Чувствительность наших органов чувств. Чувствительность органов чувств реферат


Чувствительность наших органов чувств

Количество просмотров публикации Чувствительность наших органов чувств - 700

Тема 3. Количественные характеристики органов чувств организма человека

Стоит сказать, что для наших анализаторов характерна чрезвычайно высокая чувствительность к адекватным раздражителям. Эта чувствительность близка к теоретическому пределу, и по существу такой уровень чувствительности в технике во многих случаях пока еще не достижим. В случае если бы чувствительность наших органов чувств оказалась на порядок выше, то это бы только затруднило нашу жизнь. В этом случае мы бы в буквальном смысле слышали, как растут деревья, как бежит кровь по сосудам, броуновское движение молекул и т.п.

Количественной мерой чувствительности является пороговая интенсивность энергетического воздействия, ᴛ.ᴇ. та наименьшая интенсивность раздражителя, действие которого дает ощущение. Чем ниже пороговая интенсивность или просто “порог”, тем выше чувствительность, и наоборот.

Рассмотрим в качестве примеров, какова же чувствительность некоторых наших анализаторов.

Световая чувствительность наших глаз связана с чувствительностью рецепторных элементов сетчатки и приближается к теоретически возможному максимуму. Для возникновения зрительного ощущения достаточно, чтобы палочкой был поглощен 1-2 кванта света͵ а для колбочек крайне важно 5-10 квантов.

Приведем некоторые количественные характеристики органа зрения.

Порог световой чувствительности характеризуется минимальной интенсивностью светового воздействия, вызывающий ощущение света. Порог световой чувствительности изменяется в очень широких пределах в процессе адаптации зрительного анализатора к внешнему световому воздействию.

Абсолютный порог световой чувствительности зрительного анализатора характеризует наиболее высокую чувствительность, достигаемую в ходе темновой адаптации в течение нескольких часов (до 3-4 часов). При одном и том же световом потоке пороговая яркость зависит от площади объекта:

Площадь объекта͵ мм2 4 = 2х2, 100 = 10х10, 14400 = 120х120

Порог чувствительности,

х 10 - 7 лк 2829 241 5

Наиболее низкая световая чувствительность, достигаемая в процессе световой адаптации, соответствует предельно допустимой яркости источника, вызывающей эффект ослепления, ᴛ.ᴇ. нарушающей функционирование зрительного анализатора. Абсолютно слепящая яркость – 225000 кд/м2. Эффект ослепления может наступать и при меньших яркостях, в случае если яркость объекта значительно превышает яркость к которой адаптирован глаз. Полный диапазон световой чувствительности 3х10-8 – 2,25х105 кд/м2 (обычное дневное освещение примерно равно 9,56 кд/м2).

Дифференциальный порог световой чувствительности (иногда называют порогом контрастной чувствительности) – минимальное воспринимаемое различие между двумя яркостями, разделœенными в пространстве или во времени. Для практических целœей используется только относительный порог (порог контрастной чувствительности).

K = (D B/B) х 100 %

При прямом контрасте (темный объект на светлом фоне) расчетная формула имеет вид:

Kпр = [(Bф – Bоб) / Вф] х 100 %

где: Вф - яркость фона

В0б - яркость объекта

При обратном контрасте (светлый объект на темном фоне).

Kобр = [(Bоб – Bф) / Воб] х 100 %

Дифференциальный порог зависит от угловых размеров объекта͵ яркость поля адаптации (фона), четкости границ между объектом и фоном (при одновременном восприятии). Значения дифференциальных порогов при четкой границе между сравниваемыми яркостями и одновременном восприятии приведем в следующей таблице.

Яркость, кд/м2 Контрастная чувствительность, %
при угловых размерах
40 / 4 0
4,9 1,5

Воздействия посторонних источников света͵ попадающих в поле зрения, вызывают повышение порога, что эквивалентно снижению контраста.

Рассмотренные выше абсолютный и дифференциальный пороги световой чувствительности характеризуют работу палочкового зрения, обеспечивающего восприятие ахроматического света.

При этом чувствительность зрительного анализатора к световым лучам с разной длиной волны (разной цветности) неодинакова. В условиях обычного дневного освещения (В = 9,56 кд/м2) она достигает максимума при длинœе волны 554 нм (в зелœеной области спектра) и убывает в обе стороны от этого значения.

Колбочковое зрение наиболее чувствительно к излучению с длиной волны 554 нм, а палочковое - 513 нм. Это проявляется в изменениисоотношения по яркости в дневное и ночное (сумеречное) время.

К примеру, днем в саду самыми яркими кажутся плоды, имеющие желтую, оранжевую или красноватую окраску, ночью же зелœеные. Днем в поле выделяются яркие маки, по сравнению с которыми голубые васильки кажутся неприметными. После захода солнца в сумерках картина меняется.

Частотные границы цветовой чувствительности составляют 396 – 760 нм, при особо благоприятных условиях в частных случаях 302 – 950 нм.

Приведем соотношение субъективной оценки цвета с длиной волны: фиолетовый – 390 – 420 нм; синий – 450 – 480 нм; голубой – 480 – 510 нм; зелœеный – 510 – 550 нм; желтый – 575 – 585 нм; оранжевый – 585 – 620 нм; красный – 620 – 800 нм.

Чувствительность различных участков сетчатки к свету неодинакова. Самую низкую абсолютную чувствительность имеет область центральной ямки, где палочки почти совсœем отсутствуют, а есть только колбочки.

Самую высокую абсолютную чувствительность имеют участки сетчатки, отдаленные от центрана 10-120, где самая высокая плотность палочковых рецепторов на единицу площади. К периферии чувствительность снижается.

На сетчатке имеется еще одно своеобразное место, ĸᴏᴛᴏᴩᴏᴇ совершенно лишено рецепторов и потому к свету нечувствительно. Это так называемое слепое пятно или диск зрительного нерва. Оно расположено кнаружи под углом 150 и имеет угловые размеры 10 .

Цветовой контраст характеризуется чувствительностью к изменению длины волны (оттенка). Минимально различимая разностьдлин волн (оттенков) зависит от яркости и угловых размеров объектов. При больших размерах рядом расположенных объектов глаз способенразличать до 107 световых оттенков. Различение ухудшается с уменьшением размеров, и при размерах объектов меньше 10/ хроматичность излучения перестает замечаться глазом. При средних размерах объектов и яркостях больше 10 кд/м2 общее число различаемых оттенков составляет несколько сот. Увеличение и уменьшение яркости снижает чувствительность к цветовым тонам. Приведем наиболее контрастирующие соотношения сигнал-фон (в порядке убывания цветового контраста): синий на белом, черный на желтом (и наоборот), зелœеный на белом, черный на белом, зелœеный на красном, красный на желтом, красный на белом, оранжевый на черном, черный на пурпурном, оранжевый на белом, красный на зелœеном.

Острота зрения (порог разрешения, характеризующий разрешающую способность) – минимальный угол, при котором две равноудаленные точки видны как раздельные (зависит от освещенности и контрастности объекта͵ его положения в поле зрения, формы). Минимальный порог разрешения составляет несколько десятых угловой минуты.

При оптимальной освещенности (100-700 лк) порог разрешения равен 1-0,5/, что соответствует остроте зрения в 1-2 усл.ед. При различении белых объектов на черном фоне максимум остроты зрения несколько меньше и соответствует освещенности 5-10 лк.

Особые проявления пространственно – различительной способности: черные линии на белом фоне могут различаться при их толщинœе до 0,7 – 1// ; одиночный светлый объект на темном фоне воспринимается при исчезающе малых угловых размерах (к примеру, звезды). Острота зрения зависит от длительности экспозиции объекта.

Восприятие мелькающего света имеет специфические особенности. Серия световых импульсов воспринимается как непрерывный сигнал, в случае если интервалы между импульсами соизмеримы с временем инœерции зрения. Пороговая частота fпор принято называть критической частотой слияния мельканий (КЧСМ).

КЧСМ изменяется от 14 до 70 Гц исходя из скважности импульсов, их формы, яркости угловых размеров объекта͵ место проекции на сетчатку, уровня адаптации, функционального состояния зрительного анализатора.

Субъективное ощущение яркости прерывистого света͵ воспринимаемого как непрерывный, равно тому, какое имелось бы, в случае если бы интенсивность прерывистого света была равномерно распределœена на весь период смены раздражения и темноты, ᴛ.ᴇ. определяется общей световой энергией, попадающей в глаз.

При частотах ниже КЧСМ субъективное ощущение яркости при скважности 0,5 зависит от частоты мельканий:

f, Гц.....................................0 1 2 4 8 16 32 64

В, кд/м2.............................. 48 48 54 64 96 54 28 23

Поле зрения, для каждого глаза в отдельности при ахроматическом освещении: сверху 500; внизу 700; в направлении к другому глазу 600; в противоположном направлении 900. Общее поле зрения при бинокулярном восприятии по горизонтали 1800.

Точное восприятие зрительных сигналов возможно только в центральной части поля зрения (фовеальная зона размером 30 от оси во всœе стороны).

Опознание взаимного расположения, форм объектов возможно в границах: вверх 250, вниз 350, в право и влево по 320 от оси зрения.

Восприятие движения характеризуется следующими особенностями. Нижний абсолютный порог восприятия скорости составляет:

- при наличии в поле зрения неподвижного ориентира 1-2 угл. мин/c;

- без ориентира 15-30 угл. мин/c.

Равномерное движение с малыми скоростями (до 10 угл. мин/c) при отсутствии в поле неподвижных ориентиров может восприниматься как прерывистое.

