Электрическое напряжение. Электрическое напряжение реферат


Электрическое напряжение. | Бесплатные курсовые, рефераты и дипломные работы

Читайте также:
  1. ВИДЫ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ: ТЕРМИЧЕСКОЕ, ЭЛЕКТРИЧЕСКОЕ, БИОЛОГИЧЕСКОЕ И МЕХАНИЧЕСКОЕ
  2. Вопрос 1. Электрическое напряжение, потенциал и напряженность электрического поля (определение, единицы измерения).
  3. Постоянный электрический ток. Условия его существования. Сила тока. Напряжение. Сопротивление.
  4. Сила и плотность тока. Электродвижущая сила и напряжение.
  5. Сила и плотность тока. Электродвижущая сила и напряжение.
  6. Удельное электрическое сопротивление горных пород.
  7. Электрическое поле Земли
  8. Электрическое поле. Взаимодействие заряженных тел.
  9. Электрическое поле. Напряженность электрического поля.

Потенциал точки электрического поля это энергетическая характеристика … точки поля, величина скалярная, но имеющая знак.

 

Рисунок 1.6 – Потенциал электрического поля одного заряда

 

Внесём в точку М поля заряда Q пробный q, увидим что на него действует сила Fм, которая стремится вытолкнуть q из точки М в бесконечность. Если q не закреплён, он начнёт перемещаться под действием этой силы => будет совершаться работа, а это возможно только при наличии энергии => электронное поле в точке M обладает потенциальной энергией. Определим её величину, вычислив совершаемую при этом работу. Чтобы применить эту формулу, необходимо учесть, что F определяется по закону Кулона и зависит от r2 между Q и q; а это расстояние всё время меняется, поэтому вычисляем сначала работу на очень малом перемещении, настолько малом, что силу можно считать не изменившейся по величине. На каждом последующем перемещении величина А определяется по такой же формуле, только изменяется расстояние. А отношение этой работы (энергии) к величине неперемещаемого заряда и есть характеристика точки поля, называемого потенциалом.

Потенциал точки электрического поля – это физическая величина, численно равная работе по перемещению единичного заряда из данной точки поля в бесконечность.

Потенциал бесконечно удалённой от заряда точки равен нулю, но нулевой потенциал можно приписать любой точке (как точке отсчёта) в технике за нулевой потенциал принимают потенциал поверхности земли.

Знак потенциала точки определяется знаком заряда поля, вокруг которого этот потенциал определяется.

Если рассматривается поле двух или нескольких точечных зарядов, то потенциал в каждой точке определяется как алгебраическая сумма потенциалов полей каждого из зарядов в отдельности.

Если пробный заряд перемещается из одной точки поля в другую точку поля (из M в N), то совершённая при этом работа определяется

— разность потенциалов двух точек электрического поля называют электрическим напряжением между этими точками – это физическая величина, численно равная работе по перемещению единичного заряда из одной точки поля в другую.

Различие между напряжённостью и напряжением

Е(В/м) напряжённость U(м) напряжение
1 Силовая характеристика 1. Энергетическая характеристика
2. Векторная величина 3. Скалярная величина
4. Относится к одной, каждой точке поля 3. Относится к двум точкам поля

 

 

Связь между E и U устанавливают только для однородного поля

| следующая лекция ==>
Закон Кулона | Графическое изображение поля

refac.ru

Реферат Разность потенциалов

скачать

Реферат на тему:

План:

Введение

Напряже́ние между точками A и B электрической цепи или электрического поля — отношение работы электрического поля при переносе пробного электрического заряда из точки A в точку B к величине пробного заряда.

U_{AB} =\frac{A^{field}_{q:A->B}}{q}

При этом считается, что перенос пробного заряда не изменяет распределения зарядов на источниках поля (по определению пробного заряда). В потенциальном электрическом поле эта работа не зависит от пути, по которому перемещается заряд. В этом случае электрическое напряжение UAB между двумя точками совпадает с разностью потенциалов между ними.

Альтернативное определение — U_{AB}=\int\limits_A^B (\vec E,d\vec l)

— интеграл от проекции поля эффективной (напряжённости поля ~\vec E) (включающего сторонние поля) на расстояние между точками A и B вдоль заданной траектории, идущей из точки A в точку B. В электростатическом поле значение этого интеграла не зависит от пути интегрирования и совпадает с разностью потенциалов.

Единицей измерения напряжения в системе СИ является вольт.

Напряжение показывает, какую работу совершает суммарное поле сторонних и кулоновских сил при перемещении единичного положительного заряда из одной точки в другую.

1. Напряжение в цепях постоянного тока

Напряжение в цепи постоянного тока определяется так же, как и в электростатике.

2. Напряжение в цепях переменного тока

Для описания цепей переменного тока применяются следующие понятия:

2.1. Мгновенное напряжение

Мгновенное напряжение есть разность потенциалов между двумя точками, измеренная в данный момент времени. Оно является функцией времени:

u = u(t)

2.2. Амплитудное значение напряжения

Амплитуда напряжения есть максимальное по модулю значение мгновенного напряжения за весь период колебаний:

UM = max( | u(t) | )

Для гармонических (синусоидальных) колебаний напряжения мгновенное значение напряжения выражается как:

u(t) = UMcos(ωt + φ) Для сети со среднеквадратичным значением 220в амплитудное равно приблизительно 311,127в

2.3. Среднее значение напряжения

Среднее значение напряжения (постоянная составляющая напряжения) определяется за весь период колебаний, как:

U_m=\frac{1}{T}\int_0^T u(t) dt

Для чистой синусоиды среднее значение напряжения равно нулю.

