Начальная

Windows Commander

Far
WinNavigator
Frigate
Norton Commander
WinNC
Dos Navigator
Servant Salamander
Turbo Browser

Winamp, Skins, Plugins
Необходимые Утилиты
Текстовые редакторы
Юмор

File managers and best utilites

Основы гидравлики. Гидравлические машины реферат


Гидравлические машины

7.4. Баланс энергии в насосах

Баланс мощности в насосе наглядно можно представить в виде схемы, представленной на рис 7.7.

Рис. 7.7. Баланс мощности насоса

Мощность, которая подводится к валу насоса называется подведенной. Она равна произведению крутящего момента на валу на его угловую скорость

NП = MКРω

Мощность, которую мы получаем от насоса в виде потока жидкости под давлением называется полезной мощностью насоса (в дальнейшем просто мощностью)

NП = QHPH

Отношение мощности насоса к подведенной мощности называется общим КПД насоса

а разность NП - NH = Nпот называется потерями мощности в насосе. Потери мощности в насосе делятся на объемные, механические и гидравлические.

Потери мощности на внутренние утечки и неполное заполнение камер насоса

Nоб = (Qут + Qнеп)PH

Объемный КПД насоса определится из соотношения

Для современных насосов объемный КПД находится в пределах 0,92…0,96. Значения КПД приведены в технических характеристиках насосов.

Механические КПД характеризует потери на терние в подвижных соединениях между деталями насоса. При относительном перемещении соприкасающихся поверхностей в зоне их контакта всегда возникает сила трения, которая направлена в сторону, противоположную движению. Эта сила расходуется на деформацию поверхностного слоя, пластическое оттеснение и на преодоление межмолекулярных связей соприкасающихся поверхностей.

Мощность, затраченная на преодоление сил трения, определяется

Nтр = Mтрω,

где Мтр - момент трения в насосе; ω - угловая скорость вала насоса.

Механический КПД определяется из соотношения

Для современных насосов механический КПД также находится в пределах 0,92…0,96.

Гидравлический КПД характеризует потери на деформацию потока рабочей жидкости в напорной камере и на трение жидкости о стенки сосуда. Эти потери примерно на порядок ниже механических потерь на трение и часто в инженерных расчетах не учитываются или объединяются с механическими потерями на трение. В этом случае объединенный КПД называется гидромеханическим.

Мощность, затраченная на гидравлические потери, определится

Nг = QH ( PK - PH ),

где PК - давление в напорной камере насоса;PН - давление в напорной гидролинии на выходе из насоса.

Гидравлический КПД определяется из соотношения

Общий КПД насоса равен произведению КПД объемного, гидравлического и механического

η = ηоб + ηмех + ηг

Таким образом, баланс мощности насоса дает представление о потерях, возникающих в насосе, общем КПД и всех его составляющих.

7.5. Обозначение элементов гидро- и пневмосистем

Кроме насосов и гидромоторов существуют и другие разнообразные по конструкции и назначению гидроэлементы. Одни управляют потоком рабочей жидкости, другие служат для обеспечения безотказной работы гидросистем и т.д. Совокупность этих устройств называется гидроприводом и требует отдельного изучения. Все гидроэлементы имеют свое условное обозначение, из которых составляются гидросхемы по аналогии с электрическими схемами.

Ниже приводятся условные обозначения основных гидроэлементов.

Таблица 7.1

Условные обозначения основных гидроэлементов

На рис. 7.8 изображен составленный из условных обозначений пример гидравлической схемы привода поворота стрелы челюстного погрузчика.

Схема состоит из бака, нерегулируемого гидромотора, трехпозиционного гидрораспределителя, двух регулируемых дросселей с параллельно подключенными к ним обратными клапанами, двух гидроцилиндров, фильтра и предохранительного клапана.