Слуховая чувствительность. Воздействие звуковых сигналов на звуковой анализатор определяется звуковым давлением (па). Интенсивность (сила) звука (вт/м2) определяется плотностью потока звуковой энергии (плотностью мощности).

Для характеристики величин, определяющих восприятие звука, существенными являются не столько абсолютные значения интенсивности звука и звукового давления, сколько их отношение к пороговым значениям (I=10 – 12 Вт/м2 или Р0=2*10 – 5 Па ). В качестве таких относительныхединицизмеренияиспользуют децибелы (дБ):

L = 10 lgI / I0 = 20 lgР / P0.

где I и Р – соответственно интенсивность и уровень звукового давления;

I0 и Р0 – их пороговые значения.

I – прямо пропорциональна Р2, в связи с этим коэффициент 20.

Интенсивность звука уменьшается обратно пропорционально квадрату расстояния; при удвоении расстояния снижается на 6 дБ. Абсолютный порог слышимости звука принят равным 2*10-5 Па (10-12 Вт/м2) и соответствует уровню 0дБ. Минимальная воспринимаемая амплитуда колебаний среды соответствует 10 – 9 см.

Чувствительность слухового анализатора к сигналам разных частот неодинакова. Частотный диапазон слышимых звуков приблизительно от 20 Гц до 20кГц. Максимальная чувствительность органа слуха лежит в области 1000-3000 Гц.

С возрастом людей пороги чувствительности, особенно на высоких частотах, возрастают. Выше порогового уровня интенсивности лежит область слухового восприятия звуковых сигналов (рис.3.1.)

При уровне 120 дБ (1 Вт/м2) звук становится дискомфортным, при 130 дБ (10 Вт/м2) вызывает неприятное ощущение. Верхней границей слухового поля является порог болевого ощущения, мало зависящей от частоты и близкий к 140 дБ (100 Вт/м2). Диапазон слышимых звуков от 0 дБ до 140 дБ (от 120 ¸140 дБ).

Р и с.3.1. Область слухового восприятия человека:

1-порог слышимости; 2-порог болевого ощущения; 3-область восприятия речи.

Громкость –субъективное впечатление от воздействия звуковых колебаний на орган слуха, зависящее прежде всœего от интенсивности звука (или звукового давления). Вторым фактором, определяющим субъективное ощущение громкости, является частота. Экспериментально удается подобрать звуки разных частот и интенсивностей, оцениваемые субъективно как равные по громкости, ᴛ.ᴇ. построить кривые равной громкости (рис. 3.2). За единицу уровня громкости принят фон. Уровень громкости в фонах какого-либо звука определяется путем субъективного сравнения громкости данного звука с громкостью стандартного тона (f=1000 Гц), для которого уровень интенсивности в децибелах условно принят за уровень громкости в фонах.

Различие между уровнем громкости (фон) и уровнем интенсивности звука (дБ) тем больше, чем ниже его частота (начиная с 500 Гц) и слабее звук. По мере повышения интенсивности звука кривые равной громкости выравниваются, приближаясь к горизонтальным. По этой причине при уровнях громкости 80 фон и выше громкость звука определяется главным образом его интенсивностью и мало зависит от частотной характеристики.

Шкала уровней громкости в фонах является шкалой сравнения с эталонами. По ней можно определять условия, при которых звуки разных частот будут слышны как равногромкие, однако нельзя количественно сравнивать разные громкости. Для этой цели используют натуральную (субъективную) шкалу громкости в сонах. 1 сон - ϶ᴛᴏ громкость звука, равная громкости тона 1000 Гц при уровне интенсивности 40 дБ над порогом (примерно соответствует громкости шепота на расстоянии 0,3 м.). Отношение громкостей двух звуков в сонах показывает, во сколько раз один из них субъективно воспринимается громче другого.

Р и с.3.2. Кривые равных громкостей

Зависимость громкости в сонах от уровня громкости в фонах имеет нелинœейный характер (рис.3.3). Участок кривой для уровней громкости выше 40 фон близок к линœейному. В этом случае увеличение уровня на 10 фон независимо от исходного уровня дает ощущение удвоения громкости. Кривая приближенно аппроксимируется формулой Стивенса:

lgS = 0,03P - 1,2.

где S – громкость, сон;

P – уровень громкости, фон.

Для приближенной ориентировки в оценке громкости звуковможноиспользовать

Р и с3.3. Натуральная шкалатаблицу 3.1.

громкости

Таблица 3.1

referatwork.ru

Чувствительность наших органов чувств | Бесплатные курсовые, рефераты и дипломные работы

Для наших анализаторов характерна чрезвычайно высокая чувствительность к адекватным раздражителям. Эта чувствительность близка к теоретическому пределу, и по существу такой уровень чувствительности в технике во многих случаях пока еще не достижим. Если бы чувствительность наших органов чувств оказалась на порядок выше, то это бы только затруднило нашу жизнь. В этом случае мы бы в буквальном смысле слышали, как растут деревья, как бежит кровь по сосудам, броуновское движение молекул и т.п.

Количественной мерой чувствительности является пороговая интенсивность энергетического воздействия, т.е. та наименьшая интенсивность раздражителя, действие которого дает ощущение. Чем ниже пороговая интенсивность или просто “порог”, тем выше чувствительность, и наоборот.

Рассмотрим в качестве примеров, какова же чувствительность некоторых … наших анализаторов.

Световая чувствительность наших глаз связана с чувствительностью рецепторных элементов сетчатки и приближается к теоретически возможному максимуму. Для возникновения зрительного ощущения достаточно, чтобы палочкой был поглощен 1-2 кванта света, а для колбочек необходимо 5-10 квантов.

Приведем некоторые количественные характеристики органа зрения.

Порог световой чувствительности характеризуется минимальной интенсивностью светового воздействия, вызывающий ощущение света. Порог световой чувствительности изменяется в очень широких пределах в процессе адаптации зрительного анализатора к внешнему световому воздействию.

Абсолютный порог световой чувствительности зрительного анализатора характеризует наиболее высокую чувствительность, достигаемую в ходе темновой адаптации в течение нескольких часов (до 3-4 часов). При одном и том же световом потоке пороговая яркость зависит от площади объекта:

Площадь объекта, мм2 4 = 2х2, 100 = 10х10, 14400 = 120х120

Порог чувствительности,

х 10 — 7 лк 2829 241 5

 

Наиболее низкая световая чувствительность, достигаемая в процессе световой адаптации, соответствует предельно допустимой яркости источника, вызывающей эффект ослепления, т.е. нарушающей функционирование зрительного анализатора. Абсолютно слепящая яркость – 225000 кд/м2. Эффект ослепления может наступать и при меньших яркостях, если яркость объекта значительно превышает яркость к которой адаптирован глаз. Полный диапазон световой чувствительности 3х10-8 – 2,25х105 кд/м2 (обычное дневное освещение примерно равно 9,56 кд/м2).

Дифференциальный порог световой чувствительности (иногда называют порогом контрастной чувствительности) – минимальное воспринимаемое различие между двумя яркостями, разделенными в пространстве или во времени. Для практических целей используется только относительный порог (порог контрастной чувствительности).

K = (D B/B) х 100 %

При прямом контрасте (темный объект на светлом фоне) расчетная формула имеет вид:

Kпр = [(Bф – Bоб) / Вф] х 100 %

где: Вф — яркость фона

В0б — яркость объекта

При обратном контрасте (светлый объект на темном фоне).

Kобр = [(Bоб – Bф) / Воб] х 100 %

Дифференциальный порог зависит от угловых размеров объекта, яркость поля адаптации (фона), четкости границ между объектом и фоном (при одновременном восприятии). Значения дифференциальных порогов при четкой границе между сравниваемыми яркостями и одновременном восприятии приведем в следующей таблице.

 

Яркость, кд/м2 Контрастная чувствительность, %
при угловых размерах
40 / 4 0
4,9 1,5

 

Воздействия посторонних источников света, попадающих в поле зрения, вызывают повышение порога, что эквивалентно снижению контраста.

Рассмотренные выше абсолютный и дифференциальный пороги световой чувствительности характеризуют работу палочкового зрения, обеспечивающего восприятие ахроматического света.

Однако чувствительность зрительного анализатора к световым лучам с разной длиной волны (разной цветности) неодинакова. В условиях обычного дневного освещения (В = 9,56 кд/м2) она достигает максимума при длине волны 554 нм (в зеленой области спектра) и убывает в обе стороны от этого значения.

Колбочковое зрение наиболее чувствительно к излучению с длиной волны 554 нм, а палочковое — 513 нм. Это проявляется в изменениисоотношения по яркости в дневное и ночное (сумеречное) время.

Например, днем в саду самыми яркими кажутся плоды, имеющие желтую, оранжевую или красноватую окраску, ночью же зеленые. Днем в поле выделяются яркие маки, по сравнению с которыми голубые васильки кажутся неприметными. После захода солнца в сумерках картина меняется.

Частотные границы цветовой чувствительности составляют 396 – 760 нм, при особо благоприятных условиях в частных случаях 302 – 950 нм.

Приведем соотношение субъективной оценки цвета с длиной волны: фиолетовый – 390 – 420 нм; синий – 450 – 480 нм; голубой – 480 – 510 нм; зеленый – 510 – 550 нм; желтый – 575 – 585 нм; оранжевый – 585 – 620 нм; красный – 620 – 800 нм.

Чувствительность различных участков сетчатки к свету неодинакова. Самую низкую абсолютную чувствительность имеет область центральной ямки, где палочки почти совсем отсутствуют, а есть только колбочки.

Самую высокую абсолютную чувствительность имеют участки сетчатки, отдаленные от центра на 10-120, где самая высокая плотность палочковых рецепторов на единицу площади. К периферии чувствительность снижается.

