Реферат: Центральная двигательная система. Двигательная система реферат


Реферат - Центральная двигательная система

Ростовский Государственный университет

Доклад

На тему: Центральная двигательная система

Подготовил студент: Шишаев В.И.

Проверил преподаватель

Ростов – на – Дону

2002

Двигательные пути, идущие от головного мозга к спинному и двигательным ядрам черепно-мозговых нервов, анатомы делят на 2-е системы:

На пирамидальную и экспирамидальную.

Пирамидальный тракт получил свое название от симметричных клиновидных выпуклостей, которые он образует на вентральной поверхности продолговатого мозга каудально от вароливого моста.

На рисунке я показал топическую организацию моторной коры. Эта схема основана на данных, полученных при стимуляции моторной коры во время операции на людях без наркоза, однако, так же сходные карты были получены в экспериментах над млекопитающими.

У животных находящихся на низших ступенях филогенической лестницы имеется лишь зачаточный неокортикс; пирамидной моторной системы у них нет. Пальцы ноги и стопа представлены в дорсальной части моторной коры, имеют при этом большую часть латеральной поверхности, а соответствующие области для лица и языка локализованы ближе к сильвиевой борозде, в вентральной части моторной коры.

Аксоны многих нейронов моторной коры идут в составе внутренней капсулы, находящейся между таламусом и базальными ганглиями и образуют ножки мозга. При прохождении через мост волокна пирамидального тракта распределяются не столь компактно, затем вновь собираются вместе, покидая мост и образуя пирамиды продолговатого мозга.

У человека около 80% волокон этого тракта перекрещиваются, хотя описаны случаи, в которых на этом уровне вообще нет перекреста.

Перекрещенные пути спускаются в составе латеральных кортико – спинальных трактов спинного мозга; не перекрещенная часть волокон идет вниз в основном в вентральных кортикоспинальных трактах.

Вентральные волокна заканчиваются в моторных пулах: одни на вставочных,

другие (те, которые идут к дистальным мышцам) – прямо на мотонейронах.

Лоренс считал что некоторые из нисходящих волокон, заканчиваются в инсилатеральных моторных пулах.

Пенфилд описал вторую моторную зону в коре человека, лежащею вдоль края сильвиевой борозды. Стимуляция в этой области вызывает движение как левой так и правой руки и ноги, а иногда больной указывает на сильное желание пошевелить какой – либо конечностью или на неспособность пошевелить ею. Пенфилд так же обнаружил зону которую назвал “дополнительной моторной областью”. Расположена эта область на медиальной поверхности продольной борозды, спереди от зоны представительства стопы в прицентралиной моторной коре. !!!

При стимуляции этой области человек медленно поднимает руку на стороне, противоположной раздражаемой зоне, поворачивает голову в сторону поднятой руки и устремляет на нее взгляд. По данным Чанга, у обезьян можно вызвать сокращение или расслабление опредиленных мышц путем порогового раздражения током соответствующих точек моторной коры. Из наблюдений того же Чанга стоит отметить, что при средней стимуляции у высших животных чаще возникают определенные двигательные акты, а не просто подергивание мышц.

Фритчен и Джексон наблюдая за собаками установили, что некоторые эпелептические припадки начинаются с подергивания отдельных частей тела, например пальца или рта.

Если развивается большой эпилептический припадок, движения распространяются сначала на ближайшие мышцы, а затем охватывают все тело.

Джексон высказал предположение, что начальные движения вызываются спонтанными электрическими разрядами нейронов в определенной части моторной коры, которые постепенно распространяются по остальной моторной области. Это предположение оказалось правильным; по этим движениям можно выявить локализацию эпилептического очага в моторной коре. Они так же стали источником информации относительно организации

моторной коры человека.

Повреждении же пирамидального тракта приводит к самым различным последствиям в зависимости от вида животного, размера повреждения и времени, прошедшего с момента повреждения.

К примеру, у крыс и у кошек наблюдается временная потеря тонуса так называемый “вялый паралич” в пораженных конечностях, но через 2-3дня их двигательная активность восстанавливается. Обезьяны могут вставать и хвататься за прутья клетки через 4-5 недель, а через 2 недели могут подбирать пищу с пола, но у них никогда не восстановится способность шевелить отдельными пальцами. У человека повреждения вызывают проявление тяжелого паралича на протяжении 1-2 недель, затем тонус проксимальных мышц начинает восстанавливаться так, что сначала начинает появляться движения в плечевых и бедренных суставах. Поздней повышается тонус более дистальных мышц, но это случается очень редко или никогда.

Повреждение пирамид продолговатого мозга вызывает вышеупомянутые симптомы но уже с некими осложнениями, но поскольку кроме нейронов, посылающих аксоны в пирамидальный тракт, кора содержит нейроны, соединяющихся с экспирамидальной системой, подкорковые повреждения в данной области вызывают так называемое явление “высвобождения”. При этом тормозная регуляция двигательной системы частично утрачивается, а восстановление функций сопровождается аномальным поведением мышечного тонуса и повышением рефлекторной деятельности. Иногда сухожильные рефлексы повышаются так, что одно сокращение вызывает второе и так далее, в результате чего возникает серия подергиваний именуемая клонусом.

Корковые повреждения могут вызывать утрату некоторых движений, хотя мышцы, которые участвуют в них, продолжают функционировать и участвовать в других движениях.

Например, больной может сжимать и разжимать кулак, но не может шевелить каждым пальцем в отдельности.

Иногда случается, что сильное движение на непораженной стороне вызывает слабое движение на парализованной стороне. Такое движение может регулироваться через не перекрещенные пути от неповрежденной коры, они перестают испытывать тормозное влияние со стороны более мощных перекрещенных связей.

Хотя организация моторной коры отражает топографию тела, организация эта не является простой, такой, например, при которой все клетки в определенной части коры связаны с определенной конечностью или мышцей.

Глиз и Коул показал на обезьянах что, если удалить область, стимуляция которой вызывает движение большого пальца руки, дегенерацию волокон можно будет обнаружить в боковом кортикоспинальном тракте вплоть до поясничного отдела, т.е. далеко за пределами той области, на уровне которой все нервы, идущие к большому пальцу, покидают спинной мозг. Иными словами, многие нейроны, не имеющие отношение к движению большого пальца, занимают то же место в моторной коре, где находится его управление.

После полного восстановления снова была произведена операция;

оказалось, что стимуляция коры вокруг повреждения теперь вызывает движения большого пальца, хотя при первой операции это не наблюдалось. Когда и эти области удалили, опять возник вялый паралич, и снова по прошествию времени происходило частичное восстановление.

Глиз и Коул предположили, что такое восстановление является результатом возврата к менее дифференцированному функционированию моторной коры.

Опыты с регистрацией.

Пенфилд и Джаспер во время операции на людях без наркоза обнаружили, что в момент произвольных движений в моторной коре больного регистрируются изменения электрической активности. В условиях покоя волна электрической активности медленнее и имеет высокую амплитуду, чем при движении.

Вы может быть задумались на вопросам, почему в моторной системе происходит деление на пирамидальную и экспирамищдальную систему. Это явилось следствием исторического заблуждения, возникшего из начального представления о том, что пирамидальная система является единственной двигательной системой. Поэтому те части мозга, участие которых в двигательных функциях было выявлено позднее, были объединены под названием экспирамищдальной системы. Между этими двумя системами трудно провести четкую функциональную грань, они не обособлены анатомически, за исключением короткой части пути через продолговатый мозг.

Повреждение экспирамидальной системы вызывают различные эффекты, часть которых совершенно загадочна. Повреждение тормозных отделов этой системы усиливает спастичность вызываемою повреждениями коры (т.е. конечности становятся более напряженными и хуже поддаются регуляции).