Рис.7.8. Гидросхема привода поворота стрелы

Принцип работы гидропривода заключается в следующем. Из бака рабочая жидкость (масло) забирается насосом и подается к гидрораспределителю. В нейтральном положении золотника гидрораспределителя при работающем насосе на участке трубопровода между насосом и распределителем начинает увеличиваться давление, при этом срабатывает предохранительный клапан и жидкость сливается обратно в бак. При смене позиции золотника (нижняя позиция на схеме) открываются проходные сечения в гидрораспределителе, и жидкость начинает поступать в полости нагнетания гидродвигателей (поршневые полости гидроцилиндров). Из штоковой полости гидроцилиндров масло по гидролинии слива проходит через регулируемые дроссели, гидрораспределитель и, очищаясь фильтром, попадает на слив в бак.

Скорость поступательного движения штоков гидроцилиндров регулируется дросселями. Реверсирование движения штоков осуществляется путем переключения позиций гидрораспределителя. При обратном движении штоков без нагрузки их скорость не регулируется и зависит от расхода рабочей жидкости в штоковые полости. При аварийной остановке штоков (например, непреодолимое усилие) давление в системе возрастает, вызывая тем самым открытие предохранительного клапана и сброс рабочей жидкости в бак.

Проверить себя ( Тест )

Наверх страницы

gidravl.narod.ru

Гидравлические машины. Основные определения и классификация.

Гидравлические машины



Классификация гидравлических машин

Гидравлические машины - устройства для преобразования механической энергии в энергию потока и наоборот - для преобразования энергии движущейся жидкости в механическую энергию. По функциональному назначению гидравлические машины подразделяют на две основные группы:

  • насосы;
  • гидравлические двигатели.

***

Насосы

Насосы являются одной из самых распространенных разновидностей машин, применяемых практически во всех отраслях машиностроения, строительства, промышленности и сельского хозяйства. гидравлические машины Их применяют в гидромеханических конструкциях многих механизмов и агрегатов, в трубопроводах разного назначения (нефтепроводы, газопроводы, транспортные трубопроводы и т. п.), в системах водоснабжения, отопления, охлаждения, вентиляции, в котельных установках, бытовой технике и т. д.

Насосы (как и гидродвигатели) применяют в гидропередачах, где основным элементом является гидравлический привод, назначение которого состоит в передаче энергии жидкости от насоса к исполнительному рабочему органу (гидромотору, гидроцилиндру и т. п.). Несколько иное назначение у насосов, применяемых для транспортировки жидкостей и газов (иногда - помещенных в жидкую или газообразную среду твердых объектов) по трубопроводам - здесь насосы служат для сообщения энергии движения транспортируемому веществу.

Насос преобразует механическую энергию приводного двигателя (электрического, теплового двигателя, ручного привода и т. п.) в энергию потока рабочей жидкости, т. е. насос является источником питания гидравлического привода или гидросистемы.

Согласно ГОСТ 17398-72 «Насосы. Термины и определения» по принципу действия и по виду сообщаемой жидкости энергии насосы подразделяют на две основные группы:

  • насосы динамические;
  • насосы объемные.

Динамические насосы преобразуют механическую энергию приводного электродвигателя преимущественно в кинетическую энергию потока рабочей жидкости за счет увеличения ее скорости. К динамическим относят насосы, перемещающие жидкость посредством увеличивающего ее кинетическую энергию силового воздействия (лопатки и лопасти рабочего колеса, внешнее силовое поле, внешний поток, обладающий большей кинетической энергией и т. п.). Характерная особенность динамических насосов - перемещающаяся в них жидкость имеет постоянное сообщение с входным и выходным патрубками, что конструктивно отличает их от насосов второй группы - объемных.

К динамическим относятся лопастные насосы, электромагнитные (использующие магнитное поле для ускорения потока жидкости), а также насосы, использующие силы трения и инерции (струйные, вихревые, лабиринтные, шнековые, червячные и т. п.).

Особую группу широко распространенных динамических насосов составляют насосы лопастные, передающие энергию жидкости посредством вращающегося рабочего органа - лопастного колеса. Передача энергии в таких насосах осуществляется при динамическом взаимодействии лопастей колеса с обтекающей их жидкостью.