На сетчатке имеется еще одно своеобразное место, которое совершенно лишено рецепторов и потому к свету нечувствительно. Это так называемое слепое пятно или диск зрительного нерва. Оно расположено кнаружи под углом 150 и имеет угловые размеры 10 .

Цветовой контраст характеризуется чувствительностью к изменению длины волны (оттенка). Минимально различимая разность длин волн (оттенков) зависит от яркости и угловых размеров объектов. При больших размерах рядом расположенных объектов глаз способен различать до 107 световых оттенков. Различение ухудшается с уменьшением размеров, и при размерах объектов меньше 10/ хроматичность излучения перестает замечаться глазом. При средних размерах объектов и яркостях больше 10 кд/м2 общее число различаемых оттенков составляет несколько сот. Увеличение и уменьшение яркости снижает чувствительность к цветовым тонам. Приведем наиболее контрастирующие соотношения сигнал-фон (в порядке убывания цветового контраста): синий на белом, черный на желтом (и наоборот), зеленый на белом, черный на белом, зеленый на красном, красный на желтом, красный на белом, оранжевый на черном, черный на пурпурном, оранжевый на белом, красный на зеленом.

Острота зрения (порог разрешения, характеризующий разрешающую способность) – минимальный угол, при котором две равноудаленные точки видны как раздельные (зависит от освещенности и контрастности объекта, его положения в поле зрения, формы). Минимальный порог разрешения составляет несколько десятых угловой минуты.

При оптимальной освещенности (100-700 лк) порог разрешения равен 1-0,5/, что соответствует остроте зрения в 1-2 усл.ед. При различении белых объектов на черном фоне максимум остроты зрения несколько меньше и соответствует освещенности 5-10 лк.

Особые проявления пространственно – различительной способности: черные линии на белом фоне могут различаться при их толщине до 0,7 – 1// ; одиночный светлый объект на темном фоне воспринимается при исчезающе малых угловых размерах (например, звезды). Острота зрения зависит от длительности экспозиции объекта.

Восприятие мелькающего света имеет специфические особенности. Серия световых импульсов воспринимается как непрерывный сигнал, если интервалы между импульсами соизмеримы с временем инерции зрения. Пороговая частота fпор называется критической частотой слияния мельканий (КЧСМ).

КЧСМ изменяется от 14 до 70 Гц в зависимости от скважности импульсов, их формы, яркости угловых размеров объекта, место проекции на сетчатку, уровня адаптации, функционального состояния зрительного анализатора.

Субъективное ощущение яркости прерывистого света, воспринимаемого как непрерывный, равно тому, какое имелось бы, если бы интенсивность прерывистого света была равномерно распределена на весь период смены раздражения и темноты, т.е. определяется общей световой энергией, попадающей в глаз.

При частотах ниже КЧСМ субъективное ощущение яркости при скважности 0,5 зависит от частоты мельканий:

f, Гц……………………………….0 1 2 4 8 16 32 64

В, кд/м2………………………… 48 48 54 64 96 54 28 23

 

Поле зрения, для каждого глаза в отдельности при ахроматическом освещении: сверху 500; внизу 700; в направлении к другому глазу 600; в противоположном направлении 900. Общее поле зрения при бинокулярном восприятии по горизонтали 1800.

Точное восприятие зрительных сигналов возможно только в центральной части поля зрения (фовеальная зона размером 30 от оси во все стороны).

Опознание взаимного расположения, форм объектов возможно в границах: вверх 250, вниз 350, в право и влево по 320 от оси зрения.

Восприятие движения характеризуется следующими особенностями. Нижний абсолютный порог восприятия скорости составляет:

— при наличии в поле зрения неподвижного ориентира 1-2 угл. мин/c;

— без ориентира 15-30 угл. мин/c.

Равномерное движение с малыми скоростями (до 10 угл. мин/c) при отсутствии в поле неподвижных ориентиров может восприниматься как прерывистое.

Слуховая чувствительность. Воздействие звуковых сигналов на звуковой анализатор определяется звуковым давлением (па). Интенсивность (сила) звука (вт/м2) определяется плотностью потока звуковой энергии (плотностью мощности).

Для характеристики величин, определяющих восприятие звука, существенными являются не столько абсолютные значения интенсивности звука и звукового давления, сколько их отношение к пороговым значениям (I=10 – 12 Вт/м2 или Р0=2*10 – 5 Па ). В качестве таких относительных единиц измерения используют децибелы (дБ):

L = 10 lgI / I0 = 20 lgР / P0.

где I и Р – соответственно интенсивность и уровень звукового давления;

I0 и Р0 – их пороговые значения.

I – прямо пропорциональна Р2, поэтому коэффициент 20.

Интенсивность звука уменьшается обратно пропорционально квадрату расстояния; при удвоении расстояния снижается на 6 дБ. Абсолютный порог слышимости звука принят равным 2*10-5 Па (10-12 Вт/м2) и соответствует уровню 0дБ. Минимальная воспринимаемая амплитуда колебаний среды соответствует 10 – 9 см.

Чувствительность слухового анализатора к сигналам разных частот неодинакова. Частотный диапазон слышимых звуков приблизительно от 20 Гц до 20кГц. Максимальная чувствительность органа слуха лежит в области 1000-3000 Гц.

С возрастом людей пороги чувствительности, особенно на высоких частотах, возрастают. Выше порогового уровня интенсивности лежит область слухового восприятия звуковых сигналов (рис.3.1.)

При уровне 120 дБ (1 Вт/м2) звук становится дискомфортным, при 130 дБ (10 Вт/м2) вызывает неприятное ощущение. Верхней границей слухового поля является порог болевого ощущения, мало зависящей от частоты и близкий к 140 дБ (100 Вт/м2). Диапазон слышимых звуков от 0 дБ до 140 дБ (от 120 ¸140 дБ).

 

Р и с.3.1. Область слухового восприятия человека:

1-порог слышимости; 2-порог болевого ощущения; 3-область восприятия речи.

 

Громкость –субъективное впечатление от воздействия звуковых колебаний на орган слуха, зависящее прежде всего от интенсивности звука (или звукового давления). Вторым фактором, определяющим субъективное ощущение громкости, является частота. Экспериментально удается подобрать звуки разных частот и интенсивностей, оцениваемые субъективно как равные по громкости, т.е. построить кривые равной громкости (рис. 3.2). За единицу уровня громкости принят фон. Уровень громкости в фонах какого-либо звука определяется путем субъективного сравнения громкости данного звука с громкостью стандартного тона (f=1000 Гц), для которого уровень интенсивности в децибелах условно принят за уровень громкости в фонах.

Различие между уровнем громкости (фон) и уровнем интенсивности звука (дБ) тем больше, чем ниже его частота (начиная с 500 Гц) и слабее звук. По мере повышения интенсивности звука кривые равной громкости выравниваются, приближаясь к горизонтальным. Поэтому при уровнях громкости 80 фон и выше громкость звука определяется главным образом его интенсивностью и мало зависит от частотной характеристики.

Шкала уровней громкости в фонах является шкалой сравнения с эталонами. По ней можно определять условия, при которых звуки разных частот будут слышны как равногромкие, однако нельзя количественно сравнивать разные громкости. Для этой цели используют натуральную (субъективную) шкалу громкости в сонах. 1 сон – это громкость звука, равная громкости тона 1000 Гц при уровне интенсивности 40 дБ над порогом (примерно соответствует громкости шепота на расстоянии 0,3 м.). Отношение громкостей двух звуков в сонах показывает, во сколько раз один из них субъективно воспринимается громче другого.

 

Р и с. 3.2. Кривые равных громкостей

Зависимость громкости в сонах от уровня громкости в фонах имеет нелинейный характер (рис.3.3). Участок кривой для уровней громкости выше 40 фон близок к линейному. В этом случае увеличение уровня на 10 фон независимо от исходного уровня дает ощущение удвоения громкости. Кривая приближенно аппроксимируется формулой Стивенса:

lgS = 0,03P — 1,2.

где S – громкость, сон;

P – уровень громкости, фон.

Для приближенной ориентировки в оценке громкости звуков можно использовать таблицу 3.1.

 

Таблица 3.1

| следующая страница ==>
Допустимое воздействие опасных и вредных факторов на человека | Громкость звука некоторых источников

Дата добавления: 2014-03-01; просмотров: 3.

Поделиться с ДРУЗЬЯМИ:

refac.ru

Органы чувств

Новые рефераты:

referatwork.ru

Реферат: Органы чувств (анализаторы)

Государственное образовательное учреждение высшего профессионального образования.

Российский государственный социальный университет филиал в г. Дедовске Кафедра социальной работы и психологии

 

 

 

 

 

 

 

 

Контрольная работа

по курсу: Анатомия и физиология человека

тема: Органы чувств (анализаторы)

 

 

 

 

 

 

 

 

 

 

 

 

 

Дедовск 2010

Содержание

 

Введение

1. Кожа. Кожный анализатор. Осязание

2. Орган зрения – глаз (зрительный анализатор)

3. Слуховой и вестибулярный анализаторы

Список использованной литературы

 

Введение

 

Органы чувств (Анализаторы)

В процессе эволюции у различных животных и человека возникли рецепторы, приспособленные для восприятия определенного вида раздражений: световых, цветовых, температурных и т.д. Эти возбуждения поступают в кору головного мозга. Органы чувств, или рецепторы, являются периферическими анализаторами. Рецепторы подразделяются на две группы: экстерорецепторы - рецепторы, воспринимающие раздражения из внешней среды, и интерорецепторы - рецепторы, воспринимающие раздражения, возникшие внутри организма. Органы чувств занимают наиглавнейшее место в жизнедеятельности человека, способствуя его социализации и различной психологической адаптации.