Дицеребральная регидность возникающая при пере резки ствола мозга на уровне четверохолмия, является крайним выражением потери центрального тормозного контроля. Механизмы разгибательных рефлексов резко облегчаются под влиянием возбуждающих ядер ствола, например вестибулярных, которые находятся ниже уровня пере резки и не получают более уравновешивающих тормозных влияний.

Повреждение вестибулярных ядер снижают тоническую спастичность, но в пораженных конечностях рефлексы остаются повышенными. Это можно снять повреждением ретикулярной формации среднего мозга. Повреждение мозжечка вызывают атаксию (нарушение координации), потерю равновесия и тремор, тремор это усиление движений при произвольных действиях.

Другим патологическим состоянием, которое связано с дисфункцией экспирамидальной системы, является болезнь Паркинсона; для нее характерна поздняя ригидность и тремор (приблизительно 5 подергиваний в 1сек.), который усиливается, когда больной не делает произвольных движений. Эта болезнь связана с повреждением бледного шара или черной субстанции, и ее симптомы удивительным образом исчезают при дальнейшем повреждении бледного шара или находящейся поблизости внутренней капусты. Но после того как были найдены эффективные лекарственные препараты, к операции стали прибегать значительно реже.

С экспирамищдальной системой принято связывать возникновение таких непроизвольных движений, как хорея (подергивания и тики), атетозы (судороги) и гемибаллизм (свисание рук и ног). При этих двигательных нарушениях обнаруживают дегенеративные изменения в разных отделах этой системы.

Повреждение постцентральной извилины (соматосенсорной коры) вызывают временную потерю силы, а так же двигательную неловкость. К примеру, обезьяна с такими повреждениями надолго застывают в неестественных позах, если они не видят пораженных конечностей. Этот эффект резко отличается от эффекта нарушения сенсорных путей на уровне спинного мозга. Лешли описал больного с повреждениями пути проприоцептивной чувствительности в спинном мозге, который мог удерживать позу лишь в течении нескольких секунд, если ему завязывали глаза, но считал при этом, что он удерживает эту позу значительно дольше.

www.ronl.ru

Реферат: "Опорно-двигательная система"

Выдержка из работы

Человеческое тело представляет собой совокупность органов, систем и аппаратов, которые действуют слаженно, выполняя жизненно важные функции. Движение является необходимой частью функции связи и взаимодействия, и тело может осуществлять это движение благодаря опорно-двигательному аппарату. Опорно-двигательная система включает кости, мышцы и соединения костей. Кости — это твердые и прочные части, служащие опорой телу, мышцы — мягкие части, покрывающие кости, а соединения костей — это структуры, при помощи которых кости соединяются. Все кости, а их примерно 206, составляют систему костей, или скелет, который придает телу внешнюю конфигурацию, вид и обеспечивает ему жесткое и прочное устройство, защищает внутренние органы, накапливает минеральные соли и вырабатывает клетки крови.

Кости состоят в основном из воды и минеральных веществ, образованных на основе кальция и фосфора, и из вещества, именуемого остеином. Кость не является застывшим органом: она находится в постоянном процессе развития и разрушения. Для этого у нее имеются остеобласты, костеобразующие клетки, и остеокласты, клетки, разрушающие ее, чтобы не давать ей чрезмерно утолщаться. В случае перелома остеокласты разрушают осколки кости, а остеобласты вырабатывают новую костную ткань.

Развитие и прочность кости зависят от витаминов группы D (кальциферола), регулирующих обмен кальция, необходимого для работы мышц. Кальциферолом особенно богаты рыбий жир, мясо тунца, молоко и яйца. Также ультрафиолетовые лучи солнца способствуют всасыванию витамина D.

Кости лицевого черепа — их главная функция — участие в пережевывании пищи.

Кости мозгового черепа — мозговой череп состоит из восьми плоских костей, защищающих головной мозг, соединенных неподвижно.

Ребра — это кости, которые вместе с грудиной образуют грудную клетку, необходимый элемент защиты внутренних органов, размещенных в ней.

Позвоночный столб — ось, или опора нашего тела, состоящая из 33 или 34 позвонков, в нем размещен спинной мозг.

Бедренная кость — самая длинная кость тела человека. Позволяет делать разнообразные движения ногой благодаря своему соединению с коленной чашечкой.

Кости стопы — группа из 26 костей, среди которых выделяется самая большая, пяточная кость, образующая пятку.

Самым высоким человеком в мире был американец, рост которого составлял 2,72 м. Ко времени своей смерти, в 1940 году, когда ему было 22 года, он еще продолжал расти. Самым низким человеком была 19-летняя голландка: ее рост составлял всего 59 см, она умерла в 1895 году.

Самые длинные кости, о которых имеются сведения, — это кости брахиозавра — динозавра, останки которого были найдены в Колорадо (США). Его лопатки достигали длины 2,4 м, а некоторые ребра превышали 3 м.

Среди современных живых существ самое высокое животное Земли — жираф, его рост может достигать 6 м. Длинная, более 2 метров шея, необходимая жирафу, чтобы питаться ветками деревьев, насчитывает только семь шейных позвонков, столько же, сколько у мыши. Возможно, самыми маленькими являются височные кости колибри — птички, длина которой не превышает 2−3 см, но у которой на крыльях имеются мышцы, позволяющие ей делать до 90 взмахов в секунду. Колибри может зависать в воздухе, когда питается нектаром цветов, и даже лететь задним ходом.

Мышцы, которых более 400, покрывают скелет и совместно с костями и их соединениями делают возможным движение, однако некоторые из них, например мышцы вен и артерий, обеспечивающих ток крови, нагнетаемой сердцем, выполняют функции, не связанные с двигательным аппаратом.

Мышцы лица — позволяют принимать различные выражения нашего лица: смеха, гнева и т. д.

Двуглавая мышца плеча — совместно со своим антагонистом — трехглавой мышцей плеча — обеспечивает сгибание и разгибание предплечья.

Наружные косые мышцы живота — позволяют при сокращении выталкивать воздух из легких. Выполняют работу, противоположную работе диафрагмы, которую здесь не видно, так как она находится внутри брюшной полости.

Четырехглавая мышца бедра — как и в случае с верхними конечностями, четырехглавая мышца бедра также имеет мышцу-антагониста — двуглавую мышцу бедра. Обе сгибают и разгибают бедро.

Функции опорно-двигательной системы. Скелет и мышцы — опорные структуры и органы движения человека. Они выполняют защитную функцию, ограничивая полости, в которых расположены внутренние органы. Так, сердце и легкие защищены грудной клеткой и мышцами груди и спины; органы брюшной полости (желудок, кишечник, почки) — нижним отделом позвоночника, костями таза, мышцами спины и живота; головной мозг расположен в полости черепа, а спинной мозг — в позвоночном канале.

Костная ткань. Кости скелета человека образованы костной тканью — разновидностью соединительной ткани. Костная ткань снабжена нервами и кровеносными сосудами. Клетки ее имеют отростки. Межклеточное вещество составляет 2/3 костной ткани. Оно твердое и плотное, по своим свойствам напоминает камень.

Костные клетки и их отростки окружены мельчайшими «канальцами», заполненными межклеточной жидкостью. Через межклеточную жидкость канальцев происходит питание и дыхание костных клеток.

Строение костей. Величина и форма костей скелета человека различны. Кости могут быть длинными и коркткими.

Длинные кости называют также трубчатыми. Они полые. Такое строение длинных костей обеспечивает одновременно их прочность и легкость. Известно, что металлическая или пластмассовая трубка почти так же прочна, как равный ей по длине и диаметру сплошной стержень из того же материала. В полостях трубчатых костей находится соединительная ткань, богатая жиром, — желтый костный мозг. (Увеличить)

Головки трубчатых костей образованы губчатым веществом. Пластинки костной ткани перекрещиваются в направлениях, по которым кости испытывают наибольшее растяжение или сжатие. Такое строение губчатого вещества также обеспечивает прочность и легкость костей. Промежутки между костными пластинками заполнены красным костным мозгом, который является кроветворным органом.

