Схема строения ферментов
Структурно-функциональная организация ферментов
Ферменты имеют белковую природу
Давно выяснено, что все ферменты являются белками и обладают всеми свойствами белков. Поэтому подобно белкам ферменты делятся на простые и сложные.
Простые ферменты состоят только из аминокислот – например, пепсин, трипсин, лизоцим.
Сложные ферменты (холоферменты) имеют в своем составе белковую часть, состоящую из аминокислот –апофермент, и небелковую часть – кофактор. Кофактор, в свою очередь, может называться коферментомили простетическойгруппой. Примером могут быть сукцинатдегидрогеназа(содержит ФАД) (в цикле трикарбоновых кислот), аминотрансферазы(содержат пиридоксальфосфат) (функция), пероксидаза(содержит гем). Для осуществления катализа необходим полноценный комплекс апобелка и кофактора, по отдельности катализ они осуществить … не могут.
Как многие белки, ферменты могут быть мономерами, т.е. состоят из одной субъединицы, и полимерами, состоящими из нескольких субъединиц.
В составе фермента выделяют области, выполняющие различную функцию:
1. Активный центр – комбинация аминокислотных остатков (обычно 12-16), обеспечивающая непосредственное связывание с молекулой субстрата и осуществляющая катализ. Аминокислотные радикалы в активном центре могут находиться в любом сочетании, при этом рядом располагаются аминокислоты, значительно удаленные друг от друга в линейной цепи.
У ферментов, имеющих в своем составе несколько мономеров, может быть несколько активных центров по числу субъединиц. Также две и более субъединицы могут формировать один активный центр.
У сложных ферментов в активном центре обязательно расположены функциональные группы кофактора.
В свою очередь в активном центре выделяют два участка:
· якорный (контактный, связывающий) – отвечает за связывание и ориентацию субстрата в активном центре,
· каталитический– непосредственно отвечает за осуществление реакции.
2. Аллостерический центр(allos – чужой) – центр регуляции активности фермента, который пространственно отделен от активного центра и имеется не у всех ферментов. Связывание с аллостерическим центром какой-либо молекулы (называемой активатором или ингибитором, а также эффектором, модулятором, регулятором) вызывает изменение конфигурации белка-фермента и, как следствие, скорости ферментативной реакции. В качестве такого регулятора может выступать продукт данной или одной из последующих реакций, субстрат реакции или иное вещество (см "Регуляция активности ферментов").
Аллостерические ферменты являются полимерными белками, активный и регуляторный центры находятся в разных субъединицах.
Изоферменты – это молекулярные формы одного и того же фермента, возникшие в результате небольших генетических различий в первичной структуре фермента. Различные изоферменты определяют скорость и направление реакции благодаря разному сродству к субстрату.
Например, димерный фермент креатинкиназа(КК) представлен тремя изоферментными формами, составленными из двух типов субъединиц: M (англ. muscle – мышца) и B (англ. brain – мозг). Креатинкиназа-1 состоит из субъединиц типа B и локализуется в головном мозге, креатинкиназа-2 – по одной М и В субъединице, активна в миокарде, креатинкиназа-3 содержит две М-субъединицы, специфична для скелетной мышцы.
Изоферменты креатинкиназы | Изоферменты лактатдегидрогеназы |
Также существует пять изоферментов лактатдегидрогеназы(роль ЛДГ) – фермента, участвующего в обмене глюкозы. Отличия между ними заключаются в разном соотношении субъединиц Н (англ. heart – сердце) и М (англ. muscle – мышца). Лактатдегидрогеназы типов 1 (Н4) и 2 (h4M1) присутствуют в тканях с аэробнымобменом (миокард, мозг, корковый слой почек), обладают высоким сродством к молочной кислоте (лактату) и превращают его в пируват. ЛДГ-4 (h2M3) и ЛДГ-5 (М4) находятся в тканях, склонных к анаэробномуобмену (печень, скелетные мышцы, кожа, мозговой слой почек), обладают низким сродством к лактату и катализируют превращение пирувата в лактат. В тканях с промежуточнымтипом обмена (селезенка, поджелудочная железа, надпочечники, лимфатические узлы) преобладает ЛДГ-3 (h3M2).
refac.ru
Ферменты — специфические белки, выполняющие в организме роль биологических катализаторов. Ферменты содержатся во всех клетках организма, где их концентрация значительно выше, чем в плазме крови. Наиболее часто в качестве объекта для исследования используется сыворотка крови, ферментный состав которой относительно постоянен и имеет разнообразное происхождение. Нормальные уровни активности ферментов в сыворотке крови отражают соотношение между биосинтезом и высвобождением ферментов (при обычном обновлении клеток), а также их клиренсом из кровотока. Повышение скорости обновления ферментов, повреждения клеток или их индуцирование обычно приводят к повышению активности ферментов в сыворотке крови. В сыворотке крови выделяют три группы ферментов: клеточные, секреторные и экскреторные.