2.4. Среднеквадратичное значение напряжения

Среднеквадратичное значение (устаревшее наименование: действующее, эффективное) наиболее удобно для практических расчётов, так как на линейной активной нагрузке оно совершает ту же работу, что и равное ему постоянное напряжение:

U_q=\sqrt{\frac{1}{T}\int\limits_0^T u^2(t) dt}

Для синусоидального напряжения справедливо равенство:

U_q = {1 \over \sqrt{2}}U_M \approx 0,707U_M; U_M = \sqrt{2}U_q \approx 1,414U_q

В технике и быту при использовании переменного тока под термином «напряжение» имеется в виду именно эта величина, и все вольтметры проградуированы исходя из её определения. Однако конструктивно большинство приборов измеряют не среднеквадратичное, а средневыпрямленное (см. ниже) значение напряжения, поэтому для несинусоидального сигнала их показания могут отличаться от истинного значения.

2.5. Средневыпрямленное значение напряжения

Средневыпрямленное значение есть среднее значение модуля напряжения:

U_m=\frac{1}{T}\int\limits_0^T |u(t)| dt

Для синусоидального напряжения справедливо равенство:

U_m = {2 \over \pi}U_M (\approx 0,637U_M) = {2\sqrt{2} \over \pi}U_q (\approx 0,9U_q)

На практике используется редко, однако большинство вольтметров переменного тока (те, в которых ток перед измерением выпрямляется) фактически измеряют именно эту величину, хотя их шкала и проградуирована по среднеквадратичным значениям.

3. Напряжение в цепях трёхфазного тока

В цепях трёхфазного тока различают фазное и линейное напряжения. Под фазным напряжением понимают среднеквадратичное значение напряжения на каждой из фаз нагрузки, а под линейным — напряжение между подводящими фазными проводами. При соединении нагрузки в треугольник фазное напряжение равно линейному, а при соединении в звезду (при симметричной нагрузке или при глухозаземлённой нейтрали) линейное напряжение в \sqrt{3} раз больше фазного.

На практике напряжение трёхфазной сети обозначают дробью, в знаменателе которой стоит линейное напряжение, а в числителе — фазное при соединении в звезду (или, что то же самое, потенциал каждой из линий относительно земли). Так, в России наиболее распространены сети с напряжением 220/380 В; также иногда используются сети 127/220 В и 380/660 В.

4. Стандарты

Объект Тип напряжения Значение (на вводе потребителя) Значение (на выходе источника)
Электрокардиограмма Импульсное 1-2 мВ -
Телевизионная антенна Переменное высокочастотное 1-100 мВ -
Батарейка AA («пальчиковая») Постоянное 1,5 В -
Литиевая батарейка Постоянное 3 В -
Управляющие сигналы компьютерных компонентов Постоянное 3,5 В, 5 В -
Батарейка типа 6F22 («Крона») Постоянное 9 В -
Силовое питание компьютерных компонентов Постоянное 12 В -
Электрооборудование автомобиля Постоянное 12/24 В -
Блок питания ноутбука и жидкокристаллических мониторов Постоянное 19 В -
Сеть «безопасного» пониженного напряжения для работы в опасных условиях Переменное 36-42 В -
Напряжение наиболее стабильного горения свечи Яблочкова Постоянное 55 В -
Напряжение в телефонной линии (при опущенной трубке) Постоянное 60 В -
Напряжение в электросети Японии Переменное трёхфазное 100/172 В -
Напряжение в электросети США Переменное трёхфазное 110/190 В -
Напряжение в электросети России Переменное трёхфазное 220/380 В 230/400 В
Разряд электрического ската Постоянное до 200—250 В -
Контактная сеть трамвая и троллейбуса Постоянное 550 В 600 В
Разряд электрического угря Постоянное до 650 В -
Контактная сеть метрополитена Постоянное 750 В 825 В
Контактная сеть электрифицированной железной дороги (Россия, постоянный ток) Постоянное 3 кВ 3.3кВ
Распределительная воздушная линия электропередачи небольшой мощности Переменное трёхфазное 6-10 кВ 6.6-11 кВ
Генераторы электростанций, мощные электродвигатели Переменное трёхфазное 10 кВ -
Анод кинескопа Постоянное 7-30 кВ -
Статическое электричество Постоянное 1-100 кВ -
Свеча зажигания автомобиля Импульсное 10-25 кВ -
Контактная сеть электрифицированной железной дороги (Россия, переменный ток) Переменное 25 кВ 27.5 кВ
Пробой воздуха на расстоянии 1 см 10-20 кВ -
Катушка Румкорфа Импульсное до 50 кВ -
Пробой трансформаторного масла на расстоянии 1 см 100-200 кВ -
Воздушная линия электропередачи большой мощности Переменное трёхфазное 35 кВ, 110 кВ, 220 кВ, 330 кВ 38 кВ, 120 кВ, 240 кВ, 360 кВ
Электрофорная машина 50-500 кВ -
Воздушная линия электропередачи сверхбольшой мощности Переменное трёхфазное 500 кВ, 750 кВ, 1150 кВ 545 кВ, 800 кВ, 1250 кВ
Трансформатор Тесла Импульсное высокочастотное до нескольких МВ -
Генератор Ван де Граафа Постоянное до 7 МВ -
Грозовое облако Постоянное От 2 до 10 ГВ -

wreferat.baza-referat.ru

Реферат Разность электрических потенциалов

скачать

Реферат на тему:

План:

Введение

Напряже́ние между точками A и B электрической цепи или электрического поля — отношение работы электрического поля при переносе пробного электрического заряда из точки A в точку B к величине пробного заряда.