Короткие кости образованы в основном губчатым веществом. Такое же строение имеют плоские кости, например лопатки, ребра.

Поверхность костей покрыта надкостницей. Это тонкий, но плотный слой соединительной ткани, сросшийся с костью. В надкостнице проходят кровеносные сосуды и нервы. Концы костей, покрытые хрящом, не имеют надкостницы.

Рост костей. В детстве и юности кости людей растут в длину и толщину. Формирование скелета заканчивается к 22−25 годам. Рост кости в толщину связан с тем, что клетки внутренней поверхности надкостницы делятся. При этом на поверхности кости образуются новые слои клеток, а вокруг этих клеток — межклеточное вещество.

В длину кости растут за счет деления клеток хрящевой ткани, покрывающей концы костей.

Рост костей регулируют биологически активные вещества, например гормон роста, выделяемый гипофизом. При недостаточном количестве этого гормона ребенок растет очень медленно. Такие люди вырастают не выше детей 5−6-летнего возраста. Это карлики.

Если в детстве гипофиз вырабатывает слишком много гормона роста, вырастает великан — человек ростом до 2 м и выше.

При усилении функции гипофиза у взрослого человека непропорционально разрастаются некоторые части тела, например пальцы рук, ног, нос.

У взрослых кости не удлиняются и не утолщаются, но замена старого костного вещества новым продолжается всю жизнь. Костное вещество способно перестраиваться под влиянием нагрузки, действующей на скелет. Например, кости больших пальцев стопы, на которые опирается балерина, утолщены, их масса облегчена благодаря расширению внутренней полости.

Чем больше нагрузка на скелет, тем активнее идут процессы обновления и тем прочнее костное вещество. Правильно организованный физический труд, занятия физкультурой в то время, когда скелет еще только формируется, способствуют его развитию и укреплению.

Состав кости. Кости образованы органическими и неорганическими веществами. Значение минеральных и органических веществ легко выяснить, проделав простой опыт. Если долго прокаливать кость, то из нее удаляется вода, а органические соединения сгорают. Когда это делают осторожно, кость не теряет своей формы, но становится настолько хрупкой, что при прикосновении рассыпается на мелкие, твердые частицы, состоящие из неорганических веществ. Неорганические вещества придают костям твердость.

Можно удалить из кости и неорганические соединения — карбонат и фосфат кальция. Для этого кость выдерживают в течение суток в 10-процентном растворе НС1. Соли кальция постепенно растворяются, и кость становится настолько гибкой, что ее можно завязать в узел. Органические соединения придают кости гибкость и упругость.

Сочетание твердости неорганических соединений с упругостью органических обеспечивает прочность костей. Наиболее прочные кости взрослого, но не старого человека.

Скелет человека

Соединение костей. Скелет взрослого человека состоит примерно из 220 костей, которые соединены между собой. Некоторые соединения костей совершенно неподвижны, например соединения костей черепа (швы), другие — подвижны или полуподвижны.

Подвижные соединения костей называют суставами, например бедренный, коленный, локтевой суставы. На одной из костей, сочленяющихся в суставе, обычно находится ямка — суставная впадина. В нее входит соответствующая ей по форме головка другой из сочленяющихся костей. Впадина и головка покрыты слоем блестящего гладкого хряща. Это облегчает скольжение головки во впадине при движениях в суставе.

Кости, образующие суставы, соединяются очень прочными связками. Сверху сустав покрыт суставной сумкой. В ней находится суставная жидкость. Она уменьшает трение и способствует скольжению головки кости в суставной впадине. Хрящи, связки, суставная сумка относятся к соединительной ткани. Полуподвижные соединения костей с хрящевыми прокладками называют полусуставами.

Скелет головы. Череп состоит из мозгового и лицевого отделов.

Мозговой отдел черепа образован прочно и неподвижно соединенными между собой костями. Это парные теменные и височные, непарные лобная и затылочная кости. В височной кости имеется отверстие наружного слухового прохода. На нижней поверхности затылочной кости есть большое затылочное отверстие, через которое полость черепа соединяется с позвоночным каналом. Кости основания черепа пронизаны мелкими отверстиями. Через них проходят черепно-мозговые нервы и кровеносные сосуды. (

В лицевом отделе черепа 15 костей. Самые крупные из них челюстные. Нижнечелюстная кость — единственная подвижная кость черепа. На обеих челюстях имеются ячейки, в которых расположены корни зубов.

Скелет туловища. Позвоночник, или позвоночный столб, состоит из 33−34 коротких костей — позвонков. Каждый позвонок имеет тело и несколько отростков. Позвонки расположены друг над другом. Между позвонками находятся прослойки упругой хрящевой ткани, обеспечивающие гибкость позвоночника. Внутри позвоночника в позвоночном канале расположен спинной мозг.

В позвоночнике человека различают шейный, грудной, поясничный, крестцовый и копчиковый отделы.

Грудная клетка, образована 12 парами ребер и грудиной. С каждым грудным позвонком сочленена одна из 12 пар ребер.

Сочленение ребер с позвонками позволяет изменять их положение: приподниматься во время вдоха и опускаться во время выдоха.

Скелет верхних конечностей. Ключицы и лопатки образуют скелет плечевого пояса. К нему подвижно прикрепляется скелет свободной верхней конечности. Он состоит из костей плеча, предплечья и кисти.

Кости конечностей соединены подвижно. Конечности обеспечивают передвижение человека в пространстве и действуют как сложные системы рычагов.

Скелет нижних конечностей. Две массивные плоские тазовые кости сзади прочно сращены с крестцом, а спереди соединены между собой. Они составляют пояс нижней конечности. В впадину каждой из тазовых костей входит шаровидная головка бедренной кости. Скелет свободной нижней конечности состоит из массивной бедренной кости, костей голени и стопы.

Особенности скелета человека, связанные с прямохождением и трудовой деятельностью. Человека характеризует вертикальное положение тела, опирающегося только на нижние конечности. Позвоночник взрослого человека имеет изгибы. Во время быстрых, резких движений изгибы пружинят и смягчают толчки. У млекопитающих животных, которые опираются на четыре конечности, позвоночник таких изгибов не имеет.

Грудная клетка человека в связи с прямохождением расширена в стороны. У млекопитающих животных она сжата с боков.

Одна из самых характерных черт скелета человека — это строение руки, ставшей органом труда. Кости пальцев подвижны. Самый подвижный, большой палец, хорошо развитый у человека, располагается напротив всех остальных, что важно для различных видов работы — от колки дров, требующей сильных размашистых движений, до сборки ручных часов, которая связана с тонкими и точными движениями пальцев.

В связи с вертикальным положением тела человека пояс его нижних конечностей очень широк и имеет вид чаши. Он служит опорой для внутренних органов брюшной полости. У млекопитающих животных таз значительно уже, чем у человека.

Массивные кости нижних конечностей человека толще и прочнее костей рук, так как ноги несут на себе всю тяжесть тела. Сводчатая стопа человека при ходьбе, беге, прыжках пружинит, смягчает толчки.

В скелете головы человека мозговой отдел черепа преобладает над лицевым. Это связано с большим развитием головного мозга человека.

Показать Свернуть

westud.ru

Реферат: Центральная двигательная система

Ростовский Государственный университет

Доклад

На тему: Центральная двигательная система

Подготовил студент: Шишаев В.И.

