Черные дыры (работа 1). Черные дыры реферат


Реферат: Черные дыры

Исторический факультет

Реферат по КСЕ на тему :

"Черные дыры"

Оглавление

ВВЕДЕНИЕ

1.История идеи о черных дырах

2.Формирование черных дыр

3.Свойства черных дыр

4.Поиски черных дыр

5.Термодинамика и испарение чёрных дыр

6.Падение в чёрную дыру

7.Виды черных дыр

Заключение

Список литературы

Черная дыра– область пространства, в которой гравитационное притяжение настолько сильно, что ни вещество, ни излучение не могут эту область покинуть. Для находящихся там тел вторая космическая скорость (скорость убегания) должна была бы превышать скорость света, что невозможно, поскольку ни вещество, ни излучение не могут двигаться быстрее света. Поэтому из черной дыры ничто не может вылететь. Границу области, за которую не выходит свет, называют "горизонтом событий", или просто "горизонтом" черной дыры.

Сущность гипотезы образования черных дыр заключается в следующем: если некоторая масса вещества оказывается в сравнительно небольшом объеме, критическом для нее, то под действием сил собственного тяготения такое вещество начинает неудержимо сжиматься. Наступает своеобразная гравитационная катастрофа — гравитационный коллапс. В результате сжатия растет концентрация вещества. Наконец, наступает момент, когда сила тяготения на ее поверхности становится столь велика, что для ее преодоления надо развить скорость, превосходящую скорость света. Такие скорости практически недостижимы, и из замкнутого пространства черной дыры не могут вырваться ни лучи света, ни частицы материи. Излучение черной дыры оказывается "запертым" гравитацией. Черные дыры способны только поглощать излучение

Чтобы поле тяготения смогло "запереть" излучение, создающая это поле, масса (M) должна сжаться до объема с радиусом, меньшим "гравитационного радиуса" rg = 2GM/c2 . По этой причине создать и исследовать черную дыру в лаборатории практически невозможно: чтобы тело любой разумной массы (даже в миллионы тонн) стало черной дырой, его нужно сжать до размера, меньшего, чем размер протона или нейтрона, поэтому свойства черных дыр пока изучаются только теоретически.

Однако расчеты показывают, что тела астрономического масштаба (например, массивные звезды) после истощения в них термоядерного топлива могут под действием собственного тяготения сжиматься до размера своего гравитационного радиуса. Поиск таких объектов ведется уже более 40 лет, и сейчас можно с большой уверенностью указать несколько весьма вероятных кандидатов в черные дыры с массами от единиц до миллиардов масс Солнца. Однако их изучение затруднено огромными расстояниями от Земли. И хотя сам факт существования черных дыр уже трудно подвергать сомнению, практическое изучение их свойств еще впереди.

Английский геофизик и астроном Джон Мичелл предположил, что в природе могут существовать столь массивные звезды, что даже луч света не способен покинуть их поверхность. Используя законы Ньютона, Мичелл рассчитал, что если бы звезда с массой Солнца имела радиус не более 3 км, то даже частицы света (которые он, вслед за Ньютоном, считал корпускулами) не могли бы улететь далеко от такой звезды. Поэтому такая звезда казалась бы издалека абсолютно темной. Эту идею Мичелл представил на заседании Лондонского Королевского общества 27 ноября 1783. Так родилась концепция "ньютоновской" черной дыры.

Такую же идею высказал в своей книге Система мира (1796) французский математик и астроном Пьер Симон Лаплас. Простой расчет позволил ему написать: "Светящаяся звезда с плотностью, равной плотности Земли, и диаметром, в 250 раз большим диаметра Солнца, не дает ни одному световому лучу достичь нас из-за своего тяготения; поэтому возможно, что самые яркие небесные тела во Вселенной оказываются по этой причине невидимыми". Однако масса такой звезды должна была бы в десятки миллионов раз превосходить солнечную. А поскольку дальнейшие астрономические измерения показали, что массы реальных звезд не очень сильно отличаются от солнечной, идея Митчела и Лапласа о черных дырах была забыта.