 

1. Кожа. Кожный анализатор. Осязание

 

Кожа — наружный покров организма человека, защищающий тело от широкого спектра внешних воздействий, участвующий в дыхании, терморегуляции, обменных и многих других процессах. Кроме того, кожа представляет массивное рецепторное поле различных видов поверхностной чувствительности (боли, давления, температуры и т. д.).

 

Строение кожи

 

Кожа в разрезе

 

Кожа состоит из эпидермиса, дермы и подкожно-жировой клетчатки (гиподермы).

§     Эпидермис включает в себя пять слоев эпидермальных клеток. Самый нижний слой — базальный — располагается на базальной мембране и представляет собой 1 ряд призматического эпителия. Сразу над ним лежит шиповатый слой (3-8 рядов клеток с цитоплазматическими выростами), затем следует зернистый слой (1-5 рядов уплощенных клеток), блестящий (2-4 ряда безъядерных клеток, различим на ладонях и стопах) и роговой слой, состоящий из многослойного ороговевающего эпителия. Эпидермис также содержит меланин, который окрашивает кожу и вызывает эффект загара.

§     Дерма, или собственно кожа, представляет собой соединительную ткань и состоит из 2-х слоев — сосочкового слоя, на котором располагаются многочисленные выросты, содержащие в себе петли капилляров и нервные окончания, и сетчатого слоя, содержащего кровеносные и лимфатические сосуды, нервные окончания, фолликулы волос, железы, а также эластические, коллагеновые и гладкомышечные волокна, придающие коже прочность и эластичность.

§     Подкожно-жировая клетчатка состоит из пучков соединительной ткани и жировых скоплений, пронизанных кровеносными сосудами и нервными волокнами. Физиологическая функция жировой ткани заключается в накоплении и хранении питательных веществ. Кроме того, она служит для терморегуляции и дополнительной защиты половых органов.

Помимо самой кожи в организме имеются её анатомические производные — образования, которые получают развитие из кожи и её зачатков. Различные выделения желёз, расположенных в коже, также являются частью наружного покрова организма.

Функции кожи

§     защитная (барьерная) защищает организм от действия механических и химических факторов, ультрафиолетового излучения, проникновения микробов, потери и попадания воды извне

§     терморегуляторная за счет излучения тепла и испарения пота

§     участие в водно-солевом обмене связано с потоотделением

§     экскреторная выведение с потом продуктов обмена, солей и лекарств

§     депонирование крови в сосудах кожи может находиться до 1 литра крови

§     эндокринная и метаболическая синтез и накопление витамина D, а также гормонов

§     рецепторная благодаря наличию многочисленных нервных окончаний.

§     иммунная захват, процессинг и транспорт антигенов с последующим развитием иммунной реакции.

Различают:

§     толстую кожу (на ладонях и подошвах) — образована толстым (400—600 мкм) эпидермисом, нет волос и сальных желёз;

§     тонкую кожу (на остальных частях тела) — состоит из тонкого (70-140 мкм) эпидермиса; есть волосы и кожные железы.

Кожа - огромное рецепторное поле, посредством которого осуществляется связь организм с окружающей средой.

Иннервация кожи осуществляется как ветвями цереброспинальных нервов, так и нервами вегетативной нервной системы. Нервы вегетативной нервной системы иннервируют в коже сосуды, гладкую мускулатуру и потовые железы.

В коже находится большое количество рецепторов: болевых, температурных (тепловые и холодовые) и тактильных. Кожа усеяна специальными рецепторами, воспринимающими прикосновение и давление (около 500 000), но они распределены неравномерно. Особенно много их на ладонях рук. Температурные колебания воспринимаются двумя видами рецепторов: одни возбуждаются холодом, другие - теплом. Всего их 280 000, из них 30 000 реагируют на тепло, а 250 000 - на холод. Наиболее чувствительной к колебаниям температуры является кожа живота, а конечности - менее чувствительны к теплу, чем туловище. Открытые части тела менее чувствительны к холоду, чем прикрытые. Рецепторы, воспринимающие боль, разбросаны по всему телу. На 1 см2 приходится до 100 рецепторов. Есть люди, потерявшие болевую чувствительность (анальгезия), но сохранившие остальные чувства.

 

2. Орган зрения – глаз (зрительный анализатор)

 

Глаз (лат. oculus) — сенсорный орган (орган Зрительной системы) человека и животных, обладающий способностью воспринимать электромагнитное излучение в световом диапазоне длин волн и обеспечивающий функцию зрения. Через глаз поступает примерно 90 % информации из окружающего мира.

 

 

Орган зрения является весьма чувствительным и одним из важных анализаторов, помогающим воспринимать внешний мир. Глаз помогает получению представления об освещенности предмета, его цвете, форме, величине, о расстоянии, на котором он находится, о движении предмета. При выполнении многих тонких работ глазу принадлежит первостепенное значение.

Раздражителем является свет, который раздражает рецепторы глаза, вызывает зрительные ощущения. Глаз имеет сложное строение и состоит из нескольких частей, каждая из которых отличается своими особенностями.

Глаз состоит из глазного яблока и вспомогательного аппарата. Глазное яблоко имеет не совсем правильную шаровидную форму и помещается в глазнице. Снаружи глазное яблоко покрыто белочной оболочкой - склерой, состоящей из соединительной ткани и имеющей белый цвет. Сзади в склере имеется отверстие, через которое входит зрительный нерв. Впереди склера прозрачна, более выпукла и образует прозрачную роговицу. Внутри склеры расположена вторая оболочка - сосудистая, снабженная кровеносными сосудами и пигментами. Передняя часть сосудистой оболочки находится за роговицей и образует радужную оболочку, в середине которой имеется отверстие - зрачок. Радужная оболочка снабжена мышцами, способствующими изменению просвета зрачка, она окрашена. Окраска зависит от наличия в ней пигмента: при большом количестве пигмента глаз имеет цвет - от коричневого (карий) до черного цвета, а серый, зеленоватый или голубой цвет объясняются недостаточностью пигмента. У альбиносов в радужной оболочке практически нет пигмента, глаза таких людей имеют красный цвет. За радужной оболочкой расположена прозрачная двояковыпуклая линза, имеющая форму чечевицы - хрусталик. Задняя сторона хрусталика более выпуклая. Сам хрусталик состоит из полужидкого вещества, находится в капсуле, прикрепленной с помощью связок к ресничному телу. Между роговицей и радужной оболочкой расположена передняя камера глаза, а между радужной оболочкой и хрусталиком - задняя камера глаза, в которых находится водянистая влага. Внутренняя полость глаза заполнена стекловидным телом. Стекловидное тело, роговица и хрусталик обладают лучепреломляющей способностью. Самая внутренняя оболочка (третья) глаза называется сетчатой оболочкой, или сетчаткой. Она имеет сложное строение - в ней различают 10 слоев клеток, особо важны палочки и колбочки. Место вхождения зрительного нерва называется слепым пятном (здесь нет палочек и колбочек), а место лучшего видения, где сосредоточены палочки и колбочки, называется желтым пятном. В центре желтого пятна есть углубление - центральная ямка.

Глаз защищен веками от действия света, кроме того, при моргании происходит равномерное распределение по глазу слезной жидкости, которая предохраняет глаз от высыхания. Слезная жидкость вырабатывается слезными железами (она содержит 97,8% воды, 1,4% органических веществ и 0,8% солей). Важной особенностью слезной жидкости является то, что она обладает бактерицидным действием. Брови предохраняют глаз от попадания пота, а ресницы задерживают пылевые частицы. Веки изнутри покрыты оболочкой - конъюнктивой (ее воспаление вызывает конъюнктивит). Она переходит на передний отдел глазного яблока, но не закрывает роговицы.

Двигательный аппарат глаза состоит из шести мышц, от сокращения которых зависят движения глазного яблока. Отдельные части глаза - роговица, хрусталик, стекловидное тело - обладают способностью преломлять проходящие через них лучи. Преломляющую силу отдельных частей и всей оптической системы глаза измеряют в диоптриях. Под одной диоптрией понимают преломляющую силу линзы, фокусное расстояние которой составляет 1 м. Если преломляющая сила увеличивается, то фокусное расстояние укорачивается. Отсюда следует, что линза, у которой фокусное расстояние равно 50 см, будет обладать преломляющей силой в две диоптрии (2Д). Наибольшее преломление происходит в хрусталике.

Глаз часто сравнивают с фотоаппаратом, в котором хрусталик выполняет роль линзы, а сетчатка - светочувствительной пластинки. В сетчатке глаза образуется обратное уменьшенное изображение. Светочувствительные элементы в сетчатке - палочки и колбочки - при попадании света раздражаются. В них происходят сложные химические превращения, в результате которых возникает возбуждение, передающееся по зрительному нерву в головной мозг. В коре головного мозга возникают зрительные ощущения. Мозговой отдел зрительного анализатора находится в затылочной доле больших полушарий. Приспособление глаза к получению отчетливых изображений предметов, находящихся на разных расстояниях, называется аккомодацией. Она связана с изменением кривизны хрусталика, вследствие чего меняется его преломляющая сила, и фокус лучей от рассматриваемого предмета всегда оказывается на сетчатке. Изменение кривизны хрусталика достигается сокращением и расслаблением ресничной мышцы. Нарушение зрения может выражаться в нечетком восприятии предметов. При близорукости изображения предметов оказываются не на сетчатке, а впереди нее, при дальнозоркости - за сетчаткой. Эти изменения наблюдаются при нарушении аккомодации или связаны с особенностями строения глазного яблока. У близоруких людей расстояние от хрусталика до сетчатки обычно несколько увеличено, а у дальнозорких - уменьшено. Для получения четких изображений рекомендуется носить очки с соответствующими линзами.