Проверил преподаватель

Ростов – на – Дону

2002

Двигательные пути, идущие от головного мозга к спинному и двигательным ядрам черепно-мозговых нервов, анатомы делят на 2-е системы:

На пирамидальную и экспирамидальную.

Пирамидальный тракт получил свое название от симметричных клиновидных выпуклостей, которые он образует на вентральной поверхности продолговатого мозга каудально от вароливого моста.

На рисунке я показал топическую организацию моторной коры. Эта схема основана на данных, полученных при стимуляции моторной коры во время операции на людях без наркоза, однако, так же сходные карты были получены в экспериментах над млекопитающими.

У животных находящихся на низших ступенях филогенической лестницы имеется лишь зачаточный неокортикс; пирамидной моторной системы у них нет. Пальцы ноги и стопа представлены в дорсальной части моторной коры, имеют при этом большую часть латеральной поверхности, а соответствующие области для лица и языка локализованы ближе к сильвиевой борозде, в вентральной части моторной коры.

Аксоны многих нейронов моторной коры идут в составе внутренней капсулы, находящейся между таламусом и базальными ганглиями и образуют ножки мозга. При прохождении через мост волокна пирамидального тракта распределяются не столь компактно, затем вновь собираются вместе, покидая мост и образуя пирамиды продолговатого мозга.

У человека около 80% волокон этого тракта перекрещиваются, хотя описаны случаи, в которых на этом уровне вообще нет перекреста.

Перекрещенные пути спускаются в составе латеральных кортико – спинальных трактов спинного мозга; не перекрещенная часть волокон идет вниз в основном в вентральных кортикоспинальных трактах.

Вентральные волокна заканчиваются в моторных пулах: одни на вставочных,

другие (те, которые идут к дистальным мышцам) – прямо на мотонейронах.

Лоренс считал что некоторые из нисходящих волокон, заканчиваются в инсилатеральных моторных пулах.

Пенфилд описал вторую моторную зону в коре человека, лежащею вдоль края сильвиевой борозды. Стимуляция в этой области вызывает движение как левой так и правой руки и ноги, а иногда больной указывает на сильное желание пошевелить какой – либо конечностью или на неспособность пошевелить ею. Пенфилд так же обнаружил зону которую назвал “дополнительной моторной областью”. Расположена эта область на медиальной поверхности продольной борозды, спереди от зоны представительства стопы в прицентралиной моторной коре.!!!

При стимуляции этой области человек медленно поднимает руку на стороне, противоположной раздражаемой зоне, поворачивает голову в сторону поднятой руки и устремляет на нее взгляд. По данным Чанга, у обезьян можно вызвать сокращение или расслабление опредиленных мышц путем порогового раздражения током соответствующих точек моторной коры. Из наблюдений того же Чанга стоит отметить, что при средней стимуляции у высших животных чаще возникают определенные двигательные акты, а не просто подергивание мышц.

Фритчен и Джексон наблюдая за собаками установили, что некоторые эпелептические припадки начинаются с подергивания отдельных частей тела, например пальца или рта.

Если развивается большой эпилептический припадок, движения распространяются сначала на ближайшие мышцы, а затем охватывают все тело.

Джексон высказал предположение, что начальные движения вызываются спонтанными электрическими разрядами нейронов в определенной части моторной коры, которые постепенно распространяются по остальной моторной области. Это предположение оказалось правильным; по этим движениям можно выявить локализацию эпилептического очага в моторной коре. Они так же стали источником информации относительно организации

моторной коры человека.

Повреждении же пирамидального тракта приводит к самым различным последствиям в зависимости от вида животного, размера повреждения и времени, прошедшего с момента повреждения.

К примеру, у крыс и у кошек наблюдается временная потеря тонуса так называемый “вялый паралич” в пораженных конечностях, но через 2-3дня их двигательная активность восстанавливается. Обезьяны могут вставать и хвататься за прутья клетки через 4-5 недель, а через 2 недели могут подбирать пищу с пола, но у них никогда не восстановится способность шевелить отдельными пальцами. У человека повреждения вызывают проявление тяжелого паралича на протяжении 1-2 недель, затем тонус проксимальных мышц начинает восстанавливаться так, что сначала начинает появляться движения в плечевых и бедренных суставах. Поздней повышается тонус более дистальных мышц, но это случается очень редко или никогда.

Повреждение пирамид продолговатого мозга вызывает вышеупомянутые симптомы но уже с некими осложнениями, но поскольку кроме нейронов, посылающих аксоны в пирамидальный тракт, кора содержит нейроны, соединяющихся с экспирамидальной системой, подкорковые повреждения в данной области вызывают так называемое явление “высвобождения”. При этом тормозная регуляция двигательной системы частично утрачивается, а восстановление функций сопровождается аномальным поведением мышечного тонуса и повышением рефлекторной деятельности. Иногда сухожильные рефлексы повышаются так, что одно сокращение вызывает второе и так далее, в результате чего возникает серия подергиваний именуемая клонусом.

Корковые повреждения могут вызывать утрату некоторых движений, хотя мышцы, которые участвуют в них, продолжают функционировать и участвовать в других движениях.

Например, больной может сжимать и разжимать кулак, но не может шевелить каждым пальцем в отдельности.

Иногда случается, что сильное движение на непораженной стороне вызывает слабое движение на парализованной стороне. Такое движение может регулироваться через не перекрещенные пути от неповрежденной коры, они перестают испытывать тормозное влияние со стороны более мощных перекрещенных связей.

Хотя организация моторной коры отражает топографию тела, организация эта не является простой, такой, например, при которой все клетки в определенной части коры связаны с определенной конечностью или мышцей.

Глиз и Коул показал на обезьянах что, если удалить область, стимуляция которой вызывает движение большого пальца руки, дегенерацию волокон можно будет обнаружить в боковом кортикоспинальном тракте вплоть до поясничного отдела, т.е. далеко за пределами той области, на уровне которой все нервы, идущие к большому пальцу, покидают спинной мозг. Иными словами, многие нейроны, не имеющие отношение к движению большого пальца, занимают то же место в моторной коре, где находится его управление.

После полного восстановления снова была произведена операция;

оказалось, что стимуляция коры вокруг повреждения теперь вызывает движения большого пальца, хотя при первой операции это не наблюдалось. Когда и эти области удалили, опять возник вялый паралич, и снова по прошествию времени происходило частичное восстановление.

Глиз и Коул предположили, что такое восстановление является результатом возврата к менее дифференцированному функционированию моторной коры.

Опыты с регистрацией.

Пенфилд и Джаспер во время операции на людях без наркоза обнаружили, что в момент произвольных движений в моторной коре больного регистрируются изменения электрической активности. В условиях покоя волна электрической активности медленнее и имеет высокую амплитуду, чем при движении.

Вы может быть задумались на вопросам, почему в моторной системе происходит деление на пирамидальную и экспирамищдальную систему. Это явилось следствием исторического заблуждения, возникшего из начального представления о том, что пирамидальная система является единственной двигательной системой. Поэтому те части мозга, участие которых в двигательных функциях было выявлено позднее, были объединены под названием экспирамищдальной системы. Между этими двумя системами трудно провести четкую функциональную грань, они не обособлены анатомически, за исключением короткой части пути через продолговатый мозг.

Повреждение экспирамидальной системы вызывают различные эффекты, часть которых совершенно загадочна. Повреждение тормозных отделов этой системы усиливает спастичность вызываемою повреждениями коры (т.е. конечности становятся более напряженными и хуже поддаются регуляции).

Дицеребральная регидность возникающая при пере резки ствола мозга на уровне четверохолмия, является крайним выражением потери центрального тормозного контроля. Механизмы разгибательных рефлексов резко облегчаются под влиянием возбуждающих ядер ствола, например вестибулярных, которые находятся ниже уровня пере резки и не получают более уравновешивающих тормозных влияний.