Клеточные ферменты в зависимости от локализации в тканях делят на две группы:
1) неспецифические ферменты, которые катализируют общие для … всех тканей реакцииобмена и находятся в большинстве органов и тканей;
2) органоспецифические, или индикаторные, ферменты, специфичные только для определенного типа тканей.
В сыворотке крови активность клеточных ферментов низка или вообще отсутствует. При патологических процессах активность ферментов этой группы в сыворотке крови зависит от скорости высвобождения из клеток, которая в свою очередь определяется скоростью повреждения клеток, и от степени повреждения клетки.
Секреторные ферменты (церулоплазмин, псевдохолинэстераза, липопротеиновая липаза) поступают непосредственно в плазму крови и выполняют в ней специфические функции. Эти ферменты синтезируются в печени и постоянно высвобождаются в плазму. Их активность в сыворотке крови выше, чем в клетках или тканях. В клинической практике они представляют интерес, когда их активность в сыворотке крови становится ниже нормы за счет нарушения функции печени.
Экскреторные ферменты образуются органами пищеварительной системы (поджелудочной железой, слизистой оболочкой кишечника, печенью, эндотелием желчных путей). К ним относятся альфа-амилаза, липаза, щелочная фосфатаза и др. В норме их активность в сыворотке крови низка и постоянна. Однако при патологии, когда блокирован любой из обычных путей экскреции, активность этих ферментов в сыворотке крови значительно увеличивается.
Измеряемая активность ферментов может быть обусловлена действием весьма близких по свойствам, но несколько отличающихся друг от друга молекулярных форм ферментов. Эти различные формы фермента получили название изоферментов. Исследование изофер-ментов в клинической практике представляет интерес, когда отдельные изоферменты образуются в разных тканях (например, в сердце и печени преобладают различные изоферменты лактатдегидрогеназы).
Для количественной оценки активности ферментов Комиссия по ферментам Международного биохимического союза рекомендовала стандартную международную единицу (ME). За единицу активности любого фермента принимают то его количество, которое в оптимальных условиях катализирует превращение 1 мкмоль субстрата в 1 минуту (мкмоль/мин).
Об активности фермента судят по скорости катализируемой реакции при определенных температуре, рН среды, концентрации субстрата, поэтому при определении активности ферментов необходимо строго соблюдать одни и те же условия.
Ферментативная реакция чувствительна к изменениям температуры. Обычно ферментативную реакцию принято проводить при температуре, лежащей в пределах 25—40 °С, однако при разной температуре оптимальные значения рН, концентрации буфера, субстрата и других параметров различны. Максимальная активность большинства ферментов в организме человека наблюдается при температуре около 37 °С. Поэтому в целях международной стандартизации температуры измерения активности ферментов используется 37 °С [Marks D.B. et al., 1996]. Нормальные величины активности ферментов приведены ниже для 37 "С.
Ферменты исследуют в клинической практике для решения различных задач: установления диагноза, проведения дифференциальной диагностики, оценки динамики течения болезни, определения эффективности лечения и степени выздоровления; с прогностической целью. Известны три типа изменений активности ферментов при патологии: гиперфермен-темия — повышение и гипоферментемия — снижение активности ферментов по сравнению с нормой, дисферментемия — появление в крови ферментов, в норме не обнаруживаемых.