U_{AB} =\frac{A^{field}_{q:A->B}}{q}

При этом считается, что перенос пробного заряда не изменяет распределения зарядов на источниках поля (по определению пробного заряда). В потенциальном электрическом поле эта работа не зависит от пути, по которому перемещается заряд. В этом случае электрическое напряжение UAB между двумя точками совпадает с разностью потенциалов между ними.

Альтернативное определение — U_{AB}=\int\limits_A^B (\vec E,d\vec l)

— интеграл от проекции поля эффективной (напряжённости поля ~\vec E) (включающего сторонние поля) на расстояние между точками A и B вдоль заданной траектории, идущей из точки A в точку B. В электростатическом поле значение этого интеграла не зависит от пути интегрирования и совпадает с разностью потенциалов.

Единицей измерения напряжения в системе СИ является вольт.

Напряжение показывает, какую работу совершает суммарное поле сторонних и кулоновских сил при перемещении единичного положительного заряда из одной точки в другую.

1. Напряжение в цепях постоянного тока

Напряжение в цепи постоянного тока определяется так же, как и в электростатике.

2. Напряжение в цепях переменного тока

Для описания цепей переменного тока применяются следующие понятия:

2.1. Мгновенное напряжение

Мгновенное напряжение есть разность потенциалов между двумя точками, измеренная в данный момент времени. Оно является функцией времени:

u = u(t)

2.2. Амплитудное значение напряжения

Амплитуда напряжения есть максимальное по модулю значение мгновенного напряжения за весь период колебаний:

UM = max( | u(t) | )

Для гармонических (синусоидальных) колебаний напряжения мгновенное значение напряжения выражается как:

u(t) = UMcos(ωt + φ) Для сети со среднеквадратичным значением 220в амплитудное равно приблизительно 311,127в

2.3. Среднее значение напряжения

Среднее значение напряжения (постоянная составляющая напряжения) определяется за весь период колебаний, как:

U_m=\frac{1}{T}\int_0^T u(t) dt

Для чистой синусоиды среднее значение напряжения равно нулю.

2.4. Среднеквадратичное значение напряжения

Среднеквадратичное значение (устаревшее наименование: действующее, эффективное) наиболее удобно для практических расчётов, так как на линейной активной нагрузке оно совершает ту же работу, что и равное ему постоянное напряжение:

U_q=\sqrt{\frac{1}{T}\int\limits_0^T u^2(t) dt}

Для синусоидального напряжения справедливо равенство:

U_q = {1 \over \sqrt{2}}U_M \approx 0,707U_M; U_M = \sqrt{2}U_q \approx 1,414U_q

В технике и быту при использовании переменного тока под термином «напряжение» имеется в виду именно эта величина, и все вольтметры проградуированы исходя из её определения. Однако конструктивно большинство приборов измеряют не среднеквадратичное, а средневыпрямленное (см. ниже) значение напряжения, поэтому для несинусоидального сигнала их показания могут отличаться от истинного значения.

2.5. Средневыпрямленное значение напряжения

Средневыпрямленное значение есть среднее значение модуля напряжения:

U_m=\frac{1}{T}\int\limits_0^T |u(t)| dt

Для синусоидального напряжения справедливо равенство:

U_m = {2 \over \pi}U_M (\approx 0,637U_M) = {2\sqrt{2} \over \pi}U_q (\approx 0,9U_q)

На практике используется редко, однако большинство вольтметров переменного тока (те, в которых ток перед измерением выпрямляется) фактически измеряют именно эту величину, хотя их шкала и проградуирована по среднеквадратичным значениям.

3. Напряжение в цепях трёхфазного тока

В цепях трёхфазного тока различают фазное и линейное напряжения. Под фазным напряжением понимают среднеквадратичное значение напряжения на каждой из фаз нагрузки, а под линейным — напряжение между подводящими фазными проводами. При соединении нагрузки в треугольник фазное напряжение равно линейному, а при соединении в звезду (при симметричной нагрузке или при глухозаземлённой нейтрали) линейное напряжение в \sqrt{3} раз больше фазного.

На практике напряжение трёхфазной сети обозначают дробью, в знаменателе которой стоит линейное напряжение, а в числителе — фазное при соединении в звезду (или, что то же самое, потенциал каждой из линий относительно земли). Так, в России наиболее распространены сети с напряжением 220/380 В; также иногда используются сети 127/220 В и 380/660 В.