На протяжении XIX века идея тел, невидимых вследствие своей массивности, не вызывала большого интереса у учёных. Это было связано с тем, что в рамках классической физики скорость света не имеет фундаментального значения. Однако в конце XIX — начале XX века было установлено, что сформулированные Дж.Максвеллом законы электродинамики, с одной стороны, выполняются во всех инерциальных системах отсчёта, а с другой стороны, не обладают инвариантностью относительно преобразований Галилея. Это означало, что сложившиеся в физике представления о характере перехода от одной инерциальной системы отсчёта к другой нуждаются в значительной корректировке.

В ходе дальнейшей разработки электродинамики Г.Лоренцем была предложена новая система преобразований пространственно-временных координат (известных сегодня как преобразования Лоренца), относительно которых уравнения Максвелла оставались инвариантными. Развивая идеи Лоренца, А.Пуанкаре предположил, что все прочие физические законы также инвариантны относительно этих преобразований.

В 1905 году А.Эйнштейн использовал концепции Лоренца и Пуанкаре в своей специальной теории относительности (СТО), в которой роль закона преобразования инерциальных систем отсчёта окончательно перешла от преобразований Галилея к преобразованиям Лоренца. Классическая (галилеевски-инвариантная) механика была при этом заменена на новую, лоренц-инвариантную релятивистскую механику. В рамках последней скорость света оказалась предельной скоростью, которую может развить физическое тело, что радикально изменило значение чёрных дыр в теоретической физике.

Однако ньютоновская теория тяготения (на которой базировалась первоначальная теория чёрных дыр) не является лоренц-инвариантной. Поэтому она не может быть применена к телам, движущимся с околосветовыми и световыми скоростями. Лишённая этого недостатка релятивистская теория тяготения была создана, в основном, Эйнштейном (сформулировавшим её окончательно к концу 1915 года) и получила название общей теории относительности (ОТО).

Во второй раз ученые "столкнулись" с черными дырами в 1916, когда немецкий астроном Карл Шварцшильд получил первое точное решение уравнений ОТО. Оказалось, что пустое пространство вокруг массивной точки обладает особенностью на расстоянии rg от нее; именно поэтому величину rg часто называют "шварцшильдовским радиусом", а соответствующую поверхность (горизонт событий) – шварцшильдовской поверхностью. В следующие полвека усилиями теоретиков были выяснены многие удивительные особенности решения Шварцшильда, но как реальный объект исследования черные дыры еще не рассматривались.

Правда, в 1930-е, после создания квантовой механики и открытия нейтрона, физики исследовали возможность формирования компактных объектов (белых карликов и нейтронных звезд)как продуктов эволюции нормальных звезд. Оценки показали, что после истощения в недрах звезды ядерного топлива, ее ядро может сжаться превратиться в маленький и очень плотный белый карлик или же в еще более плотную и совсем крохотную нейтронную звезду.

В 1934 работавшие в США европейские астрономы Фриц Цвикки и Вальтер Бааде выдвинули гипотезу – вспышки сверхновых представляют собой совершенно особый тип звездных взрывов, вызванных катастрофическим сжатием ядра звезды. Так впервые родилась идея о возможности наблюдать коллапс звезды. Бааде и Цвикки высказали предположение, что в результате взрыва сверхновой образуется сверхплотная вырожденная звезда, состоящая из нейтронов. Расчеты показали, что такие объекты действительно могут рождаться и быть устойчивыми, но лишь при умеренной начальной массе звезды. Но если масса звезды превышает три массы Солнца, то уже ничто не сможет остановить ее катастрофического коллапса.