К лопастным относятся насосы центробежные, осевые и диагональные. Центробежными называют лопастные насосы с движением жидкости через рабочее колесо от центра к периферии, осевыми - лопастные насосы с движением жидкости через рабочее колесо вдоль его оси. Примером осевого лопастного насоса может послужить водометный движитель судна, винт которого является рабочим колесом.

***



Объемные насосы предназначены для преобразования механической энергии приводного электродвигателя преимущественно в потенциальную энергию потока рабочей жидкости за счет увеличения ее давления. К объемным относят насосы, принцип работы которых основан на увеличении внешнего давления на замкнутый объем жидкости со стороны ограничивающих замкнутый объем поверхностей, и периодическим вытеснением жидкости из замкнутого объема в выходной патрубок (напорную магистраль).

объемные насосы

Увеличение давления осуществляется за счет уменьшения замкнутого объема по пути переноса жидкости от входной (питающей) магистрали к напорной магистрали. При этом замкнутый объем попеременно сообщается то с входом (питающей магистралью), то с выходом (напорной магистралью) насоса.

Примеры наиболее распространенных конструкций объемных насосов: поршневые, плунжерные, диафрагменные, роторные и шестеренные. К объемным насосам также относятся некоторые специальные устройства, служащие для подъема и перемещения жидкостей:

  • гидравлические тараны, работа которых основана на принципе использования давления, получающегося при гидравлическом ударе;
  • эрлифты - устройства для подъема жидкостей в скважинах посредством нагнетания воздуха в скважины и создания разности объемных масс в столбе воздухонасыщенной поднимаемой жидкости и жидкости, окружающей этот воздухонасыщенный столб.

Применение насосов для хозяйственных нужд человека известно с древних времен. Первые конструкции этих машин использовали мускульный (ручной или с использованием животных) привод и предназначались для водозабора из скважин, водоемов и т. п. В настоящее время разработаны сотни разнообразных конструкций насосов, способных удовлетворить самые разнообразные потребности в машиностроении, медицине, технике, строительстве и других областях человеческой деятельности.

По создаваемому напору различают низконапорные (до 20 м), средненапорные (20..60 м) и высоконапорные (свыше 60 м) насосы. Кроме того, насосы классифицируют по мощности и подаче (микронасосы, мелкие, малые, средние, крупные), по быстроходности (тихоходные, нормальные, быстроходные), по конструктивным и некоторым другим параметрам.

***

Гидравлические двигатели

Гидравлический двигатель преобразует энергию потока рабочей жидкости, получаемой от насоса, в механическую энергию выходного звена (например, штока цилиндра или вала гидравлического мотора), которые непосредственно или через механическую передачу приводят в действие рабочий орган машины. Таким образом, двигатель является потребителем энергии жидкости в гидравлическом приводе.

Гидравлические двигатели, как правило, имеют "конструктивных близнецов" среди насосов, т. е. большая часть известных конструкций гидравлических насосов может быть использована в качестве гидродвигателя. Это означает, что практически любой насос может выполнять две функции - передавать энергию жидкости от механических устройств, или отбирать ее у движущейся жидкости, передавая механическим устройствам. По этой причине гидродвигатели, как и гидронасосы, можно классифицировать на две основные группы - динамические (крыльчатки, турбины и т. п.) и объемные (по аналогу с объемными насосами). Несколько особняком стоят объемные гидравлические двигатели - гидроцилиндры, которые, впрочем, тоже можно использовать и в качестве насосов.

***

Основными рабочими параметрами, характеризующими гидравлические машины и режимы их работы, являются напор (или давление), подача (для насоса) или расход (для гидродвигателя), мощность (потребная и полезная), а также коэффициент полезного действия.