Особенность старческой дальнозоркости можно объяснить потерей хрусталиком эластичности, вследствие чего теряется способность к аккомодации. Старческая дальнозоркость исправляется ношением очков с двояковыпуклыми линзами. Обычное нормальное зрение осуществляется двумя глазами (бинокулярное). В каждом глазу на сетчатке получается изображение предмета, однако человек воспринимает их как одно. Для такого восприятия существенно, чтобы изображения попали на соответствующие участки сетчатки, находящиеся в желтом теле и центральной ямке. Когда изображение предмета падает на точки, находящиеся на разных расстояниях от центральной ямки (на несоответствующие точки), мы воспринимаем двойное изображение предмета.

Согласованное движение глаз способствует видению при изменении освещенности рассматриваемого объекта: глаза устанавливаются так, чтобы изображение попало на соответствующие точки сетчатки. Приспособление глаза к видению при разной степени освещенности называется адаптацией: приспособление к видению в темноте называется темновой адаптацией, а при яркой освещенности - световой адаптацией. Единственной светочувствительной частью глаза является сетчатка, в которой находится около 125 млн. палочек и 6,5 млн. колбочек. Кроме того, сетчатка содержит много сенсорных и вставочных нейронов и их аксонов. В месте выхода нерва сетчатка не содержит ни палочек, ни колбочек - образуется слепое место.

Наибольшая острота зрения находится в области центральной ямки. Колбочки воспринимают цвета, а палочки (они более многочисленны и расположены по периферии сетчатки) функционируют в сумерках или при слабом свете и не чувствительны к цвету. Зрительный пигмент палочек называется родопсином (зрительный пурпур) и состоит из белка опсина, а в качестве хромафора входит ретинал. Колбочки содержат иодопсин с тем же хромофором (ретиналом), но другим белком. На свету родопсин распадается, а в темноте снова восстанавливается. При воздействии на глаз вспышки света, продолжающейся лишь 0,000 001 с, мы видим свет в течение примерно 0,1 с. В образовании родопсина участвует витамин А. При нарушении образования родопсина развивается так называемая куриная слепота. Если превращение родопсина изучено достаточно хорошо, то химизм цветного зрения, происходящий в колбочках, изучен меньше. Выделено три типа колбочек, которые воспринимают красный, зеленый и синий цвет. Промежуточные цвета воспринимаются при одновременном раздражении колбочек двух или более типов. Цветовая слепота зависит от отсутствия в сетчатке колбочек одного или нескольких типов, что связано с отсутствием гена, контролирующего их образование. Форма цветовой слепоты называется дальтонизмом (по имени ученого Дальтона, у которого была обнаружена цветовая слепота).

Еще одним из дефектов зрения человека является астигматизм. При астигматизме кривизна роговицы неодинакова в разных плоскостях, поэтому световые лучи, лежащие в разных плоскостях, фокусируются не в одной точке. Для исправления зрения линзы шлифуются неравномерно, чтобы компенсировать неравномерную кривизну роговицы. Катаракта - потеря хрусталиком своей прозрачности. Чаще всего она встречается у старых людей. Катаракта приводит к слепоте. Такой хрусталик, потерявший прозрачность, удаляют. Зрение восстанавливается, но глаз теряет способность к фокусировке. В таком случае оперированный человек должен носить очки, заменяющие хрусталик. Иногда вставляют искусственный хрусталик.

 

3. Слуховой и вестибулярный анализаторы

 

Ухо — сложный вестибулярно-слуховой орган, который выполняет две функции: воспринимает звуковые импульсы и отвечает за положение тела в пространстве и способность удерживать равновесие. Это парный орган, который размещается в височных костях черепа, ограничиваясь снаружи ушными раковинами.

Ухо человека воспринимает звуковые волны длиной примерно от 20 м до 1,6 см, что соответствует 16 — 20 000 Гц (колебаний в секунду).

Ухо человека воспринимает не только звуковые раздражения, но и является органом равновесия.

 

 

Ухо подразделяется на три отдела: наружное, среднее и внутреннее ухо. Залегает ухо в височной кости черепа.

Наружное ухо включает ушную раковину и наружный слуховой проход. Ушная раковина состоит из эластического хряща, его нет только в ушной мочке. Наружный слуховой проход выстлан железами, выделяющими ушную серу. От среднего уха он отделен барабанной перепонкой.

В среднем ухе помещаются слуховые косточки, соединенные друг с другом: молоточек, наковальня и стремечко. Полость среднего уха называется барабанной полостью, она выстлана слизистой оболочкой. При помощи евстахиевой трубы она сообщается с носоглоткой, а на внутренней стенке полости среднего уха имеются два отверстия: круглое и овальное. Круглое отверстие прикрыто перепонкой, овальное - стремечком. По слуховой трубе в барабанную полость попадает воздух, благодаря чему уравновешивается давление на барабанную перепонку со стороны барабанной полости с внешним давлением воздуха.

Внутреннее ухо имеет сложную форму и в нем различают два лабиринта - костный и перепончатый. Костный лабиринт включает улитку, преддверие и три полукружных канала. Улитка образует 2,5 оборота вокруг костного стержня. Преддверие находится между улиткой и полукружными каналами и представляет полость овальной формы. Полукружные каналы располагаются взаимно перпендикулярно по отношению друг к другу. Перепончатый лабиринт располагается внутри костного, стенки перепончатого лабиринта состоят из плотной соединительной ткани. Между костным и перепончатым лабиринтом находится жидкость - перилимфа, в перепончатом лабиринте тоже находится жидкость - эндолимфа. Перепончатый канал улитки на поперечном разрезе имеет треугольную форму и соответственно три стенки - пластинки. Одна пластинка сращена с костной стенкой улитки, другая разделяет улитковый ход и лестницу преддверия, третья - улитковый ход и барабанную лестницу улитки (в улитке пространство, в котором находится перилимфа, при помощи перепончатого канала улитки и специальной костной пластинки разделено на две части - лестницы: одна - лестница преддверия, другая - барабанная лестница и они сообщаются между собой только у верхушки улитки). Барабанная лестница улитки состоит из большого количества фиброзных волокон - слуховых струн, натянутых в поперечном направлении. В улитковом ходе на слуховых струнах находится так называемый кортиев орган, состоящий их эпителиальных клеток различной формы, среди которых есть чувствительные слуховые клетки. На этих слуховых клетках оканчиваются волокна нерва улитки - таким образом, кортиев орган является звуковоспринимающим аппаратом внутреннего уха.

Преддверие и полукружные каналы вместе составляют вестибулярный аппарат, в котором также имеются чувствительные клетки. Вестибулярный аппарат является органом восприятия положения и движения тела в пространстве. К чувствительным клеткам вестибулярного аппарата также подходят нервные волокна. Звук проходит через слуховой проход и вызывает колебания барабанной перепонки, которые передаются через косточки среднего уха (молоточек, наковальню и стремечко) и овальное окно жидкости, находящейся в канале преддверия. Поскольку жидкости несжимаемы, жидкость преддверия передает колебания на круглое окно, как бы вызывая выбухание его. Звуковая волна таким образом передается на перилимфу внутреннего уха, а колебания перилимфы, в свою очередь, вызывают через стенку перепончатого канала улитки колебания эндолимфы, которые передаются на кортиев орган. Этот орган состоит из пяти рядов клеток с выступающими волосками: ряды клеток тянутся вдоль спирали улитки по всей ее длине. В каждом кортиевом органе около 24 000 таких клеток, расположенных на базилярной мембране, отделяющей канал улитки от барабанного канала. Над волосковыми клетками нависает другая мембрана - текторальная, прикрепленная одним своим краем к мембране, на которой расположены волосковые клетки, другой край мембраны остается свободным. Возникающие в волосковых клетках импульсы распространяются по волокнам слухового нерва. Движения базилярной мембраны при пульсациях вызывают трения волосковых клеток кортиева органа о нависающую над ним текторальную мембрану, раздражая окончания дендритов слухового нерва, лежащие у основания каждой волосковой клетки. Звуки разной высоты (частоты) вызывают вибрацию определенных волосковых клеток. Высота звука зависит от частоты колебаний воздуха в секунду. Высокие тоны (тонкие звуки и голоса) имеют большую частоту колебаний, а низкие тоны (грубые, басистые звуки и голоса) - меньшую частоту колебаний. Чем больше величина колебаний, тем сильнее звук (сила звука). Тембр - особенность звука, благодаря которой человек может различать даже звуки одинаковой силы и высоты, но произведенные разными инструментами, например скрипки и пианино. Человеческое ухо воспринимает от 16 до 20 000 колебаний в секунду. Верхняя граница с возрастом изменяется: чем старше человек, тем меньше колебаний способно воспринимать его ухо. Максимальное количество колебаний, которое может воспринимать ухо человека в 35 лет, составляет 15 000, а в 50 лет - даже 13 000. Ухо почти не утомляется, утомление может быть связано частично не с самим ухом, а с головным мозгом. Глухота наступает часто вследствие повреждения или аномалий звукопроводящих механизмов наружного, среднего или внутреннего уха: образование серной пробки в наружном слуховом проходе, срастание косточек среднего уха, повреждение внутреннего уха или слухового нерва в результате местного воспаления или перенесенного заболевания. Определение положения тела в пространстве и его перемещения происходят при участии различных органов чувств: зрения, рецепторов осязания, рецепторов мышечно-суставной чувствительности и др. Лабиринт внутреннего уха состоит, помимо улитки, из двух небольших мешочков - круглого и овального - и трех полукружных каналов, внутри которых находится эндолимфа, а снаружи - перилимфа. В мешочках находятся мелкие камешки - отолиты, состоящие из углекислого кальция. Под действием силы тяжести отолиты оказывают давление на определенные волосковые клетки, которые выстилают мешочки изнутри, эти раздражения передаются в головной мозг. При изменении положения головы (наклон) изменяют свое положение и отолиты, они давят уже на другие клетки и раздражают их. Волосковые клетки имеются и в полукружных каналах. При повороте головы перемещение жидкости в каналах отстает от этого движения, так что волосковые клетки движутся относительно жидкости и получают стимулы от ее движения. Человек привык к перемещениям в горизонтальной плоскости, раздражающим полукружные каналы определенным образом, но вертикальные движения (параллельные длинной оси тела) для него непривычны. Такие движения (подъем по лестнице или в лифте, морская качка) раздражают полукружные каналы необычным образом и могут вызвать тошноту и рвоту. Возникшее возбуждение по нерву преддверия передается в головной мозг. В коре головного мозга возникает ощущение положения тела в пространстве и подается команда изменения тонуса различных групп мышц, что приводит к изменению положения головы и туловища, благодаря этому сохраняется равновесие тела. При поражении вестибулярного аппарата у человека наблюдаются расстройство движения, головокружения и другие нарушения.

