вызывающего усиленную коррозию труб котла. В деаэратор также подается химически очищенная вода ХОВ. После Др питательная вода с помощью питательного насоса ПН подается в котел.

Особенности КЭС:

1. Строятся по возможности ближе к месторождениям топлива.

2. Подавляющая часть энергии отданы в электрические сети повышенных напряжений (110-750 кВ).

3. Работают по свободному (т.е. не связанному с тепловыми потребителями) графику выработки электроэнергии. Мощность их может меняться от расчетного максимума до технологического минимума.

4. Низкоманевренны: разворот турбин и набор нагрузки из холодного состояния требует примерно 3-10 час.

5. Имеют относительно низкий КПД (=3040%).

Теплокафиционные электростанции

В отличие от КЭС, на ТЭЦ имеются значительные отборы пара, частично отработанного в турбине, на производственные и коммунально-бытовые нужды.

Коммунально-бытовые потребители обычно получают тепловую энергию от сетевых подогревателей (бойлеров) СП.

При снижении электрической нагрузки ТЭЦ ниже мощности на тепловом потреблении необходимая для потребителей тепловая энергия может быть получена с помощью редукционно-охладительной установки РОУ, питающейся острым паром котла. Чем больше отбор пара из турбины для теплофикационных нужд, тем меньше тепловой энергии уходит с циркуляционной водой и тем выше КПД электростанции. Следует отметить, что во избежание перегрева хвостовой части турбины через нее должен быть обеспечен во всех режимах пропуск определенного количества пара.

Особенности ТЭЦ:

1. Строятся вблизи потребителей тепловой энергии.

2. Обычно работают на привозном топливе.

3. Большую часть вырабатываемой электроэнергии выдают потребителям ближайшего района.

4. Работают по частично вынужденному графику выработки электроэнергии (т.е. график зависит от теплового потребителя).

5. Низкоманеврены (как и КЭС).

6. Имеют более высокий КПД до 6070%

Гидроэлектростанции

Мощность ГЭС зависит от расхода воды через турбину Q и напора Н (перепада уровней воды).

В естественных условиях концентрированные в определенном месте напоры встречаются крайне редко. Их могут создавать лишь водопады. Равнинные реки имеют обычно уклон свободной поверхности воды 5-10 см/км, а горные – 5-10 м/км. Поэтому ГЭС строят по плотинной или деривационной схеме. Плотинная схема предусматривает сооружение плотины, перегораживающей в выбранном створе русло реки. В результате создается разность уровней воды по сторонам плотины: верхнего (УВБ) и нижнего (УНБ) бьефа. На горных реках с большими уклонами концентрация напора осуществляется по деривационной схеме. В выбранном створе реки возводится плотина, создающая небольшой подпор и сравнительно малое водохранилище. Из него через водоприемник вода направляется в искусственный водовод – деривацию в виде открытого канала, туннеля или трубопровода. Из деривации вода поступает по практически вертикальным водоводам к турбинам ГЭС. В этой схеме напор создан не плотиной, а деривацией.

Особенности ГЭС:

1. Строятся там, где есть гидроресурсы и условия для строительства, что обычно не совпадает с местоположением электрической нагрузки.

2. Большую часть энергии отдают в электрические сети повышенных напряжений.

3. Работают по свободному графику (при наличии водохранилищ).

4. Высокоманеврены (разворот и набор нагрузки составляет примерно 3-5 мин).

5. Имеют высокий КПД (≈85%).

ГЭС в отношении режимных параметров имеют ряд преимуществ перед ТЭЦ и КЭС. Однако, большие капиталовложения и время строительства, а также соображения экологии и охраны окружающей среды привели к тому, что в последние годы строились в основном ТЭЦ и АЭС.