Повреждение вестибулярных ядер снижают тоническую спастичность, но в пораженных конечностях рефлексы остаются повышенными. Это можно снять повреждением ретикулярной формации среднего мозга. Повреждение мозжечка вызываютатаксию(нарушение координации), потерю равновесия и тремор, тремор это усиление движений при произвольных действиях.

Другим патологическим состоянием, которое связано с дисфункцией экспирамидальной системы, является болезнь Паркинсона; для нее характерна поздняя ригидность и тремор (приблизительно 5 подергиваний в 1сек.), который усиливается, когда больной не делает произвольных движений. Эта болезнь связана с повреждением бледного шара или черной субстанции, и ее симптомы удивительным образом исчезают при дальнейшем повреждении бледного шара или находящейся поблизости внутренней капусты. Но после того как были найдены эффективные лекарственные препараты, к операции стали прибегать значительно реже.

С экспирамищдальной системой принято связывать возникновение таких непроизвольных движений, какхорея(подергивания и тики),атетозы(судороги) игемибаллизм(свисание рук и ног). При этих двигательных нарушениях обнаруживают дегенеративные изменения в разных отделах этой системы.

Повреждение постцентральной извилины (соматосенсорной коры) вызывают временную потерю силы, а так же двигательную неловкость. К примеру, обезьяна с такими повреждениями надолго застывают в неестественных позах, если они не видят пораженных конечностей. Этот эффект резко отличается от эффекта нарушения сенсорных путей на уровне спинного мозга. Лешли описал больного с повреждениями пути проприоцептивной чувствительности в спинном мозге, который мог удерживать позу лишь в течении нескольких секунд, если ему завязывали глаза, но считал при этом, что он удерживает эту позу значительно дольше.

superbotanik.net

Реферат - Центральная двигательная система

Ростовский Государственный университет

Доклад

На тему: Центральная двигательная система

Подготовил студент: Шишаев В.И.

Проверил преподаватель

Ростов – на – Дону

2002

Двигательные пути, идущие от головного мозга к спинному и двигательным ядрам черепно-мозговых нервов, анатомы делят на 2-е системы:

На пирамидальную и экспирамидальную.

Пирамидальный тракт получил свое название от симметричных клиновидных выпуклостей, которые он образует на вентральной поверхности продолговатого мозга каудально от вароливого моста.

На рисунке я показал топическую организацию моторной коры. Эта схема основана на данных, полученных при стимуляции моторной коры во время операции на людях без наркоза, однако, так же сходные карты были получены в экспериментах над млекопитающими.

У животных находящихся на низших ступенях филогенической лестницы имеется лишь зачаточный неокортикс; пирамидной моторной системы у них нет. Пальцы ноги и стопа представлены в дорсальной части моторной коры, имеют при этом большую часть латеральной поверхности, а соответствующие области для лица и языка локализованы ближе к сильвиевой борозде, в вентральной части моторной коры.

Аксоны многих нейронов моторной коры идут в составе внутренней капсулы, находящейся между таламусом и базальными ганглиями и образуют ножки мозга. При прохождении через мост волокна пирамидального тракта распределяются не столь компактно, затем вновь собираются вместе, покидая мост и образуя пирамиды продолговатого мозга.

У человека около 80% волокон этого тракта перекрещиваются, хотя описаны случаи, в которых на этом уровне вообще нет перекреста.

Перекрещенные пути спускаются в составе латеральных кортико – спинальных трактов спинного мозга; не перекрещенная часть волокон идет вниз в основном в вентральных кортикоспинальных трактах.

Вентральные волокна заканчиваются в моторных пулах: одни на вставочных,

другие (те, которые идут к дистальным мышцам) – прямо на мотонейронах.

Лоренс считал что некоторые из нисходящих волокон, заканчиваются в инсилатеральных моторных пулах.

Пенфилд описал вторую моторную зону в коре человека, лежащею вдоль края сильвиевой борозды. Стимуляция в этой области вызывает движение как левой так и правой руки и ноги, а иногда больной указывает на сильное желание пошевелить какой – либо конечностью или на неспособность пошевелить ею. Пенфилд так же обнаружил зону которую назвал “дополнительной моторной областью”. Расположена эта область на медиальной поверхности продольной борозды, спереди от зоны представительства стопы в прицентралиной моторной коре. !!!

При стимуляции этой области человек медленно поднимает руку на стороне, противоположной раздражаемой зоне, поворачивает голову в сторону поднятой руки и устремляет на нее взгляд. По данным Чанга, у обезьян можно вызвать сокращение или расслабление опредиленных мышц путем порогового раздражения током соответствующих точек моторной коры. Из наблюдений того же Чанга стоит отметить, что при средней стимуляции у высших животных чаще возникают определенные двигательные акты, а не просто подергивание мышц.

Фритчен и Джексон наблюдая за собаками установили, что некоторые эпелептические припадки начинаются с подергивания отдельных частей тела, например пальца или рта.

Если развивается большой эпилептический припадок, движения распространяются сначала на ближайшие мышцы, а затем охватывают все тело.

Джексон высказал предположение, что начальные движения вызываются спонтанными электрическими разрядами нейронов в определенной части моторной коры, которые постепенно распространяются по остальной моторной области. Это предположение оказалось правильным; по этим движениям можно выявить локализацию эпилептического очага в моторной коре. Они так же стали источником информации относительно организации

моторной коры человека.

Повреждении же пирамидального тракта приводит к самым различным последствиям в зависимости от вида животного, размера повреждения и времени, прошедшего с момента повреждения.

К примеру, у крыс и у кошек наблюдается временная потеря тонуса так называемый “вялый паралич” в пораженных конечностях, но через 2-3дня их двигательная активность восстанавливается. Обезьяны могут вставать и хвататься за прутья клетки через 4-5 недель, а через 2 недели могут подбирать пищу с пола, но у них никогда не восстановится способность шевелить отдельными пальцами. У человека повреждения вызывают проявление тяжелого паралича на протяжении 1-2 недель, затем тонус проксимальных мышц начинает восстанавливаться так, что сначала начинает появляться движения в плечевых и бедренных суставах. Поздней повышается тонус более дистальных мышц, но это случается очень редко или никогда.

Повреждение пирамид продолговатого мозга вызывает вышеупомянутые симптомы но уже с некими осложнениями, но поскольку кроме нейронов, посылающих аксоны в пирамидальный тракт, кора содержит нейроны, соединяющихся с экспирамидальной системой, подкорковые повреждения в данной области вызывают так называемое явление “высвобождения”. При этом тормозная регуляция двигательной системы частично утрачивается, а восстановление функций сопровождается аномальным поведением мышечного тонуса и повышением рефлекторной деятельности. Иногда сухожильные рефлексы повышаются так, что одно сокращение вызывает второе и так далее, в результате чего возникает серия подергиваний именуемая клонусом.

Корковые повреждения могут вызывать утрату некоторых движений, хотя мышцы, которые участвуют в них, продолжают функционировать и участвовать в других движениях.

Например, больной может сжимать и разжимать кулак, но не может шевелить каждым пальцем в отдельности.

Иногда случается, что сильное движение на непораженной стороне вызывает слабое движение на парализованной стороне. Такое движение может регулироваться через не перекрещенные пути от неповрежденной коры, они перестают испытывать тормозное влияние со стороны более мощных перекрещенных связей.

Хотя организация моторной коры отражает топографию тела, организация эта не является простой, такой, например, при которой все клетки в определенной части коры связаны с определенной конечностью или мышцей.

Глиз и Коул показал на обезьянах что, если удалить область, стимуляция которой вызывает движение большого пальца руки, дегенерацию волокон можно будет обнаружить в боковом кортикоспинальном тракте вплоть до поясничного отдела, т.е. далеко за пределами той области, на уровне которой все нервы, идущие к большому пальцу, покидают спинной мозг. Иными словами, многие нейроны, не имеющие отношение к движению большого пальца, занимают то же место в моторной коре, где находится его управление.