 

Список использованной литературы

осязание вестибулярный зрительный экстерорецептор интерорецептор

1.            Биология: Пособие для поступающих в вузы, под ред. М.В.Гусева и А.А. Каменского. – Издательство Московского университета, 2002. – Москва "МИР", 2002.

2.            Биология: Справочное пособие для старшеклассников и поступающих в вузы. – М.: АСТ-ПРЕСС, 2001.

3.            Самаль И.Н. Анатомия, физиология и патология органа зрения: Учебное пособие. – Псков: 2004.

4.            Всемирная сеть Интернет (Wikipedia).

 

www.referatmix.ru

Реферат: Строение органов чувств человека

Содержание

Введение

1. Органы обоняния

2. Чувство вкуса и вкусовые рецепторы

3. Строение органов слуха

4. Осязание

5. Кожа, как орган осязания

Заключение

Список литературы

Введение

Обоняние и вкус, некогда столь же необходимы человеку для выживания, кик слух, осязание и зрение, ныне гораздо слабее развиты, чет у животных, и играют второстепенную роль.

С тех пор, как человек поднялся с четверенек и оторвал нос от земли, его жизнь перестала в большей мере зависеть от обоняния или вкуса, как жизнь других животных. Утратив былое значение, эти физические чувства теперь почти исключительно служат человеку для выбора и получения удовольствия от еды и питья.

У вкуса и обоняния общая химическая природа. Это значит, что они представляют собой реакцию па присутствующие в окружающей среде химические вещества. Пробуя что-то на вкус, мы ощущаем присутствие во рту тех или иных химических веществ, а чувствуя запах – регистрируем их наличие в воздухе в газообразной форме.

Чистый воздух представляет собой смесь не имеющих запаха газон – главным образом, азота (78%) п кислорода (21%) с незначительными примесями инертных газов. Воздух может содержать до 5% водяных паров, тоже не имеющих запаха. Любые другие примеси потенциально можно обнаружить по запаху. Даже самые ничтожные концентрации химических примесей можно учуять носом, который подскажет хозяину, что годится в пищу, а что ист. что издает неприятный запах (и лучше держаться от него подальше), а что, возможно, является запахом другого животного – друга или врага.

Хорошо известно, что мы способны распознавать гораздо больше оттенков запаха, чем звуков. Однако ученым очень трудно уяснить, что же происходит, когда мы обоняем запах, и еще многое, предстоит узнать о том, как присутствующие в воздухе химические, вещества воспринимаются носом и интерпретируются мозгом как запахи того пли много происхождения.

1. Органы обоняния

До сих пор нет четкого понимании и того, как язык распознает к преобразует химические вещества во вкусовую информацию.

Впрочем, известно, что небольшой участок в задней части носовой полости изобилует нервными окончаниями, воспринимающими запахи. Этот участок, называемый обонятельным эпителием или обонятельной областью, буквально напичкан миллионами нервных окончаний – микроскопическими обонятельными клетками. Каждая из них имеет не меньше десятка тончайших волосков или жгутиков. Они постоянно увлажняются слизью, которая тоже сложит ловушкой для пахучих веществ. Но из-за недоступности обонятельной облает ученым трудно исследовать происходящие в ней процессы.

Полагают, что при вдыхании с воздухом доступных нашему обонянию пахучих веществ они растворяются в слизи, увлажняющей жгутики, в результате чего эти тончайшие полоски покрываются раствором пахучих веществ. Реагируя на них. Жгутики посылают сигналы обонятельным клеткам для дальнейшей передачи по соответствующим нервным волокнам (их называют обонятельными нервами). Затем эти сигналы передаются в обонятельный мозг – участок головного мозга, гораздо слабее развитый у людей, нежели у животных.

Насколько мы можем судить, вес обонятельные клетки, действующие как рецепторы распознаваемых по запаху химических веществ, абсолютно одинаковы, поэтому остается загадкой, как они различают тысячи многообразных запахов.

На основании многовекового опыта люди выделили шесть «основных» запахов: цветочный, фруктовый, зловонный, пряный, смолистый (как скипидар) и запах гари.

Чтобы обладать запахом, вещество должно испарять микроскопические частицы. Пан меньшими «кирпичиками» любого веществ; являются молекулы, и, как полагают, обонятельные клетки способны распознавать и различать молекулы по их форме.

Чем больше частиц испускает вещество, тел сильнее запах. Например, кипящий на плите куриный суп пахнет сильнее, чем холодная курятина на тарелке, так как с паром в воздух попадает больше пахучих частиц. Они-то и распознаются, как запахи в силу своей способности растворяться в воде. Под воздействием тепла в воздух попадает больше частиц, а содержащаяся в воздухе влага обеспечивает их повышенную концентрацию, поэтому в теплой и влажной атмосфере запахи усиливаются. Вероятно, все мы сами замечали, что от мокрой собаки сильнее несет псиной, чем от сухой; что в теплой дымке после летнего дождя усиливаете; благоухание сада или травы; или что щепотка соли для ванн издаст в горячей воде более сильный аромат, чем целая сухая упаковка.

Если войти в помещение, где кто-то ест котлеты с луком, резкий запах тотчас ударит в нос, хотя находящиеся здесь же люди его не замечают. Это явление называется адаптацией. Причина, по-видимому, в том, что когда вес рецепторы «заполнены» пахучими химическими частицами, они перестают посылать сигналы в мозг.

Возможно, многие задавались вопросом, как освежители воздуха устраняют неприятные запахи. Этот эффект называется маскировкой. Освежитель вовсе не удаляет из воздуха дурно пахнущей частицы, по благодаря его присутствию мы перестаем их замечать. Нечто подобное происходит и при маскировке слуха, когда громкий звук заглушает более тихий, даже сели паши уши воспринимают обе частоты. Мы пока не знаем, почему один запах «громче» другого. Само собой, если в воздухе присутствуют одни запаха, маскировки происходит далеко не всегда. Часто оба запаха сменяются либо по-прежнему воспринимаются по отдельности.

2. Чувство вкуса и вкусовые рецепторы

О вкусе известно гораздо больше, чем об обонянии, и принято считать, что основных вкусов всего четыре: сладкий, соленый, кислый и горький. Но всем богатством оттенков, что называют вкусом, мы обязаны обонянию. Должно быть, многие люди успели заметить, что при сильной простуде обоняние па время пропадает, и пища становится безвкусной. А дело в том, что при простуде информацию о вкусе поступает только с языка. Как показали опыты, пробуя продукты на вкус только языком, человек не отличает даже очищенного яблока от сырого картофеля.

Будучи, по сути, реакцией на химические вещества, вкус во многом сродни обонянию. Подобно пахучим химическим соединениям, вещества, дающие нам ощущение вкуса, должны быть растворены. Только когда сухая пища растворяется слюной, мы можем определить ее вкус. Присутствие соли определяется очень быстро, так как она быстро растворяется в слюне. Более сложные по составу вещества растворяются во рту дольше, поэтому их вкус мы ощущаем не так быстро, как соль.

Рецепторы, улавливающие сигналы от растворенных химических веществ, из которых состоит пища, называются вкусовыми сосочками. Это скопления микроскопических клеток пли нервных окончаний на крохотных бугорках, расположенных па языке, небе и гортани. Каждый вкусовой сосочек – это гроздь из 50 с лишним клеток, соединенных с мозгом нервными волокнами.

Некоторые из них служат опорными клетками, остальные же – вкусовыми. Подобно рецепторам запаха, каждая вкусовая клетка имеет крохотный волосок (микровиллу). Внешние оконечности вкусовых сосочков соединены с осязательными нервами, благодаря чему вкус и осязание пищи во рту тесно связаны между собой. Услышав спор о том, какая говядина вкуснее – тонко пли грубо нарезанная, – можно задаться вопросом, а в чем, собственно, разница. Однако от осязания пищи языком зависит и ее вкусовое восприятие.