***

Объемные насосы



k-a-t.ru

Читать реферат по технологии машиностроения: "Гидравлика и гидравлические машины"

назад (Назад)скачать (Cкачать работу)

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

КРАСНОТУРЬИНСКИЙ ИНДУСТРИАЛЬНЫЙ КОЛЛЕДЖ

КОНСПЕКТ ПО ДИСЦИПЛИНЕ

«Гидравлика и гидравлические машины»

для специальности № 1006

Теплоснабжение и теплотехническое оборудование

Краснотурьинск

2005г.

Одобрена:Составлен в соответствии

цикловой комиссиейс Государственными требованиями

теплотехнических дисциплинк минимуму содержания и уровню

подготовки выпускника по

специальности 1006

Заместитель директора по

Председательучебной работе:

цикловой комиссии

_________________Иванченко В.А._______________Ажимов В.И.

> ---------- 2005г__________ 2005г

Протокол №

Автор: Иванченко В.А.Преподаватель

Краснотурьинского

индустриального колледжа

Рецензенты:Уразов Р. М.Заместитель начальника ПТО БТЭЦ

Преподаватель Краснотурьинскогоиндустриального колледжа

Петрова О.Г.

Содержание

Раздел 1. Основы гидравлики

1 Физические свойства жидкостей…………………………………………………4

2Гидростатика. Гидростатическое давление и его свойства……………………6

3 Основное уравнение гидростатики………………………………………………6

4 Определение давления жидкости в открытом и закрытом сосуде……………6

5 Давление жидкости на плоские стенки. Гидравлический парадокс…………… 7

6 Гидравлический пресс……………………………………………………………7

7 Приборы для измерения давления…………………………………………………8

8 Гидродинамика. Основные понятия……………………………………………….9

9 Расход и средняя скорость………………………………………………………10

10 Уравнение неразрывности…………………………………………………………11

11 Уравнение Бернулли……………………………………………………………….11

12 Графики уравнения Бернулли…………………………………………………… 12

13 Приборы для измерения и скорости жидкости………………………………… 12

14 Число Рейнольдса………………………………………………………………….14

15 Шероховатость стенок трубопроводов…………………………………………14

16 Определение потерь напора по длине…………………………………………….15

17 Местные сопротивления…………………………………………………………15

18 Определение суммарных потерь напора………………………………………….16 19 Назначение и классификация трубопроводов……………………………………16

20 Трубопроводы, работающие под вакуумом……………………………………17

21 Гидравлический удар………………………………………………………………18

22 Истечение жидкости из отверстия и насадок…………………………………….19

Раздел 2. Гидравлические машины

1 Общие понятия о гидравлических машинах………………………………………22

Поршневые гидравлические машины

2 Принципиальная схема поршневых насосов………………………………………………………………………………22

3 Классификация поршневых насосов……………………………………………23

4 Производительность поршневых насосов………………………………………………………………..……………… 23

5 Графики подачи поршневых насосов……………………………………………24

6 Воздушные колпаки………………………………………………………………25

7 Индикаторная диаграмма………………………………………………………… 25

8 Мощность насосов………………………………………………………………… 26

9 Эксплуатация поршневых насосов………………………………………………26

Лопастные гидравлические машины

10 Центробежные насосы. Принцип действия…………………………………… 28.

11 Классификация центробежных насосов…………………………………………28

12 Насосы ТЭС……………………………………………………………………… 30

13 Основное уравнение центробежного насоса…………………………………… 31

14 Влияние формы лопаток на развиваемый напор………………………………32

15 Давление насоса, определяемое по показаниям приборов…………………… 33

16 Закон пропорциональности……………………………………………………….34

17 Закон подобия……………………………………………………………………34

18 Осевое усилие и способы его уменьшения………………………………………35

19 Кавитация. Высота установки насоса……………………………………………36

20 Характеристика центробежного насоса………………………………………… 37

21 Параллельная и последовательная работа насосов…………………………….38

22 Напор насоса, определяемый при проектировании…………………………… 39

23 Основные неполадки в работе насоса и их устранение……………………… 39

25 Правила техники безопасности при обслуживании центробежных насосов….41

25 Источники информации………………………………………………………… 43

Гидравлика – инженерная дисциплина, занимающаяся изучением законов покоя и движение жидкости, ее взаимодействия с твердыми телами.