Аспартатаминотрансфераза (ACT) в сыворотке
refac.ru
ИЗОФЕРМЕНТЫ (изоэнзимы, изозимы), ферменты, катализирующие идентичные р-ции, но отличающиеся друг от друга строением и каталитич. св-вами. К изоферментам относят только те формы ферментов, появление к-рых связано с генетически детерминир. различиями в первичной структуре пептидной цепи. Более широкое понятие - множественные формы ферментов - включает как изоферменты, так и те формы ферментов, к-рые обладают св-вами изоферментов, но образуются в результате посттрансляц. модификаций. Последние могут осуществляться, напр., в результате гликозилирования, фосфорилирования, аденилирования, амидирования и деамидирования остатков глутаминовой и аспарагиновой к-т пептидной цепи, а также путем частичного протеолиза последней с образованием более низкомол. продуктов. В модификации пептидных цепей участвуют специфич. ферменты - аденилилтрансфераза, гликозилтрансферазы, протеазы, фосфокиназы и др. Изоферментам свойственны большинствуферментов, в т. ч. их мембраносвязанным формам, участвующим в метаболич. процессах, обеспечивающих выделение энергии при физ. нагрузках и покое (напр., для изоцитратдегидрогеназы, пируваткиназы, фруктозодифосфатальдолазы). Состав и соотношение форм изоферментов (спектр изоферментов) изменяется в зависимости от их локализации в органах и тканях организмов одного вида и даже в разных субклеточных органеллах одной и той же клетки. На спектр изоферментов оказывает влияние разное физиол. состояние организма и патологич. процессы, происходящие в нем. Поскольку изоферменты различаются по своим св-вам (оптимуму рН, активации ионами, по сродству к субстратам, ингибиторам, активаторам, кофакторам), то характер их распределения отражает регуляторные механизмы, контролирующие метаболизм. Так, напр., лактатдегидрогеназапредставлена в организме человека и животных пятью формами, каждая из к-рых представляет собой тетрамер, состоящий из субъединиц двух типов (a и b) в разных соотношениях. В сердце и печени представлена в осн. форма a4, а в мышцах - b4. Первая ингибируется избытком пировиноградной к-ты и поэтому преобладает в органах с аэробным типом метаболизма, вторая не ингибируется избытком этой к-ты и преобладает в мышцах с высоким уровнем гликолиза. О важной роли изоферментов в тонкой регуляции метаболич. процессов свидетельствует также изменение их спектра под влиянием разл. воздействий и физиол. состояний (охлаждение, гипоксия, денервация и др.). Для исследования спектра изоферментов используют ионообменную хроматографию, гель-фильтрацию, электрофорез и изоэлектрофокусирование, а также иммунохим. методы с использованием антител. Наиб. широко используется дискэлектрофорез в полиакриламидном геле. Однако применение только этого метода для поиска изоферментов недостаточно, т.к. он не позволяет выявить генетически разл. формы ферментов, не различающиеся по заряду. В связи с этим для более полной характеристики спектра изоферментов необходимо применять иммунохим. анализ и сравнивать спектры изоферментов мутантов. При выявлении изоферментов необходимо избегать условий выделения, при к-рых возможно возникновение артефактных форм. Так, для предотвращения частичного протеолиза в процессе выделения и хранения работу часто проводят в присут. ингибиторов протеаз. При разделении мембранных ферментов необходимо максимально снижать концентрацию детергента, что позволяет избежать появления новых форм в результате образования мицелл с разным содержанием искомого мембранного фермента. Процедура выделения изоферментов должна быть максимально сокращена по времени. Анализ спектра изоферментов в количественном и качественном отношениях в разл. тканях и органах человека имеет большое значение для диагностики нек-рых заболеваний, в т. ч. и связанных с генетич. аномалиями. Напр., инфаркт миокарда сопровождается резким увеличением активности двух форм лактатдегидрогеназ - a4 и b4, причем эта аномалия сохраняется длит. время и может служить показателем течения болезни. Разл. формы гепатита сопровождаются изменениями спектров аспартатаминотрансферазы, малатдегидрогеназы, щелочной фосфатазы и нек-рых др. ферментов. При диагностике ряда онкологич. заболеваний данные по анализу спектра изоферментов являются важным подтверждением диагноза и используются для прогноза метастазирования. Существование изоферментов установлено в 40-50-х гг. 20 в., когда были существенно усовершенствованы методы разделения белков. === Исп. литература для статьи «ИЗОФЕРМЕНТЫ»: Уилкинсон Дж., Изоферменты, пер. с англ., М., 1968; Редькин П. С., "Успехи современной биологии". 1974, т. 78. № 4. с. 42-56; Денисова Г. Ф., там же, 1977. т. 84. № 1, с. 22-37; Мецлер Д., Биохимия, пер. с англ., т. 2. М., 1980. с. 66-68. Н. Д. Габриэлян.
Страница «ИЗОФЕРМЕНТЫ» подготовлена по материалам химической энциклопедии.
stud24.ru
I) Определение активности органо-, органеллоспецифических ферментов
Применение ферментов в медицине
Ферменты в медицинской практике находят применение в качестве диагностических (энзимодиагностика) и терапевтических (энзимотерапия) средств.
Энзимодиагностика заключается в постановке диагноза заболевания или синдрома на основе определения активности ферментов в биологических жидкостях человека.