После полного восстановления снова была произведена операция;

оказалось, что стимуляция коры вокруг повреждения теперь вызывает движения большого пальца, хотя при первой операции это не наблюдалось. Когда и эти области удалили, опять возник вялый паралич, и снова по прошествию времени происходило частичное восстановление.

Глиз и Коул предположили, что такое восстановление является результатом возврата к менее дифференцированному функционированию моторной коры.

Опыты с регистрацией.

Пенфилд и Джаспер во время операции на людях без наркоза обнаружили, что в момент произвольных движений в моторной коре больного регистрируются изменения электрической активности. В условиях покоя волна электрической активности медленнее и имеет высокую амплитуду, чем при движении.

Вы может быть задумались на вопросам, почему в моторной системе происходит деление на пирамидальную и экспирамищдальную систему. Это явилось следствием исторического заблуждения, возникшего из начального представления о том, что пирамидальная система является единственной двигательной системой. Поэтому те части мозга, участие которых в двигательных функциях было выявлено позднее, были объединены под названием экспирамищдальной системы. Между этими двумя системами трудно провести четкую функциональную грань, они не обособлены анатомически, за исключением короткой части пути через продолговатый мозг.

Повреждение экспирамидальной системы вызывают различные эффекты, часть которых совершенно загадочна. Повреждение тормозных отделов этой системы усиливает спастичность вызываемою повреждениями коры (т.е. конечности становятся более напряженными и хуже поддаются регуляции).

Дицеребральная регидность возникающая при пере резки ствола мозга на уровне четверохолмия, является крайним выражением потери центрального тормозного контроля. Механизмы разгибательных рефлексов резко облегчаются под влиянием возбуждающих ядер ствола, например вестибулярных, которые находятся ниже уровня пере резки и не получают более уравновешивающих тормозных влияний.

Повреждение вестибулярных ядер снижают тоническую спастичность, но в пораженных конечностях рефлексы остаются повышенными. Это можно снять повреждением ретикулярной формации среднего мозга. Повреждение мозжечка вызывают атаксию (нарушение координации), потерю равновесия и тремор, тремор это усиление движений при произвольных действиях.

Другим патологическим состоянием, которое связано с дисфункцией экспирамидальной системы, является болезнь Паркинсона; для нее характерна поздняя ригидность и тремор (приблизительно 5 подергиваний в 1сек.), который усиливается, когда больной не делает произвольных движений. Эта болезнь связана с повреждением бледного шара или черной субстанции, и ее симптомы удивительным образом исчезают при дальнейшем повреждении бледного шара или находящейся поблизости внутренней капусты. Но после того как были найдены эффективные лекарственные препараты, к операции стали прибегать значительно реже.

С экспирамищдальной системой принято связывать возникновение таких непроизвольных движений, как хорея (подергивания и тики), атетозы (судороги) и гемибаллизм (свисание рук и ног). При этих двигательных нарушениях обнаруживают дегенеративные изменения в разных отделах этой системы.

Повреждение постцентральной извилины (соматосенсорной коры) вызывают временную потерю силы, а так же двигательную неловкость. К примеру, обезьяна с такими повреждениями надолго застывают в неестественных позах, если они не видят пораженных конечностей. Этот эффект резко отличается от эффекта нарушения сенсорных путей на уровне спинного мозга. Лешли описал больного с повреждениями пути проприоцептивной чувствительности в спинном мозге, который мог удерживать позу лишь в течении нескольких секунд, если ему завязывали глаза, но считал при этом, что он удерживает эту позу значительно дольше.

referat.store

Доклад - Центральная двигательная система

Ростовский Государственный университет

Доклад

На тему: Центральная двигательная система

Подготовил студент: Шишаев В.И.

Проверил преподаватель

Ростов – на – Дону

2002

Двигательные пути, идущие от головного мозга к спинному и двигательным ядрам черепно-мозговых нервов, анатомы делят на 2-е системы:

На пирамидальную и экспирамидальную.

Пирамидальный тракт получил свое название от симметричных клиновидных выпуклостей, которые он образует на вентральной поверхности продолговатого мозга каудально от вароливого моста.

На рисунке я показал топическую организацию моторной коры. Эта схема основана на данных, полученных при стимуляции моторной коры во время операции на людях без наркоза, однако, так же сходные карты были получены в экспериментах над млекопитающими.

У животных находящихся на низших ступенях филогенической лестницы имеется лишь зачаточный неокортикс; пирамидной моторной системы у них нет. Пальцы ноги и стопа представлены в дорсальной части моторной коры, имеют при этом большую часть латеральной поверхности, а соответствующие области для лица и языка локализованы ближе к сильвиевой борозде, в вентральной части моторной коры.

Аксоны многих нейронов моторной коры идут в составе внутренней капсулы, находящейся между таламусом и базальными ганглиями и образуют ножки мозга. При прохождении через мост волокна пирамидального тракта распределяются не столь компактно, затем вновь собираются вместе, покидая мост и образуя пирамиды продолговатого мозга.

У человека около 80% волокон этого тракта перекрещиваются, хотя описаны случаи, в которых на этом уровне вообще нет перекреста.

Перекрещенные пути спускаются в составе латеральных кортико – спинальных трактов спинного мозга; не перекрещенная часть волокон идет вниз в основном в вентральных кортикоспинальных трактах.

Вентральные волокна заканчиваются в моторных пулах: одни на вставочных,

другие (те, которые идут к дистальным мышцам) – прямо на мотонейронах.

Лоренс считал что некоторые из нисходящих волокон, заканчиваются в инсилатеральных моторных пулах.

Пенфилд описал вторую моторную зону в коре человека, лежащею вдоль края сильвиевой борозды. Стимуляция в этой области вызывает движение как левой так и правой руки и ноги, а иногда больной указывает на сильное желание пошевелить какой – либо конечностью или на неспособность пошевелить ею. Пенфилд так же обнаружил зону которую назвал “дополнительной моторной областью”. Расположена эта область на медиальной поверхности продольной борозды, спереди от зоны представительства стопы в прицентралиной моторной коре. !!!

При стимуляции этой области человек медленно поднимает руку на стороне, противоположной раздражаемой зоне, поворачивает голову в сторону поднятой руки и устремляет на нее взгляд. По данным Чанга, у обезьян можно вызвать сокращение или расслабление опредиленных мышц путем порогового раздражения током соответствующих точек моторной коры. Из наблюдений того же Чанга стоит отметить, что при средней стимуляции у высших животных чаще возникают определенные двигательные акты, а не просто подергивание мышц.

Фритчен и Джексон наблюдая за собаками установили, что некоторые эпелептические припадки начинаются с подергивания отдельных частей тела, например пальца или рта.

Если развивается большой эпилептический припадок, движения распространяются сначала на ближайшие мышцы, а затем охватывают все тело.

Джексон высказал предположение, что начальные движения вызываются спонтанными электрическими разрядами нейронов в определенной части моторной коры, которые постепенно распространяются по остальной моторной области. Это предположение оказалось правильным; по этим движениям можно выявить локализацию эпилептического очага в моторной коре. Они так же стали источником информации относительно организации

моторной коры человека.

Повреждении же пирамидального тракта приводит к самым различным последствиям в зависимости от вида животного, размера повреждения и времени, прошедшего с момента повреждения.