4. Стандарты

Объект Тип напряжения Значение (на вводе потребителя) Значение (на выходе источника)
Электрокардиограмма Импульсное 1-2 мВ -
Телевизионная антенна Переменное высокочастотное 1-100 мВ -
Батарейка AA («пальчиковая») Постоянное 1,5 В -
Литиевая батарейка Постоянное 3 В -
Управляющие сигналы компьютерных компонентов Постоянное 3,5 В, 5 В -
Батарейка типа 6F22 («Крона») Постоянное 9 В -
Силовое питание компьютерных компонентов Постоянное 12 В -
Электрооборудование автомобиля Постоянное 12/24 В -
Блок питания ноутбука и жидкокристаллических мониторов Постоянное 19 В -
Сеть «безопасного» пониженного напряжения для работы в опасных условиях Переменное 36-42 В -
Напряжение наиболее стабильного горения свечи Яблочкова Постоянное 55 В -
Напряжение в телефонной линии (при опущенной трубке) Постоянное 60 В -
Напряжение в электросети Японии Переменное трёхфазное 100/172 В -
Напряжение в электросети США Переменное трёхфазное 110/190 В -
Напряжение в электросети России Переменное трёхфазное 220/380 В 230/400 В
Разряд электрического ската Постоянное до 200—250 В -
Контактная сеть трамвая и троллейбуса Постоянное 550 В 600 В
Разряд электрического угря Постоянное до 650 В -
Контактная сеть метрополитена Постоянное 750 В 825 В
Контактная сеть электрифицированной железной дороги (Россия, постоянный ток) Постоянное 3 кВ 3.3кВ
Распределительная воздушная линия электропередачи небольшой мощности Переменное трёхфазное 6-10 кВ 6.6-11 кВ
Генераторы электростанций, мощные электродвигатели Переменное трёхфазное 10 кВ -
Анод кинескопа Постоянное 7-30 кВ -
Статическое электричество Постоянное 1-100 кВ -
Свеча зажигания автомобиля Импульсное 10-25 кВ -
Контактная сеть электрифицированной железной дороги (Россия, переменный ток) Переменное 25 кВ 27.5 кВ
Пробой воздуха на расстоянии 1 см 10-20 кВ -
Катушка Румкорфа Импульсное до 50 кВ -
Пробой трансформаторного масла на расстоянии 1 см 100-200 кВ -
Воздушная линия электропередачи большой мощности Переменное трёхфазное 35 кВ, 110 кВ, 220 кВ, 330 кВ 38 кВ, 120 кВ, 240 кВ, 360 кВ
Электрофорная машина 50-500 кВ -
Воздушная линия электропередачи сверхбольшой мощности Переменное трёхфазное 500 кВ, 750 кВ, 1150 кВ 545 кВ, 800 кВ, 1250 кВ
Трансформатор Тесла Импульсное высокочастотное до нескольких МВ -
Генератор Ван де Граафа Постоянное до 7 МВ -
Грозовое облако Постоянное От 2 до 10 ГВ -

wreferat.baza-referat.ru

Реферат Разница потенциалов

скачать

Реферат на тему:

План:

Введение

Напряже́ние между точками A и B электрической цепи или электрического поля — отношение работы электрического поля при переносе пробного электрического заряда из точки A в точку B к величине пробного заряда.

U_{AB} =\frac{A^{field}_{q:A->B}}{q}

При этом считается, что перенос пробного заряда не изменяет распределения зарядов на источниках поля (по определению пробного заряда). В потенциальном электрическом поле эта работа не зависит от пути, по которому перемещается заряд. В этом случае электрическое напряжение UAB между двумя точками совпадает с разностью потенциалов между ними.

Альтернативное определение — U_{AB}=\int\limits_A^B (\vec E,d\vec l)

— интеграл от проекции поля эффективной (напряжённости поля ~\vec E) (включающего сторонние поля) на расстояние между точками A и B вдоль заданной траектории, идущей из точки A в точку B. В электростатическом поле значение этого интеграла не зависит от пути интегрирования и совпадает с разностью потенциалов.

Единицей измерения напряжения в системе СИ является вольт.

Напряжение показывает, какую работу совершает суммарное поле сторонних и кулоновских сил при перемещении единичного положительного заряда из одной точки в другую.

1. Напряжение в цепях постоянного тока

Напряжение в цепи постоянного тока определяется так же, как и в электростатике.

2. Напряжение в цепях переменного тока

Для описания цепей переменного тока применяются следующие понятия:

2.1. Мгновенное напряжение

Мгновенное напряжение есть разность потенциалов между двумя точками, измеренная в данный момент времени. Оно является функцией времени:

u = u(t)

2.2. Амплитудное значение напряжения

Амплитуда напряжения есть максимальное по модулю значение мгновенного напряжения за весь период колебаний:

UM = max( | u(t) | )

Для гармонических (синусоидальных) колебаний напряжения мгновенное значение напряжения выражается как:

u(t) = UMcos(ωt + φ) Для сети со среднеквадратичным значением 220в амплитудное равно приблизительно 311,127в

2.3. Среднее значение напряжения

Среднее значение напряжения (постоянная составляющая напряжения) определяется за весь период колебаний, как:

U_m=\frac{1}{T}\int_0^T u(t) dt

Для чистой синусоиды среднее значение напряжения равно нулю.

2.4. Среднеквадратичное значение напряжения

Среднеквадратичное значение (устаревшее наименование: действующее, эффективное) наиболее удобно для практических расчётов, так как на линейной активной нагрузке оно совершает ту же работу, что и равное ему постоянное напряжение:

U_q=\sqrt{\frac{1}{T}\int\limits_0^T u^2(t) dt}

Для синусоидального напряжения справедливо равенство:

U_q = {1 \over \sqrt{2}}U_M \approx 0,707U_M; U_M = \sqrt{2}U_q \approx 1,414U_q

В технике и быту при использовании переменного тока под термином «напряжение» имеется в виду именно эта величина, и все вольтметры проградуированы исходя из её определения. Однако конструктивно большинство приборов измеряют не среднеквадратичное, а средневыпрямленное (см. ниже) значение напряжения, поэтому для несинусоидального сигнала их показания могут отличаться от истинного значения.