Лучше всего реагирует на сладкое верхушка (копчик) языка, па кислое – его боковые края, на соленое – область по соседству с верхушкой и па горькое – прикорневая область. Как и рецепторы запаха, все вкусовые сосочки похожи друг па друга, однако в разных отделах языка они по-разному сгруппированы. Нос еще остается загадкой, как одни и те же клетки воспринимают разные раздражители. Ученые полагают, что организм вырабатывает так называемые рецепторные вещества, с помощью которых ощущаются различия во вкусе. До сих пор в опытах на животных были открыты только протеины, действующие как рецепторы горечи и сладости. Не исключено, что разные отделы языка вырабатывают разные количества рецепторных веществ. Хотя четкого представления о том, как это происходит, ученые пока не имеют, но уже сейчас можно с достаточной уверенностью предположить, что, вступая в контакт с растворенными химическими веществами, вкусовые сосочки издают соответствующий электрический импульс, который по нервам поступает в головной мозг.

Помимо вкуса, на представление человека о том, что он есть, влияет целый ряд впечатлении. Прежде всего, газы, выделяемые при пережевывании пищи, поднимаются к полости носа, воздействуя па обоняние. Значение имеет и структура пищи. К процессу подключаются температурные и болевые ощущения – ведь острая пища стимулирует болевые рецепторы (макнув аджикой по лицу, можно ощутить на коже такое же жжение, как и на языке). Рецепторы осязания и давления подсказывают, что находится во рту – хрустящие кусочки или крем, жесткая пища или мягкая; уши воспринимают звуки, издаваемые пищей при пережевывании. И, не менее важна намять, – люди надолго запомним вызнавшее отвращение блюдо.

Наконец, глаза сигнализируют о внешнем виде того или иного блюди, и человек несколько раз может возвращаться к нему в памяти. Любой хороший повар знает, что красиво оформленное блюдо усиливает аппетит.

3. Строение органов слуха

Когда человек слушает, его уши реагируют на звуковые волны или на малейшие изменения движения воздуха. Ухо преобразует эти волны и электронные импульсы и передает их в мозг, где они трансформируются в звуки. Уши человека постоянно улавливают звуковые полны, и человек учится, как реагировать на одни звуки и игнорировать другие.

Ухо человека включает три отделения – наружное, среднее и внутреннее ухо. Наружное ухо состоит из кожной складки с хрящом и слуховою прохода, ведущего к его скрытой части.

Видимая часть уха называется ушной раковиной. Она действует как приемное устройство звуковых волн, которые затем проникают в среднее ухо через слуховой проход. Звуковые волны, воспринимаемые наружным ухом, проходят внутрь и заставляют вибрировать барабанную перепонку, находящуюся на входе в среднее ухо.

По своим размерам среднее ухо в восемь раз меньше наружного и представляет собой небольшую полость внутри черепа. Здесь располагается барабанная перепонка, а противоположная часть среднего уха соединена с носом узкой трубкой, которая называется Евстахиева груба. Оно позволяет выравнивать давление воздуха в среднем ухе по отношению к внешней среде. Если давление изменяется, уши должны приспособиться к этому, что иногда вызывает «хлопки» в ушах.

В полости среднего уха расположены три косточки, каждая из которых имеет характерную форму. Они называются молоточек, наковальня и стремечко. Отраженные барабанной перепонкой колебания воздуха проходят от молоточка к стремечку и далее через овальное окно преддверия, связывающее среднее и внутреннее ухо.

Во внутреннем ухе располагается лабиринт – три заполненных жидкостью трубки, благодаря которым ощущается уравновешенное давление. Кроме того, во внутреннем ухе имеется миниатюрная спиральная трубка, носящая название улитка и состоящая из двух каналов и протоки.

Эти каналы и протока заполнены жидкостью. В протоке также находятся крошечные колосковые сенсорные клетки, покрытые узкой мембранной пленкой. Эти клетки и мембрана составляют коркиев орган.

Именно он является настоящим слуховым центром. Колебания, проходя через улитку, заставляют мембрану двигаться взад и вперед. Двигаясь, мембрана натягивает волосковые клетки и они посылают электрические сигналы через слуховой аппарат. Мозг расшифровывает эти сигналы и воспринимает их как звуки.

Громкость – уровень энергии в звуке – измеряется и децибелах. Шепот приравнивается приблизительно 15 децибелам (дБ), шелест голосов в студенческой аудитории достигает примерно 50 дБ, а уличный шум при интенсивном дорожном движении – около 90 дБ. Шумы выше 100 дБ могут быть невыносимы для уха человека. Шумы порядка 110 дБ (например, звук вметающего реактивного самолета) могут оказаться болезненными для уха и серьезно повредить барабанную перепонку.

У большинства людей острота слуха с возрастом притупляется. Это в основном объясняется тем, что ушные косточки утрачивают с ною изначальную подвижность, в связи с чем колебания не передаются во внутреннее ухо. Кроме того, инфекции органов слуха могут повреждать барабанную перепонку и негативно отражаться на работе косточек, что приводит к глухоте. При возникновении каких-либо проблем со слухом необходимо незамедлительно обратиться к врачу.

Причиной некоторых видов глухоты является повреждение внутреннего уха или слухового нерва. Ухудшение слуха может быть также вызнано постоянным шумовым воздействием (например, в заводском цеху) пли резкими и очень громкими звуковыми всплесками. Необходимо очень осторожно пользоваться персональными стереоплейерами, поскольку чрезмерная громкость звучания также может принести к глухоте.

4. Осязание

Человек обладает пятью чувствами. Это зрение, вкус, слух, обоняние и осязание. Труднее всего определить и понять механизмы осязания: ведь, по сути, это целый комплекс разных ощущений. Кроме тот, осязание словно подстраховывает иные чувства и удостоверяет, что перед нами на самом деле то, о чем они нам поведали. Как часто, к примеру, вам приходилось протягивать руку и дотрагиваться до чего-либо, чтобы убедиться в реальности увиденного?

В отличие от остальных четырех чувств, которые реализуются через конкретные органы – глаза, уши, нос или рот, – осязательные ощущения воспринимаются по всему телу. Если другие чувства реагируют лишь па один вид раздражения, осязательная система чувствительна и к температуре, и к боли. Наверное, легче всего представить себе осязание как набор разных чувств некоторые из них имеют специальные конечные точки или нервные окончания в нашей коже, мышцах и в других местах; там они откликаются на самые различные раздражения и передают полученные впечатления в мозг, в стою очередь обрабатывающий эту информацию и сигналы.

Осязание позволяет человеку немало узнать и сделать. Благодаря осязанию можно почувствовать чье-то прикосновение или удар; благодаря ему можно, не рассматривая, определить размер и форму какого-либо предмета, но и узнать, насколько он тяжел, тверд он или мягок, горяч или холоден. Кроме того, осязание позволяет человеку не глядя определить, где и как в данный момент расположены разные части и органы его тела.

Ощущение температуры или боли подсказывает мозгу, что тому грозит опасность, до того, как происходит осознание этой опасности, и организм немедленно на это отреагирует, чтобы защититься. Например, человек отдернет руку от горячей поверхности прежде, чем она и успеет ожечь.

Для того, чтобы узнать о работе органов осязания, ученым понадобилось немало времени и усилий. Когда стало впервые известно, что чувство осязания зависит от сигналов, воспринимаемых несколькими различными видами конечных органов и нервных окончаний, исследователи предположили, что каждое нервное окончание реагирует только на один конкретный раздражитель – боль, нажим, холод и тепло.

Впрочем, скоро сторонники эгой теории нашли окончания особо чувствительны лишь к одному раздражителю, и тогда выяснилось, что другие не только реагируют на разные раздражения, но и мало чем отличаются друг от друга. Далее обнаружилось, что различаемые нервными окончаниями ощущения составляют лишь малую долю всех доступных из получаемых ощущений.

В ходе дальнейших исследований стало ясно, что каждое нервное окончание или конечный орган имеет свое рецептивное поле – тот участок кожи, который при раздражении вызывает активность соответствующего нерва. При этом рецептивные поля накладываются друг на друга, и если надавить на конкретную точку на поверхности кожи, то в состояние возбуждения придут сразу несколько нервов. Помимо этого, каждый конкретный осязательный нерв может приходить в состояние активности как под влиянием силы нажима, так и под действием температурных изменений в пределах рецептивного поля.

Нервные волокна человека непрерывно реагируют на множество раздражителей, но лишь те из них, что несут сигнал о температуре и давлении, достаточно сильны для распознавания мозгом. И температура, и давление вызывают значительную активность в нервных волокнах, а порождаемые сигналы с возросшей скоростью передаются в центральную нервную систему Скорость, с которой сигнал поступает в мозг, говорит мозгу о том, какого типа раздражитель действует в данный момент. Осязательный сигнал идет от конечных органов через нервные волокна по соматическим нервам в центральную нервную систему.

Различные рецептивные поля отличаются по степени чувствительности, которая зависит от концентрации нервных окончаний в различных участках человеческой кожи. Например, каждый может ощутить, что ему на кончик языка надавливают именно двумя остро отточенными карандашными грифелями, даже если они будут в 1 мм друг от друга; а если колоть ими в области спины, – то только в случае расстояния 15 см между ними человек ощутит не один внешний раздражитель, а несколько.

Ученые провели немало экспериментов, пытаясь определить, каждый ли тип волокнистой ткани передает сигнал об особом виде раздражения. Безусловно, некоторые волокла способны передавать сигналы только в случае повреждения кожного покрова, температурного воздействия на него, ущемления и т.д. Однако, эту реакцию дает не сам конечный орган, а последовательность и сила сигналов в нервных волокнах, по цепочке передающих информацию в головной мозг. При том, что отдельные виды нервных окончаний более чувствительны к некоторым видам внешнего раздражения, большинство специалистов пришло к выводу, что комбинация сигналов, распознаваемых мозгом как определенное ощущение, определяется скоростью распространения сигналов и распределением их по малым и большим нервным волокнам.

Поскольку осязание дает нам так много знаний об окружающем мире, оно может заместить недостаток иных ощущений. Наилучший пример – шрифт Брайля, позволяющий слабовидящим читать при помощи пальцев.