К примеру, у крыс и у кошек наблюдается временная потеря тонуса так называемый “вялый паралич” в пораженных конечностях, но через 2-3дня их двигательная активность восстанавливается. Обезьяны могут вставать и хвататься за прутья клетки через 4-5 недель, а через 2 недели могут подбирать пищу с пола, но у них никогда не восстановится способность шевелить отдельными пальцами. У человека повреждения вызывают проявление тяжелого паралича на протяжении 1-2 недель, затем тонус проксимальных мышц начинает восстанавливаться так, что сначала начинает появляться движения в плечевых и бедренных суставах. Поздней повышается тонус более дистальных мышц, но это случается очень редко или никогда.

Повреждение пирамид продолговатого мозга вызывает вышеупомянутые симптомы но уже с некими осложнениями, но поскольку кроме нейронов, посылающих аксоны в пирамидальный тракт, кора содержит нейроны, соединяющихся с экспирамидальной системой, подкорковые повреждения в данной области вызывают так называемое явление “высвобождения”. При этом тормозная регуляция двигательной системы частично утрачивается, а восстановление функций сопровождается аномальным поведением мышечного тонуса и повышением рефлекторной деятельности. Иногда сухожильные рефлексы повышаются так, что одно сокращение вызывает второе и так далее, в результате чего возникает серия подергиваний именуемая клонусом.

Корковые повреждения могут вызывать утрату некоторых движений, хотя мышцы, которые участвуют в них, продолжают функционировать и участвовать в других движениях.

Например, больной может сжимать и разжимать кулак, но не может шевелить каждым пальцем в отдельности.

Иногда случается, что сильное движение на непораженной стороне вызывает слабое движение на парализованной стороне. Такое движение может регулироваться через не перекрещенные пути от неповрежденной коры, они перестают испытывать тормозное влияние со стороны более мощных перекрещенных связей.

Хотя организация моторной коры отражает топографию тела, организация эта не является простой, такой, например, при которой все клетки в определенной части коры связаны с определенной конечностью или мышцей.

Глиз и Коул показал на обезьянах что, если удалить область, стимуляция которой вызывает движение большого пальца руки, дегенерацию волокон можно будет обнаружить в боковом кортикоспинальном тракте вплоть до поясничного отдела, т.е. далеко за пределами той области, на уровне которой все нервы, идущие к большому пальцу, покидают спинной мозг. Иными словами, многие нейроны, не имеющие отношение к движению большого пальца, занимают то же место в моторной коре, где находится его управление.

После полного восстановления снова была произведена операция;

оказалось, что стимуляция коры вокруг повреждения теперь вызывает движения большого пальца, хотя при первой операции это не наблюдалось. Когда и эти области удалили, опять возник вялый паралич, и снова по прошествию времени происходило частичное восстановление.

Глиз и Коул предположили, что такое восстановление является результатом возврата к менее дифференцированному функционированию моторной коры.

Опыты с регистрацией.

Пенфилд и Джаспер во время операции на людях без наркоза обнаружили, что в момент произвольных движений в моторной коре больного регистрируются изменения электрической активности. В условиях покоя волна электрической активности медленнее и имеет высокую амплитуду, чем при движении.

Вы может быть задумались на вопросам, почему в моторной системе происходит деление на пирамидальную и экспирамищдальную систему. Это явилось следствием исторического заблуждения, возникшего из начального представления о том, что пирамидальная система является единственной двигательной системой. Поэтому те части мозга, участие которых в двигательных функциях было выявлено позднее, были объединены под названием экспирамищдальной системы. Между этими двумя системами трудно провести четкую функциональную грань, они не обособлены анатомически, за исключением короткой части пути через продолговатый мозг.

Повреждение экспирамидальной системы вызывают различные эффекты, часть которых совершенно загадочна. Повреждение тормозных отделов этой системы усиливает спастичность вызываемою повреждениями коры (т.е. конечности становятся более напряженными и хуже поддаются регуляции).

Дицеребральная регидность возникающая при пере резки ствола мозга на уровне четверохолмия, является крайним выражением потери центрального тормозного контроля. Механизмы разгибательных рефлексов резко облегчаются под влиянием возбуждающих ядер ствола, например вестибулярных, которые находятся ниже уровня пере резки и не получают более уравновешивающих тормозных влияний.

Повреждение вестибулярных ядер снижают тоническую спастичность, но в пораженных конечностях рефлексы остаются повышенными. Это можно снять повреждением ретикулярной формации среднего мозга. Повреждение мозжечка вызывают атаксию (нарушение координации), потерю равновесия и тремор, тремор это усиление движений при произвольных действиях.

Другим патологическим состоянием, которое связано с дисфункцией экспирамидальной системы, является болезнь Паркинсона; для нее характерна поздняя ригидность и тремор (приблизительно 5 подергиваний в 1сек.), который усиливается, когда больной не делает произвольных движений. Эта болезнь связана с повреждением бледного шара или черной субстанции, и ее симптомы удивительным образом исчезают при дальнейшем повреждении бледного шара или находящейся поблизости внутренней капусты. Но после того как были найдены эффективные лекарственные препараты, к операции стали прибегать значительно реже.

С экспирамищдальной системой принято связывать возникновение таких непроизвольных движений, как хорея (подергивания и тики), атетозы (судороги) и гемибаллизм (свисание рук и ног). При этих двигательных нарушениях обнаруживают дегенеративные изменения в разных отделах этой системы.

Повреждение постцентральной извилины (соматосенсорной коры) вызывают временную потерю силы, а так же двигательную неловкость. К примеру, обезьяна с такими повреждениями надолго застывают в неестественных позах, если они не видят пораженных конечностей. Этот эффект резко отличается от эффекта нарушения сенсорных путей на уровне спинного мозга. Лешли описал больного с повреждениями пути проприоцептивной чувствительности в спинном мозге, который мог удерживать позу лишь в течении нескольких секунд, если ему завязывали глаза, но считал при этом, что он удерживает эту позу значительно дольше.

www.ronl.ru

Реферат: Центральная двигательная система

Ростовский Государственный университет

Доклад

На тему: Центральная двигательная система

Подготовил студент: Шишаев В.И.

Проверил преподаватель

Ростов – на – Дону

2002

Двигательные пути, идущие от головного мозга к спинному и двигательным ядрам черепно-мозговых нервов, анатомы делят на 2-е системы:

На пирамидальную и экспирамидальную.

Пирамидальный тракт получил свое название от симметричных клиновидных выпуклостей, которые он образует на вентральной поверхности продолговатого мозга каудально от вароливого моста.

На рисунке я показал топическую организацию моторной коры. Эта схема основана на данных, полученных при стимуляции моторной коры во время операции на людях без наркоза, однако, так же сходные карты были получены в экспериментах над млекопитающими.

У животных находящихся на низших ступенях филогенической лестницы имеется лишь зачаточный неокортикс; пирамидной моторной системы у них нет. Пальцы ноги и стопа представлены в дорсальной части моторной коры, имеют при этом большую часть латеральной поверхности, а соответствующие области для лица и языка локализованы ближе к сильвиевой борозде, в вентральной части моторной коры.

Аксоны многих нейронов моторной коры идут в составе внутренней капсулы, находящейся между таламусом и базальными ганглиями и образуют ножки мозга. При прохождении через мост волокна пирамидального тракта распределяются не столь компактно, затем вновь собираются вместе, покидая мост и образуя пирамиды продолговатого мозга.

У человека около 80% волокон этого тракта перекрещиваются, хотя описаны случаи, в которых на этом уровне вообще нет перекреста.

Перекрещенные пути спускаются в составе латеральных кортико – спинальных трактов спинного мозга; не перекрещенная часть волокон идет вниз в основном в вентральных кортикоспинальных трактах.

Вентральные волокна заканчиваются в моторных пулах: одни на вставочных,

другие (те, которые идут к дистальным мышцам) – прямо на мотонейронах.

Лоренс считал что некоторые из нисходящих волокон, заканчиваются в инсилатеральных моторных пулах.