В 1939 американские физики Роберт Оппенгеймер и Хартланд Снайдер обосновали вывод, что ядро массивной звезды должно безостановочно коллапсировать в предельно малый объект, свойства пространства вокруг которого (если он не вращается) описываются решением Шварцшильда. Иными словами, ядро массивной звезды в конце ее эволюции должно стремительно сжиматься и уходить под горизонт событий, становясь черной дырой. Но поскольку такой объект (как говорили тогда, "коллапсар", или "застывшая звезда") не излучает электромагнитные волны, то астрономы понимали, что обнаружить его в космосе будет невероятно трудно и поэтому долго не приступали к поиску.

Поскольку никакой носитель информации не способен выйти из-под горизонта событий, внутренняя часть черной дыры причинно не связана с остальной Вселенной, происходящие внутри черной дыры физические процессы не могут влиять на процессы вне ее. В то же время, вещество и излучение, падающие снаружи на черную дыру, свободно проникают внутрь через горизонт. Можно сказать, что черная дыра все поглощает и ничего не выпускает. По этой причине и родился термин "черная дыра", предложенный в 1967 американским физиком Джоном Арчибальдом Уилером.

2. Формирование черных дыр

Самый очевидный путь образования черной дыры – коллапс ядра массивной звезды. Пока в недрах звезды не истощился запас ядерного топлива, ее равновесие поддерживается за счет термоядерных реакций (превращение водорода в гелий, затем в углерод, и т.д., вплоть до железа у наиболее массивных звезд). Выделяющееся при этом тепло компенсирует потерю энергии, уходящей от звезды с ее излучением и звездным ветром. Термоядерные реакции поддерживают высокое давление в недрах звезды, препятствуя ее сжатию под действием собственной гравитации. Однако со временем ядерное топливо истощается и звезда начинает сжиматься.

Наиболее быстро сжимается ядро звезды, при этом оно сильно разогревается (его гравитационная энергия переходит в тепло) и нагревает окружающую его оболочку. В итоге звезда теряет свои наружные слои в виде медленно расширяющейся планетарной туманности или катастрофически сброшенной оболочки сверхновой. А судьба сжимающегося ядра зависит от его массы. Расчеты показывают, что если масса ядра звезды не превосходит трех масс Солнца, то она "выигрывает битву с гравитацией": его сжатие будет остановлено давлением вырожденного вещества, и звезда превратится в белый карлик или нейтронную звезду. Но если масса ядра звезды более трех солнечных, то уже ничто не сможет остановить его катастрофический коллапс, и оно быстро уйдет под горизонт событий, став черной дырой. Как следует из формулы для rg , черная дыра с массой 3 солнечных имеет гравитационный радиус 8,8 км.

Астрономические наблюдения хорошо согласуются с этими расчетами: все компоненты двойных звездных систем, проявляющие свойства черных дыр (в 2005 их известно около 20), имеют массы от 4 до 16 масс Солнца. Теория звездной эволюции указывает, что за 12 млрд. лет существования нашей Галактики, содержащей порядка 100 млрд. звезд, в результате коллапса наиболее массивных из них должно было образоваться несколько десятков миллионов черных дыр. К тому же, черные дыры очень большой массы (от миллионов до миллиардов масс Солнца)могут находиться в ядрах крупных галактик, в том числе, и нашей. Об этом свидетельствуют астрономические наблюдения, хотя пути формирования этих гигантских черных дыр не вполне ясны.

Если в нашу эпоху высокая плотность вещества, необходимая для рождения черной дыры, может возникнуть лишь в сжимающихся ядрах массивных звезд, то в далеком прошлом, сразу после Большого взрыва, с которого около 14 млрд. лет назад началось расширение Вселенной, высокая плотность материи была повсюду. Поэтому небольшие флуктуации плотности в ту эпоху могли приводить к рождению черных дыр любой массы, в том числе и малой. Но самые маленькие из них в силу квантовых эффектов должны были испариться, потеряв свою массу в виде излучения и потоков частиц. "Первичные черные дыры" с массой более 1012 кг могли сохраниться до наших дней. Самые мелкие из них, массой 1012 кг (как у небольшого астероида), должны иметь размер порядка 10–15 м (как у протона или нейтрона).