2.5. Средневыпрямленное значение напряжения

Средневыпрямленное значение есть среднее значение модуля напряжения:

U_m=\frac{1}{T}\int\limits_0^T |u(t)| dt

Для синусоидального напряжения справедливо равенство:

U_m = {2 \over \pi}U_M (\approx 0,637U_M) = {2\sqrt{2} \over \pi}U_q (\approx 0,9U_q)

На практике используется редко, однако большинство вольтметров переменного тока (те, в которых ток перед измерением выпрямляется) фактически измеряют именно эту величину, хотя их шкала и проградуирована по среднеквадратичным значениям.

3. Напряжение в цепях трёхфазного тока

В цепях трёхфазного тока различают фазное и линейное напряжения. Под фазным напряжением понимают среднеквадратичное значение напряжения на каждой из фаз нагрузки, а под линейным — напряжение между подводящими фазными проводами. При соединении нагрузки в треугольник фазное напряжение равно линейному, а при соединении в звезду (при симметричной нагрузке или при глухозаземлённой нейтрали) линейное напряжение в \sqrt{3} раз больше фазного.

На практике напряжение трёхфазной сети обозначают дробью, в знаменателе которой стоит линейное напряжение, а в числителе — фазное при соединении в звезду (или, что то же самое, потенциал каждой из линий относительно земли). Так, в России наиболее распространены сети с напряжением 220/380 В; также иногда используются сети 127/220 В и 380/660 В.

4. Стандарты

Объект Тип напряжения Значение (на вводе потребителя) Значение (на выходе источника)
Электрокардиограмма Импульсное 1-2 мВ -
Телевизионная антенна Переменное высокочастотное 1-100 мВ -
Батарейка AA («пальчиковая») Постоянное 1,5 В -
Литиевая батарейка Постоянное 3 В -
Управляющие сигналы компьютерных компонентов Постоянное 3,5 В, 5 В -
Батарейка типа 6F22 («Крона») Постоянное 9 В -
Силовое питание компьютерных компонентов Постоянное 12 В -
Электрооборудование автомобиля Постоянное 12/24 В -
Блок питания ноутбука и жидкокристаллических мониторов Постоянное 19 В -
Сеть «безопасного» пониженного напряжения для работы в опасных условиях Переменное 36-42 В -
Напряжение наиболее стабильного горения свечи Яблочкова Постоянное 55 В -
Напряжение в телефонной линии (при опущенной трубке) Постоянное 60 В -
Напряжение в электросети Японии Переменное трёхфазное 100/172 В -
Напряжение в электросети США Переменное трёхфазное 110/190 В -
Напряжение в электросети России Переменное трёхфазное 220/380 В 230/400 В
Разряд электрического ската Постоянное до 200—250 В -
Контактная сеть трамвая и троллейбуса Постоянное 550 В 600 В
Разряд электрического угря Постоянное до 650 В -
Контактная сеть метрополитена Постоянное 750 В 825 В
Контактная сеть электрифицированной железной дороги (Россия, постоянный ток) Постоянное 3 кВ 3.3кВ
Распределительная воздушная линия электропередачи небольшой мощности Переменное трёхфазное 6-10 кВ 6.6-11 кВ
Генераторы электростанций, мощные электродвигатели Переменное трёхфазное 10 кВ -
Анод кинескопа Постоянное 7-30 кВ -
Статическое электричество Постоянное 1-100 кВ -
Свеча зажигания автомобиля Импульсное 10-25 кВ -
Контактная сеть электрифицированной железной дороги (Россия, переменный ток) Переменное 25 кВ 27.5 кВ
Пробой воздуха на расстоянии 1 см 10-20 кВ -
Катушка Румкорфа Импульсное до 50 кВ -
Пробой трансформаторного масла на расстоянии 1 см 100-200 кВ -
Воздушная линия электропередачи большой мощности Переменное трёхфазное 35 кВ, 110 кВ, 220 кВ, 330 кВ 38 кВ, 120 кВ, 240 кВ, 360 кВ
Электрофорная машина 50-500 кВ -
Воздушная линия электропередачи сверхбольшой мощности Переменное трёхфазное 500 кВ, 750 кВ, 1150 кВ 545 кВ, 800 кВ, 1250 кВ
Трансформатор Тесла Импульсное высокочастотное до нескольких МВ -
Генератор Ван де Граафа Постоянное до 7 МВ -
Грозовое облако Постоянное От 2 до 10 ГВ -

wreferat.baza-referat.ru

Курсовая работа - Электрическое поле. Постоянный и переменный электрический ток. физические основы реографии

Электрическое поле. Постоянный и переменный электрический ток. физические основы реографии

1. Понятие об электрическом поле. Силовая и энергетическая характеристики электрического поля

Электрическое поле – это вид материи, образующийся вокруг заряженных тел, посредством которого они взаимодействуют друг с другом.

Сила взаимодействия двух точечных зарядов определяется законом Кулона: F = k·q1·q2/r2. При этом если заряженные тела имеют одинаковые заряды, то они отталкиваются друг от друга, а разноимённые – притягиваются. Заряженные тела взаимодействуют друг с другом посредством их электрических полей.

Выделяют следующие характеристики электрического поля:

1. силовая характеристика – напряжённость электрического поля – это сила, которая действует на единицу заряда, помещённого в данное электрическое поле: E = F/q. Измеряется в [В/м]

Если определённый точечный заряд Q образует электрическое поле, то напряжённость этого поля в точке, находящейся на расстоянии r от заряда вычисляется по формуле: E = Q/(4πε0εr2) где Q– заряд, образующий данное электрическое поле; ε0 = 8, 84*10-12 Ф/м- электрическая постоянная; ε- электрическая проницаемость среды, в которой образуется поле; r — расстояние от точечного заряда до точки, в которой исследуется напряжённость.