Другие похожие работы, которые могут вас заинтересовать.вшм>

7134. Лекция Тепловые электростанции и теплофикация 28 KB
  Пиковые котлы подогреватели включаются в работу периодически при повышенной тепловой нагрузке в периоды стояния низкой tsт. когда температуру в подающей магистрали тепловой сети 23 требуется поддерживать выше 120С. Охлажденная вода возвращается из тепловой сети по трубопроводу 24 и проходит грязевик 25. Подпиточный насос включается автоматически с помощью регулятора подпитки 27 который включает насос как только давление в обратном трубопроводе тепловой сети становится ниже требуемого.
3750. Лабораторная работа Тепловые эффекты растворения веществ 21.92 KB
  Работа выполняется двумя студентами. Получить у преподавателя соль, энтальпию растворения которой нужно определить (при определении энтальпии растворения кислоты или основания необходимо соблюдать технику безопасности).
5057. Курсовая Годовая бухгалтерская отчетность Муниципального унитарного предприятия «Тепловые сети» 52.09 KB
  В рыночных условиях залогом выживаемости хозяйствующего субъекта является финансовая устойчивость. Достижение финансовой устойчивости возможно на основе повышения эффективности производства. Повышение эффективности производства достигается на основе эффективного использования всех видов ресурсов и снижения затрат.
20164. Реферат Газы и тепловые машины. Идеальные и неидеальные газы. Силы Ван-дер-Ваальса 78.04 KB
  Идеальный газ это газ в котором молекулы можно считать материальными точками а силами притяжения и отталкивания между молекулами можно пренебречь. Опыты показывают что если уменьшить объем заполненный определенным количеством газа то давление в нем будет возрастать при условии что температура остается неизменной. Примерно 300 лет назад Бойль обнаружил что для большинства газов измерение давления связано с изменением объема простым соотношением. Изохорическим процессом называется процесс протекающий при постоянном объёме V.
15921. Контрольная Электрические станции 4.08 MB
  Под энергосистемой понимают совокупность электростанций электрических и тепловых сетей соединенных между собой и связанных общностью режима в непрерывном процессе производства преобразования и распределения электрической энергии и тепла при общем управлении этим режимом...
17547. Дипломная Расчет Автозаправочной станции 2.69 MB
  Огромная территория Российской Федерации требует развития и укрепления транспортной сети дорог для наращивания транспортных потоков. Применение сжиженного углеводородного газа пропан-бутан в качестве моторного топлива позволяет улучшить экологические характеристики автомобильного транспорта что особенно важно для крупных городов. Основанием для фундамента служит щебень известняка.2 Исходные данные проекта Разделом технологической части проекта предусмотрено: построение генерального плана участка принципиальной схемы работы АЗС...
12401. Дипломная Оборудование станции устройствами БМРЦ 69.3 KB
  Построение и работа схемы угловых реле. Контрольно-секционные и сигнальные реле. Включение блока реле направлений и групповых схем. Схема угловых реле.
11483. Дипломная СОВЕРШЕНСТВОВАНИЕ РАБОТЫ ПАССАЖИРСКОЙ СТАНЦИИ НА НАПРАВЛЕНИИ 228.37 KB
  Если раньше частые нарушения расписания движения поездов были связаны с высоким уровнем заполнения пропускной способности железных дорог, то сейчас, это связано в основном с высокой степенью износа подвижного состава и технических устройств, недостатками запасных частей.
12601. Курсовая Обслуживание и ремонт оборудования компрессорной станции №14 «Приводино» 442.83 KB
  На основе особых климатических условий района, где находится компрессорная станция, и технических исследований были предложены методы обслуживания и ремонта этого технологического предприятия. В работе рассмотрены мероприятия, направленные на охрану окружающей среды, охрану труда, требования по соблюдению промышленной безопасности для рабочего персонала предприятия. Проведена оценка потенциально возможных источников техногенных воздействий на окружающую среду.
11473. Дипломная РАЗРАБОТКА ТЕХНИКО-РАСПОРЯДИТЕЛЬНОГО АКТА СТАНЦИИ ГРАНИТ 541.4 KB
  Мощность элементов технической вооруженности железной дороги определяется объемами перевозок и качеством их использования. Так, численность парка грузовых вагонов зависит от их грузоподъемности, скорости движения поездов, быстроты обработки вагонов на станциях

Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.