5. Кожа, как орган осязания

Как мы говорили ранее чувствительные нервные волокна, позволяющие человеку осязать, пронизывают кожу. Что же представляет собой сама кожа?

Кожа является самым большим органом человеческого тела. Общая площадь кожи взрослого составляет около 2 м2, что сравнимо с размером простыни. Весит она 3 кг – около 5% от общего веса тела.

Толщина кожи колеблется от 0,5 мм до более чем 5 мм. Она тоньше на тех участках тела, которые меньше подвергаются воздействию трения и давления (например, внутренняя поверхность предплечья), и толще там, где нагрузки больше (например, подошвы ног).

Каковы же функции кожи?

– Она защищает внутренние части тела от ударов и царапин, дождя и ветра, излучения, интенсивного солнечного света и бактерий (При порезах или ссадинах эпидермиса, кожа восстановится без образования шрама. Повреждение дермы заканчивается шрамом, остающимся после заживления кожи).

– Находящиеся в коже нервные окончания, называемые рецепторами, позволяют почувствовать легкое прикосновение, давление, изменение температуры и боль. Их особенно много на кончиках пальцев.

– При воздействии солнечного света эпидермис вырабатывает витамин Р.

– Избыток солей и других веществ удаляется из организма с потом.

Наблюдая кожу под микроскопом, можно увидеть, что она состоит из двух слоев. Наружный, эпидермис, содержит от 20 до 30 слоев мертвых клеток. Эти клетки частично перекрывают друг друга как черепица, что позволяет коже растягиваться, когда вы двигаетесь. Ежедневно с поверхности кожи сшелушиваются тысячи мертвых клеток, однако это не приводит к ее истончению, поскольку одновременно идет непрерывный процесс обновления клеток.

Клетки нижней части эпидермиса непрерывно делятся. Каждая новая клетка постепенно наполняйся плотным защитным веществом, кератином. Клетки выталкиваются в направлении поверхности по мере возникновения под ними новых. Путь наверх занимает от трех до четырех недель, и достигает поверхности клетка уже мертвой. Мертвые клетки сшелушиваются с поверхности тела в виде мельчайших, едва видимых чешуек. В среднем за жизнь человек «сбрасывает» с себя около 18 кг мертвой кожи.

Нижняя часть эпидермиса насыщена меланоцитами, которые вырабатывают пигмент меланин, защищающий кожу от чрезмерного проникновения ультрафиолетового излучения. Энергия света поглощается меланином, менян его цвет на более темный. Вследствие этого, кстати, и появляется загар. Меланин переносится к поверхности кожи и сшелушивается с нее вместе с мертвыми клетками, в результате чего загар сходит, у людей с более темной кожей содержание меланина выше. Меланоциты могут располагаться группами, вызывая появление на коже веснушек.

Под эпидермисом располагается более толстый слой – дерма. Верхняя часть дермы содержит переплетенные волокна особых протеинов – коллагена и эластина. Они делают кожу эластичной и упругой,

В дерме также находятся тысячи мельчайших кровеносных сосудов. Когда вам жарко, эти сосуды расширяются, и ток крови через них увеличивается. Дополнительное количество крови у поверхности кожи обеспечивает отток тепла и, как следствие, охлаждение тела. Именно поэтому у человека, которому жарко, краснеет лицо. Когда же нам холодно, кровеносные сосуды сужаются, сохраняя тепло, но вызывая побледнение кожи.

Кровь, текущая по мельчайшим сосудам, также снабжает оба слоя кожи питательными веществами и уносит отработанные продукты. В случае пореза или иного повреждения кожи образующийся сгусток крови покрывает рану, превратившись в особую корочку – струп. Это защищает нас от микробов и сохраняет в организме необходимые жидкости.

Кроме того, в дерме находится множество связанных с мозгом нервных окончаний, позволяющих нам осязать. Нервные окончания, или рецепторы, пронизывающие эпидермис, реагируют на боль. В верхней части дермы находятся тельца Майсснера. Это рецепторы, воспринимающие легкое давление. Несколько глубже в дерме находятся тельца Руффини – рецепторы тепла – и тельца Краузе – рецепторы холода. У основания дермы расположены тельца Пачини, позволяющие ощущать сильное давление. Когда нервные окончания регистрируют боль, давление или изменение температуры, они посылают сигнал мозгу. В ответ мозг дает мышцам команду к действию – например, отдернуть руку от горячей чашки.

Глубоко в дерме находятся потовые железы. Они представляют собой сплетенные в тугие узлы трубки и играют чрезвычайно важную роль в регулировании температуры тела. Эти железы вырабатывают пот – солоноватую жидкость, которая, когда нам очень жарко, через потовые поры выступает на поверхности кожи. Пот испаряется, помогая нам остыть. Железы способны вырабатывать от 250 до 500 мл пота вдень. В условиях жары и высокой влажности суточное выделение пота может достигать 2 л.

В теле человека насчитывается до 3 млн. потовых желез. Их общий вес составляет около 100 г. Они сосредоточены преимущественно в области лица, подмышечных впадин, ладоней и подошв. Например, на 1 см ладони приходится около 350 потовых желез, а на тыльной стороне кисти их плотность составляет лишь около 200 единиц на 1 см2.

Пот также помогает надежно удерживать в руках предметы, не роняя их. Тонкая пленка пота покрывает выступы кожного рельефа на пальцах, позволяя уверенно держать гладкие предметы. Кожный рельеф на пальцах образует неповторимый – у каждого свой – рисунок. Этот рисунок и снимается следователями в виде отпечатков пальцев, позволяя находить преступников.

В дерме также располагаются волосяные фолликулы и сообщающиеся с ними сальные железы. Последние вырабатывают вязкое жироподобное вещество – кожное сало, которое непрерывно выделяется на поверхность, смазывая волосы и кожу. Без такой защиты кожа, высохнув, начала бы шелушиться, не в состоянии выдерживать ежедневные нагрузки и внешние воздействия. У некоторых людей, особенно в юношеском возрасте, сальные железы вырабатывают слишком много кожного сала, что приводит к появлению прыщей. В этом случае фолликулы забиваются, в результате чего может произойти инфицирование бактериями и образование гнойников.

С каждым из волосяных фолликулов соединена поднимающая волос мышца. Когда нам холодно или страшно, эти мышцы сокращаются, приводя волос в вертикальное положение. Волос при этом тянет за собой окружающую его ткань, появляется хорошо всем знакомая

А «гусиная кожа» является специфической реакцией – наследием тех давних времен, когда человеческое тело было покрыто густым волосяным покровом. Если было холодно, волосы «дыбились», чтобы захватить побольше воздуха и обеспечить лучшую защиту от холода. Когда кошке холодно, ее шерсть поднимается дыбом, делая ее внешне более крупной и придавая ей более грозный вид. По той же причине – реакция на страх – принимают вертикальное положение волосы на теле человека.

Под дермой располагается подкожный жир, выполняющий функцию смягчающей и теплоизолирующей прокладки, которая защищает тело от холода, удерживая тепло. Одновременно он является запасным источником энергии. Если человек потребляет слишком много калорий, именно подкожный жир является местом, где они накапливаются. Дальше, за подкожным жиром, находятся внутренние органы – мышцы, железы, основные нервы и кровеносные сосуды. Все они своей защитой обязаны живому барьеру – коже.

Заключение

Все живые организмы, в том числе и человек, нуждаются в информации об окружающей среде. Эту возможность им обеспечивают сенсорные (чувствительные) системы. Деятельность любой сенсорной системы начинается с восприятия рецепторами энергии раздражителя, трансформации ее в нервные импульсы и передачи их через цепь нейронов в мозг, в котором нервные импульсы преобразуются в специфические ощущения – зрительные, обонятельные, слуховые и т.п.

Так наши глаза воспринимают визуальные сигналы: в сетчатке находится около 7 млн. колбочек и 130 млн. палочек. Колбочки содержат зрительный пигмент иодопсин, позволяющий воспринимать цвета при дневном освещении. Колбочки бывают трех типов, каждый из которых обладает спектральной чувствительностью к красному, зеленому или синему цвету. Палочки благодаря наличию пигмента родопсина воспринимают сумеречный свет, не различая цвета предметов. Под воздействием световых лучей в светочувствительных рецепторах – палочках или колбочках – возникают сложные фотохимические реакции, сопровождающиеся расщеплением зрительных пигментов на более простые соединения. Это фотохимическое расщепление сопровождается возникновением возбуждения, которое в форме нервного импульса передается по зрительному нерву в подкорковые центры (средний и промежуточный мозг), а затем в затылочную долю коры больших полушарий, где преобразуется в зрительное ощущение. При отсутствии света (в темноте) зрительный пурпур регенерирует (восстанавливается).

Нечто подобное происходит в ухе, где преобразуются звуковые волны в воздухе, на языке, где молекулы пищи анализируются рецепторами-сосочками, и на коже, в которой заложены тельца, реагирующие на давление и температуру. Болезнь органов чувств приводит полной или частичной потере связи между человеком и окружающей средой.

Список литературы

1. Крылова Н.В., Наумец Л.В. Анатомия органов чувств – М.: Миа, 2003. – 96 с.

2. Сапин М.Р., Билич Г.Л. Анатомия человека. Книга вторая – М.: Астрель, 2002. – 280 с.

3. Синельников Р.Д., Синельникова Я.Р. Атлас анатомии человека. Т 4. – М.: Оникс, 2001. – 290 с.

4. Чувин Б.Т. Нервная система и органы чувств человека – М.: Дрофа, 2006. – 325 с.

superbotanik.net


Смотрите также