За направление напряжённости принимают направление силы, действующей на положительный заряд.

Величина напряжённости электрического поля графически изображается в виде силовых линий – тех линий, направление касательных к которым в любой точке совпадают с направлением напряжённости электрического поля. Чем больше линий – тем больше напряжённость.

2. энергетическая характеристика электрического поля – потенциал.

В каждой точке электрического поля на внесённый в это поле заряд действует определённая сила. При перемещении заряда в электрическом поле будет совершаться работа. При этом каждая точка электрического поля будет характеризоваться потенциалом.

Потенциал поля в данной точке – это потенциальная энергия электрического поля в этой точке, приходящаяся на единицу помещённого в эту точку заряда: φ = Wp/q [В] Потенциал поля характеризует возможную работу, которую совершает электрическое поле или которая совершается над электрическим полем при перемещении этого заряда в точку с другим потенциалом: Δφ = A/q.

Поскольку работа будет совершаться только при перемещении заряда между точками, обладающими неодинаковыми потенциалами, то физический смысл имеет лишь разность потенциалов, или напряжение между двумя точками электрического поля. Поэтому, когда употребляют термин ″потенциал″, имеют в виду разность потенциалов между данной точкой, потенциал которой измеряют, и бесконечно удалённой точкой пространства, потенциал которой можно считать равным 0. При этом потенциал в данной точке поля, созданного точечным зарядом Q, равен: φ = Q/(4πε0εγ) и, если потенциал создается большим числом зарядов, то φ = ∑φ.

Только разность потенциалов можно измерить с помощью вольтметра. Считают, что напряженность электрического поля – отрицательный градиент потенциала.

2. Действие электрического поля на вещества

Действие электрического поля на различные вещества неодинаково и зависит от их внутреннего строения. По этому действию все вещества делят на:

— проводники электрического тока

— полупроводники

— изоляторы, или диэлектрики.

Проводники характеризуются тем, что в них под действием электрического поля образуется электрический ток – направленное движение заряженных частиц. Это происходит благодаря тому, что в проводниках имеются свободные заряды. Существуют проводники 1 рода (металлы, в которых есть свободные электроны) и 2 рода (растворы электролитов, в которых свободными зарядами являются положительно заряженные ионы – катионы и отрицательно заряженные ионы – анионы).

Полупроводники при обычной температуре имеют мало свободных зарядов. Причём когда электроны в полупроводниках становятся свободными, то на их месте образуется дырка – избыток положительного заряда. Поэтому носителями заряда в полупроводниках являются электроны и дырки.

В диэлектриках нет свободных носителей зарядов, поэтому под действием электрического поля в них не возникает электрического тока, но возникает явление, называемое поляризацией диэлектрика – приобретение диэлектриком полярности за счёт разделения в нём положительных и отрицательных зарядов под действием электрического поля. Поляризация существует в 3 вариантах: ориентационная, электронная и ионная.

Указанные различия хорошо описываются зонной теорией твёрдых тел, или квантовой теорией энергетического спектра электронов в кристалле. Согласно теории в кристалле существуют запрещённые и разрешённые энергетические зоны для электронов. Нижние зоны заполнены полностью электронам. Физические свойства кристаллов определяются верхними зонами, содержащими электроны. Если между верхней зоной и следующей разрешённой зоной запрещённая зона узкая (энергетический интервал невелик), то вещество является проводником, а если запрещённая зона велика – то диэлектриком.

3. Электрический ток

Основной характеристикой электрического тока является сила тока – количество заряда, пересекающее поперечное сечение проводника за единицу времени. Iср = Δq/Δt или для мгновенной силы тока: I = dq/dt. Единицей измерения силы тока является ампер (A). 1 ампер – сила тока, когда заряд 1 кулон проходит через поперечное сечение проводника за 1 секунду. Часто используют миллиампер (мА). 1 мА = 0, 001 A. Обычно за направление электрического тока в проводнике принимают направление движения положительных зарядов.

Другой величиной, характеризующей электрический ток, является плотность тока – сила тока, приходящаяся на единицу площади проводника. Измеряется в амперах на квадратный метр: J = I/S.

Различают:

— Постоянный ток – электрический ток, параметры которого (сила и направление) не изменяются во времени. Источниками постоянного тока являются генераторы, которые поддерживают постоянную разность потенциалов на концах проводника.

— Переменный ток – электрический ток, параметры которого изменяются во времени по закону синуса или косинуса. Электрический ток, передаваемый в потребительской электросети, представляет собой синусоидальное колебание частотой 50 Гц: I = Imax·cos(ωt + φ0).

Основным законом, описывающим постоянный электрический ток, является закон Ома: сила тока в проводнике прямо пропорциональна разности потенциалов между его концами, или электрическому напряжению (U): I = U/R.

Величина R называется электрическим сопротивлением. Сопротивление является свойством проводников препятствовать прохождению через него электрического тока, при этом электрическая энергия превращается в тепловую энергию. Сопротивление возникает из-за столкновения заряженных частиц (носителей тока) с внутренними структурами проводника – атомами и молекулами. Единицей измерения сопротивления является Ом. Обратная величина сопротивлению называется электрической электропроводностью (D).

Для многих веществ сопротивление является постоянной величиной, независимой от силы тока. Сопротивление проводника является функцией его размера, формы, строения и температуры. Величина сопротивления провода: R = ρ(1/S) (5)

, где l – длина проводника, S — площадь поперечного сечения проводника. Константа прямой пропорциональности ρ называется удельным сопротивлением [ом·м]. Она зависит только от свойств вещества и температуры. Обратной величиной удельному сопротивлению является удельная электропроводность (γ) [ом-1·м-1] .