Пенфилд описал вторую моторную зону в коре человека, лежащею вдоль края сильвиевой борозды. Стимуляция в этой области вызывает движение как левой так и правой руки и ноги, а иногда больной указывает на сильное желание пошевелить какой – либо конечностью или на неспособность пошевелить ею. Пенфилд так же обнаружил зону которую назвал “дополнительной моторной областью”. Расположена эта область на медиальной поверхности продольной борозды, спереди от зоны представительства стопы в прицентралиной моторной коре. !!!

При стимуляции этой области человек медленно поднимает руку на стороне, противоположной раздражаемой зоне, поворачивает голову в сторону поднятой руки и устремляет на нее взгляд. По данным Чанга, у обезьян можно вызвать сокращение или расслабление опредиленных мышц путем порогового раздражения током соответствующих точек моторной коры. Из наблюдений того же Чанга стоит отметить, что при средней стимуляции у высших животных чаще возникают определенные двигательные акты, а не просто подергивание мышц.

Фритчен и Джексон наблюдая за собаками установили, что некоторые эпелептические припадки начинаются с подергивания отдельных частей тела, например пальца или рта.

Если развивается большой эпилептический припадок, движения распространяются сначала на ближайшие мышцы, а затем охватывают все тело.

Джексон высказал предположение, что начальные движения вызываются спонтанными электрическими разрядами нейронов в определенной части моторной коры, которые постепенно распространяются по остальной моторной области. Это предположение оказалось правильным; по этим движениям можно выявить локализацию эпилептического очага в моторной коре. Они так же стали источником информации относительно организации

моторной коры человека.

Повреждении же пирамидального тракта приводит к самым различным последствиям в зависимости от вида животного, размера повреждения и времени, прошедшего с момента повреждения.

К примеру, у крыс и у кошек наблюдается временная потеря тонуса так называемый “вялый паралич” в пораженных конечностях, но через 2-3дня их двигательная активность восстанавливается. Обезьяны могут вставать и хвататься за прутья клетки через 4-5 недель, а через 2 недели могут подбирать пищу с пола, но у них никогда не восстановится способность шевелить отдельными пальцами. У человека повреждения вызывают проявление тяжелого паралича на протяжении 1-2 недель, затем тонус проксимальных мышц начинает восстанавливаться так, что сначала начинает появляться движения в плечевых и бедренных суставах. Поздней повышается тонус более дистальных мышц, но это случается очень редко или никогда.

Повреждение пирамид продолговатого мозга вызывает вышеупомянутые симптомы но уже с некими осложнениями, но поскольку кроме нейронов, посылающих аксоны в пирамидальный тракт, кора содержит нейроны, соединяющихся с экспирамидальной системой, подкорковые повреждения в данной области вызывают так называемое явление “высвобождения”. При этом тормозная регуляция двигательной системы частично утрачивается, а восстановление функций сопровождается аномальным поведением мышечного тонуса и повышением рефлекторной деятельности. Иногда сухожильные рефлексы повышаются так, что одно сокращение вызывает второе и так далее, в результате чего возникает серия подергиваний именуемая клонусом.

Корковые повреждения могут вызывать утрату некоторых движений, хотя мышцы, которые участвуют в них, продолжают функционировать и участвовать в других движениях.

Например, больной может сжимать и разжимать кулак, но не может шевелить каждым пальцем в отдельности.

Иногда случается, что сильное движение на непораженной стороне вызывает слабое движение на парализованной стороне. Такое движение может регулироваться через не перекрещенные пути от неповрежденной коры, они перестают испытывать тормозное влияние со стороны более мощных перекрещенных связей.

Хотя организация моторной коры отражает топографию тела, организация эта не является простой, такой, например, при которой все клетки в определенной части коры связаны с определенной конечностью или мышцей.

Глиз и Коул показал на обезьянах что, если удалить область, стимуляция которой вызывает движение большого пальца руки, дегенерацию волокон можно будет обнаружить в боковом кортикоспинальном тракте вплоть до поясничного отдела, т.е. далеко за пределами той области, на уровне которой все нервы, идущие к большому пальцу, покидают спинной мозг. Иными словами, многие нейроны, не имеющие отношение к движению большого пальца, занимают то же место в моторной коре, где находится его управление.

После полного восстановления снова была произведена операция;

оказалось, что стимуляция коры вокруг повреждения теперь вызывает движения большого пальца, хотя при первой операции это не наблюдалось. Когда и эти области удалили, опять возник вялый паралич, и снова по прошествию времени происходило частичное восстановление.

Глиз и Коул предположили, что такое восстановление является результатом возврата к менее дифференцированному функционированию моторной коры.

Опыты с регистрацией.

Пенфилд и Джаспер во время операции на людях без наркоза обнаружили, что в момент произвольных движений в моторной коре больного регистрируются изменения электрической активности. В условиях покоя волна электрической активности медленнее и имеет высокую амплитуду, чем при движении.

Вы может быть задумались на вопросам, почему в моторной системе происходит деление на пирамидальную и экспирамищдальную систему. Это явилось следствием исторического заблуждения, возникшего из начального представления о том, что пирамидальная система является единственной двигательной системой. Поэтому те части мозга, участие которых в двигательных функциях было выявлено позднее, были объединены под названием экспирамищдальной системы. Между этими двумя системами трудно провести четкую функциональную грань, они не обособлены анатомически, за исключением короткой части пути через продолговатый мозг.

Повреждение экспирамидальной системы вызывают различные эффекты, часть которых совершенно загадочна. Повреждение тормозных отделов этой системы усиливает спастичность вызываемою повреждениями коры (т.е. конечности становятся более напряженными и хуже поддаются регуляции).

Дицеребральная регидность возникающая при пере резки ствола мозга на уровне четверохолмия, является крайним выражением потери центрального тормозного контроля. Механизмы разгибательных рефлексов резко облегчаются под влиянием возбуждающих ядер ствола, например вестибулярных, которые находятся ниже уровня пере резки и не получают более уравновешивающих тормозных влияний.

Повреждение вестибулярных ядер снижают тоническую спастичность, но в пораженных конечностях рефлексы остаются повышенными. Это можно снять повреждением ретикулярной формации среднего мозга. Повреждение мозжечка вызывают атаксию (нарушение координации), потерю равновесия и тремор, тремор это усиление движений при произвольных действиях.

Другим патологическим состоянием, которое связано с дисфункцией экспирамидальной системы, является болезнь Паркинсона; для нее характерна поздняя ригидность и тремор (приблизительно 5 подергиваний в 1сек.), который усиливается, когда больной не делает произвольных движений. Эта болезнь связана с повреждением бледного шара или черной субстанции, и ее симптомы удивительным образом исчезают при дальнейшем повреждении бледного шара или находящейся поблизости внутренней капусты. Но после того как были найдены эффективные лекарственные препараты, к операции стали прибегать значительно реже.

С экспирамищдальной системой принято связывать возникновение таких непроизвольных движений, как хорея (подергивания и тики), атетозы (судороги) и гемибаллизм (свисание рук и ног). При этих двигательных нарушениях обнаруживают дегенеративные изменения в разных отделах этой системы.

Повреждение постцентральной извилины (соматосенсорной коры) вызывают временную потерю силы, а так же двигательную неловкость. К примеру, обезьяна с такими повреждениями надолго застывают в неестественных позах, если они не видят пораженных конечностей. Этот эффект резко отличается от эффекта нарушения сенсорных путей на уровне спинного мозга. Лешли описал больного с повреждениями пути проприоцептивной чувствительности в спинном мозге, который мог удерживать позу лишь в течении нескольких секунд, если ему завязывали глаза, но считал при этом, что он удерживает эту позу значительно дольше.

www.yurii.ru


Смотрите также