Гидравлика подразделяется на две части – гидростатику и гидродинамику. Гидростатика изучает законы покоящейся жидкости, гидродинамика – законы движущейся жидкости.

Физические свойства жидкостей

Жидкостями называют физические тела, легко изменяющие свою форму под действием сил самой незначительной величины. В отличие от твердых тел они характеризуются весьма большой подвижностью частиц. Жидкости обладают способностью принимать форму сосуда, в который они налиты. Различают капельные жидкости и газы. Первые представляют собой жидкости, встречающиеся в природе и применяемые в технике: вода, бензин, нефть и пр. Все капельные жидкости трудно поддаются сжатию. При изменении давления температуры их объем под влиянием указанных факторов в значительной степени. В гидравлике обычно изучают капельные жидкости.

Плотность жидкости

. Плотностью однородной жидкости называется количество массы, содержащийся в единице ее объема.

,

Плотность жидкости зависит от рода жидкости и температуры.

Вода р =1000

Ртуть р = 13560

Нефть р =680-900

tp

Плотность можно определить при помощи прибора ареомеметра

.

Удельный объём жидкости

. . Удельный объём – объем жидкости, занимаемый единицей ее массы. Удельный объем есть величина, обратная плотности.

V=

Коэффициент температурного расширения

Коэффициент температурного расширения

Зависит от рода жидкости и интервала температур

Вода t от 100 до 200CР= 0.1 мПа

= 0.00015

T от 100 до 200CР=10 мПа

= 0.000165

Коэффициент объёмного сжатия

. Коэффициент объёмного сжатия сжимаемого жидкости характеризуется коэффициентом объемного сжатия, представляющая собой отношение изменения объема жидкости к первоначальному объему при изменении давления на 1 Па

вода = [Па-1]

нефть= [Па-1]

ртуть= [Па-1]

Ввиду малой величины, жидкость практически не сжимаемая, исключение в тех случаях, когда требуется точное значение, например при научных разработках, а также при гидравлических испытаниях.

. Вязкость жидкости.

Вязкость – свойство жидкости оказывать сопротивление относительному сдвигу частиц жидкости.

Вязкость характеризуется следующими коэффициентами:

1.- Кинематический коэффициент вязкости

(стокс)

2. Динамический коэффициент вязкости

3. - Градус вязкости условной

- время истечения 200 мл. Рассматриваемой жидкости и калиброванного отверстия вискозиметра в секунду.

Зная градус вязкости условной, можно определить по формуле:

Вязкость зависит от рода жидкости, температуры и давления.

Вязкость жидкости применяется по справочнику.

ГИДРОСТАТИКА

Гидростатическое давление и его свойства.

Гидростатическим давлением называется давление жидкости на единицу площади.

Свойства гидростатического давления:

1. Гидростатическое давление действует нормально к площадке, воспринимающей его и направлена внутрь жидкости.

Рх=0

Px

P Py

2.Гидростатическое давление жидкости не зависит от ориентации площадки, на которую оно действует, т.е. гидростатическое давление действует одинаково по всем направлениям.

3. Гидростатическое давление жидкости зависит от глубины погружения.

referat.co


Смотрите также

 

..:::Новинки:::..

Windows Commander 5.11 Свежая версия.

Новая версия
IrfanView 3.75 (рус)

Обновление текстового редактора TextEd, уже 1.75a

System mechanic 3.7f
Новая версия

Обновление плагинов для WC, смотрим :-)

Весь Winamp
Посетите новый сайт.

WinRaR 3.00
Релиз уже здесь

PowerDesk 4.0 free
Просто - напросто сильный upgrade проводника.

..:::Счетчики:::..

 

     

 

 

.