На основе удельной электропроводности характеризуют свойство веществ проводить электрический ток. Хорошие проводники тока имеют высокую удельную электропроводность. Изоляторы, или диэлектрики, имеют низкую удельную электропроводность. Полупроводники имеют промежуточную удельную электропроводность. Используя удельную электропроводность, как характеристику вещества, можно представить закон Ома в другой форме: J = γE.

Из формулы следует, что плотность тока в проводнике прямо пропорциональна напряженности электрического поля (Е), создающего этот ток, и удельной электропроводности вещества проводника (γ).

Удельная электропроводность электролитов и биологических тканей

Плотность тока в растворе электролитов определяется электрическим зарядом положительных и отрицательных ионов, их концентрациями и скоростями движения в электрическом поле: J = q+n+v+ + q-n-v.

Если принять, что концентрация и величина электрического заряда положительных и отрицательных ионов равны, то J = qn(v+ + v-)(8)

Скорость v ионов пропорциональна напряженности электрического поля E и зависит от подвижности ионов u, которая, в свою очередь, является функцией размера, степени гидратации ионов, вязкости растворителя:

v = uE (9)

Тогда J = qn(u+ + u-)·E (10).

Это выражение является законом Ома для растворов электролитов.

Хотя сопротивление биологических тканей постоянному электрическому току велико, и по удельной электропроводности биологические ткани близки к диэлектрикам, для объяснения различий в электропроводности различных тканей, их рассматривают как проводники 2 рода, носителями заряда в которых служат ионы.

Биологические ткани не различаются существенно по их ионному составу, но отличаются условиями ионного перемещения. Поэтому ткани разнородны с точки зрения их электрических свойств. Мембраны клеток препятствуют перемещению ионов. Их электрическое сопротивление является наибольшим. Кровь, лимфа, цереброспинальная жидкость характеризуются низким сопротивлением электрическому току. Внутренние органы, содержащие много воды (мышцы, печень, почки, и т.п.), также имеют сравнительно низкое сопротивление. Но сопротивление таких тканей, как кожа и кости, очень высокое. Постоянный электрический ток плохо проникает через сухую кожу. Он распространяется в теле человека, главным образом, вдоль кровеносных и лимфатических сосудов и через мышцы.

Причиной высокого сопротивления биологических тканей постоянному электрическому току – наличие статической ёмкости вследствие изоляционных свойств мембран и явления поляризации, происходящие в клетках, в результате которых возникает встречная эдс, препятствующая прохождению через ткань тока. Причём при малых значениях силы тока он не проходит через ткань вследствие влияния этой ЭДС, а при больших – происходит дезинтеграция (разрушение) клеточных структур, в результате чего сопротивление падает, однако дальнейшие исследования не имеют смысла.

Поляризация – разделение положительных и отрицательных зарядов. многие полагают, что явление поляризации связано с наличием полупроницаемых мембран. Под действием электрического поля ионы начинают перемещаться, но не могут проникнуть через мембрану, в результате у внутренней поверхности мембраны возникает разделение зарядов. Внутри клетки образуется поляризационное поле. Как только его напряженность компенсирует внешнее поле перемещение ионов прекращается. Соответственно этому на внешней стороне мембраны концентрируются противоположно заряженные частицы.

Другие, рассматривая клетки как слоистый диэлектрик, рассматривают явления поляризации как результат гетерогенности клеточных элементов по электропроводности, а также поляризацию связывают с дипольными молекулами (ориентация диполей вдоль силовых линий поля).

Постоянный ток используют в медицинской практике, для реализации двух методов – гальванизации и лекарственного электрофореза.

Гальванизация

Гальванизация – метод терапии, основанный на применении постоянного электрического тока. Метод назван в честь итальянского врача и ученого Луиджи Гальвани – основоположника изучения электрических токов, генерируемых биологическими тканями.

Метод гальванизации состоит в пропускании постоянного тока через определенные области тела человека. Величина напряжения должна составлять не более 50-80 Вольт. Под электроды, изготовленные из металла, помещают увлажненные фланелевые прокладки. Величина силы тока может составлять от нескольких миллиампер до 50 миллиампер. Но плотность тока не должна превышать 0, 1 миллиампер на квадратный сантиметр. Ток не должен беспокоить пациента.

Неорганические ионы и ионы воды перемещаются под действием электрической поля. Подвижность органических ионов значительно меньше, чем неорганических ионов. Наибольшие изменения при гальванизации происходят в мембранах клеток. Они состоят в осуществлении электрохимических процессов, которые изменяют поляризацию мембраны и влияют на проницаемость мембраны и величину трансмембранного потенциала. Эти процессы стимулируют рецепторы, вызывают различные физиологические реакции и изменения метаболизма. Гальванизация используется по большей части для лечения системных болезней нервной системы.

Лекарственный электрофорез

Гальванизация обычно сопровождается лекарственным электрофорезом. В этом методе постоянный электрический ток используют для введения лекарств в ткани тела с терапевтическими целями. Большое число лекарственных препаратов способны диссоциировать в водных растворах на положительные и отрицательные ионы. Среди таких лекарств: соли, антибиотики, местные анестетики, алкалоиды и много другие. Электрическое поле заставляет их перемещаться: положительные ионы (катионы) к отрицательному электроду (катоду) и наоборот. Под влиянием электрического поля лекарства могут проникать через неповрежденную кожу. Основными путями ионов, проникающих через кожу, являются каналы потовых желез. Наибольшая часть ионов проникает через межклеточное пространство, меньшая — через клетки. Лекарства концентрируются, главным образом, в коже и подкожной ткани и формируют депо. Локальная концентрация лекарств в таком депо может быть сравнительно высокой. Оттуда лекарства медленно поглощаются в кровь, что способствует продлению лечебного эффекта.