Принципы энзимодиагностики основаны на следующих позициях:
1. При повреждении клеток в биологических жидкостях увеличивается концентрация внутриклеточных ферментов поврежденных клеток;
2. Количество высвобождаемого фермента достаточно для его обнаружения;
3. При повреждении клеток активность ферментов в биологических жидкостях стабильна в течение длительного времени и отличается от нормальных значений;
…
4. Ряд ферментов являются органо- и органелоспецифичными.
Направления энзимодиагностики:
Ферменты плазмы крови можно разделить на 3 группы:
1) секреторные ферменты. Они секретируются определенными органами в плазму крови, в которой и выполняют свою функцию. Например: ЛПЛ, ЛХАТ, ферменты свертывающей и противосвертывающей системы крови;
2) экскреторные ферменты. Синтезируются в железах ЖКТ, выделяются в просвет кишечника, где обеспечивают процесс пищеварения. В кровь эти ферменты попадают при повреждении желез. Например, при панкреатите в крови обнаруживается панкреатическая липаза, амилаза, трипсин и т.д., при воспалении слюнных желез — амилаза слюны.
3) клеточные ферменты. К ним относятся общие, органо- и органеллоспецифические ферменты. Эти ферменты функционируют только внутри клеток, в плазму крови попадают, как правило, во время повреждения и гибели клеток. За счет естественной гибели клеток клеточные ферменты имеют в плазме крови постоянно низкую активность. Повреждение ткани вызывает многократное увеличение в плазме крови активности клеточных ферментов.
Экскреторные, клеточные органо- и органеллоспецифические ферменты, а также их изоферменты определяются в биохимических лабораториях для диагностики заболеваний ряда органов и тканей.
Аминотрансферазы. Локализуются в митохондриях, обеспечивают взаимопревращения аминокислот и кетокислот.
АСТ: асп+α-КГ↔ЩУК+глу. АСТ много в миокарде, по убыванию меньше в печени, скелетной мускулатуре, ЦНС, почках, семенниках. Активность в сыворотке крови 6-25МЕ/л.
АЛТ: ала+α-КГ↔ПВК+глу. АЛТ много в печени, поджелудочной железе, миокарде, скелетной мускулатуре. Активность в сыворотке крови 6-26МЕ/л.
Активность обеих трансаминаз в сыворотке крови возрастает в десятки раз при инфаркте миокарда (АСТ>АЛТ), при остром инфекционном гепатите (АЛТ>АСТ), а также при циррозе печени, мышечной дистрофии.
Информативными пробами являются креатинфосфокиназный и лактатдегидрогеназный тесты, относящиеся к некротическим ферментным методам. Их диагностическая ценность повысилась после внедрения в клиническую практику методов определения их изоферментов.
ЛДГ. Локализуется в цитозоле, обеспечивает взаимопревращения ПВК и лактата.
ЛДГ: ПВК+ НАДН2 ↔ лактат + НАД+. ЛДГ1 и ЛДГ2 наиболее активны в сердечной мышце и почках, ЛДГ4 ЛДГ5 — в скелетных мышцах и печени. Активность в сыворотке крови 55-140МЕ/л.
При инфаркте миокарда в сыворотке крови резко повышается активность ЛДГ1 и ЛДГ2, а при поражениях скелетной мускулатуры и печени (гепатит, отравления хлорорганическими соединениями) повышается активность ЛДГ4 ЛДГ5.
Креатинкиназа (КК). Локализуется в цитозоле, митохондриях, миофибриллах.
КК: Креатин + АТФ ↔ креатинфосфат + АДФ. Изофермент КК-ВВ находиться преимущественно в головном мозге, МВ – в миокарде, ММ – в скелетных мышцах. Активность в сыворотке крови КК в норме до 90МЕ/л.
В сыворотке крови КК-ММ повышается при повреждении скелетных мышц (при прогрессирующей мышечной дистрофии в 50 раз), КК-МВ — при инфаркте миокарда. КК-ВВ не проходит гематоэнцефалический барьер и не имеет значения для диагностики патологий ЦНС.
В сыворотке крови повышена активность амилазы при остром панкреатите, кисте поджелудочной железы; γ-глутамилтранспептидазы — при остром инфекционном или токсическом гепатите, хроническом гепатите, циррозе печени; кислой фосфатазы — при карциноме простаты; щелочной фосфатазы — при заболеваниях костей, закупорке желчных протоков, при беременности и у детей.
Определение активности ферментов с диагностической целью проводят также в моче и в биоптатах органов и тканей.
refac.ru