Переменный ток. Полное сопротивление

Электрические цепи переменного тока включают такие основные электрические компоненты как резисторы, конденсаторы и индукторы. Их специфические свойства — сопротивление, емкость и индуктивность.

Емкость. Если два проводника (пластины металла) разделены посредине изоляцией, они способны накапливать некоторое количество электрического заряда. Величина, равная отношению суммарного заряда, накопленного на пластинах, к разности потенциалов между пластинами называется емкостью (измеряется в Фарадах (F): C = q/U (13).

Индуктивность. Индуктивность L связана с наличием магнитного поля вокруг провода или катушки, через которые проходит электрический ток. Переменное магнитное поле порождает эдс (электродвижущую силу) самоиндукции, которая препятствует изменению силы тока в проводнике:

ε = — L·dl/dt (14), где ε — электродвижущая сила, dl/dt — мгновенная скорость изменения силы тока, L — индуктивность, которая зависит от геометрии цепи и от магнитных свойств вещества проводника и среды. Индуктивность измеряется в Генри (Г).

Реактанс (или реактивное сопротивление). Ранее упоминалось, что сопротивление является свойством электрической цепи препятствовать прохождению через нее электрического тока и что электрическая энергия при этом превращается в тепловую. Реактанс — мера сопротивления переменному электрическому току. Реактанс связан с емкостью и индуктивностью некоторых частей цепи. Он не превращает электрическую энергию в энергию тепла. Реактанс присутствует дополнительно к сопротивлению, если через проводники протекает переменный ток. Когда в цепи течет постоянный электрический ток, то он подвергается только активному сопротивлению, но не реактансу. Реактанс бывает двух типов: индуктивный и емкостной.

Емкостной реактанс XC является обратной величиной произведения угловой (циклической) частоты тока и емкости этой части цепи: XC = 1/(ω·C)(15).

Индуктивный реактанс XL равен произведению угловой частоты переменного тока на индуктивность проводника: XL = ωL (16).

Доказано, что индуктивный реактанс приводит к тому, что изменения напряжения в электрической цепи опережают изменения силы тока на четверть периода (π/2). Это можно объяснить тем, эдс самоиндукции препятствует нарастанию силы тока в цепи.

Наоборот, емкостной реактанс приводит к тому, что изменения напряжения в электрической цепи отстают от изменения силы тока на четверть цикла (π/2). На рис. 3. проиллюстрировано данное явление.

Поэтому общий реактанс X представляет собой разность индуктивного и емкостного реактансов: X = XL — XC.

Если суммировать активное сопротивление и общий реактанс, который препятствует прохождению переменного тока в электрической цепи, получим величину, которая называется полным сопротивлением Z – импедансом:

Биофизические основы реографии

Реография — метод, который позволяет измерять кровенаполнение конечностей, мозга, сердца и многих других органов.

Когда некоторый объем крови протекает через сосуды любого органа в течение систолы, объем этого органа увеличивается. Такие изменения объема изучались в прошлом с помощью, так называемой, плетизмографии, которая была основана на механических измерениях. Но возможности этого метода были ограничены. Он мог применяться только для изучения кровенаполнения верхних конечностей.

Позже было обнаружено, что при изменении количества крови в сосудах органов, изменяется их электрическое сопротивление. Это изменение определяется формулой Кедрова:

Здесь V — объем органа и ΔV — изменение объема в течение систолы, R – активное сопротивление и — ΔR изменение активного сопротивления органа в течение систолы, k — коэффициент прямой пропорциональности. ΔR имеет отрицательное значение, поскольку электрическое сопротивление крови меньше, чем сопротивление мышц, соединительной ткани, кожа и т.п. Поэтому активное сопротивление органов уменьшается в течение систолы и растет в течение диастолы.

Изменение активного электрического сопротивления вызывает изменение полного сопротивления. По техническим причинам более удобно измерять именно изменения импеданса, чем изменения активного сопротивления постоянному току. В реографии кинетика полного сопротивления тела человека отражает частоту и объем локального кровенаполнения органов.

Для измерения изменения полного сопротивления биологического объекта, через него пропускают переменный ток высокой частоты. Оптимальная частота, применяемая в реографии — 100 – 500кГц. При частотах выше 500 кГц сглаживаются различия в удельной электропроводности между кровью и окружающими тканями. Изменения полного сопротивления являются очень небольшими, их величина составляет: 0, 08Ом для голени и предплечья, 0, 1Ом для плеча и ступни.

Основная (интегральная) реограмма отражает изменение импеданса исследуемого органа при кровенаполнении. Возрастающая часть кривой возникает вследствие систолы, а нисходящая — вследствие диастолы. Обычно одновременно записывается дифференциальная реограмма. Она является производной первого порядка по времени интегральной реограммы и описывает скорость изменения кровенаполнения исследуемого органа.

Реография применяется для изучения кинетики полного электрического сопротивления различных органов: сердца (реокардиография), мозга (реоэнцефалография), печени (реогепатография), глаза (реоофтальмография) и т.п.

www.ronl.ru


Смотрите также