Наконец, существует гипотетическая возможность рождения микроскопических черных дыр при взаимных соударениях быстрых элементарных частиц. Таков один из прогнозов теории струн – одной из конкурирующих сейчас физических теорий строения материи. Теория струн предсказывает, что пространство имеет более трех измерений. Гравитация, в отличие от прочих сил, должна распространяться по всем этим измерениям и поэтому существенно усиливаться на коротких расстояниях. При мощном столкновении двух частиц (например, протонов) они могут сжаться достаточно сильно, чтобы родилась микроскопическая черная дыра. После этого она почти мгновенно разрушится ("испарится"), но наблюдение за этим процессом представляет для физики большой интерес, поскольку, испаряясь, дыра будет испускать все существующие в природе виды частиц. Если гипотеза теории струн верна, то рождение таких черных дыр может происходить при столкновениях энергичных частиц космических лучей с атомами земной атмосферы, а также в наиболее мощных ускорителях элементарных частиц.

3. Свойства черных дыр

Вблизи черной дыры напряженность гравитационного поля так велика, что физические процессы там можно описывать только с помощью релятивистской теории тяготения. Согласно ОТО, пространство и время искривляются гравитационным полем массивных тел, причем наибольшее искривление происходит вблизи черных дыр. Когда физики говорят об интервалах времени и пространства, они имеют в виду числа, считанные с каких-либо физических часов и линеек. Например, роль часов может играть молекула с определенной частотой колебаний, количество которых между двумя событиями можно называть "интервалом времени".

Важно, что гравитация действует на все физические системы одинаково: все часы показывают, что время замедляется, а все линейки, что пространство растягивается вблизи черной дыры. Это означает, что черная дыра искривляет вокруг себя геометрию пространства и времени. Вдали от черной дыры это искривление мало, а вблизи так велико, что лучи света могут двигаться вокруг нее по окружности. Вдали от черной дыры ее поле тяготения в точности описывается теорией Ньютона для тела такой же массы, но вблизи гравитация становится значительно сильнее, чем предсказывает ньютонова теория.

Если бы можно было наблюдать в телескоп за звездой в момент ее превращения в черную дыру, то сначала было бы видно, как звезда все быстрее и быстрее сжимается, но по мере приближения ее поверхности к гравитационному радиусу сжатие начнет замедляться, пока не остановится совсем. При этом приходящий от звезды свет будет слабеть и краснеть пока окончательно не потухнет. Это происходит потому, что, преодолевая силу тяжести, фотоны теряют энергию и им требуется все больше времени, чтобы дойти до нас. Когда поверхность звезды достигнет гравитационного радиуса, покинувшему ее свету потребуется бесконечное время, чтобы достичь любого наблюдателя, даже расположенного сравнительно близко к звезде (и при этом фотоны полностью потеряют свою энергию). Следовательно, мы никогда не дождемся этого момента и, тем более, не увидим того, что происходит со звездой под горизонтом событий, но теоретически этот процесс исследовать можно.

Расчет идеализированного сферического коллапса показывает, что за короткое время вещество под горизонтом событий сжимается в точку, где достигаются бесконечно большие значения плотности и тяготения. Такую точку называют "сингулярностью". Более того, математический анализ показывает, что если возник горизонт событий, то даже несферический коллапс приводит к сингулярности. Однако, все это верно лишь в том случае, если общая теория относительности применима вплоть до очень малых пространственных масштабов, в чем пока нет уверенности. В микромире действуют квантовые законы, а квантовая теория гравитации еще не создана. Ясно, что квантовые эффекты не могут остановить сжатие звезды в черную дыру, а вот предотвратить появление сингулярности они могли бы.

Изучая фундаментальные свойства материи и пространства-времени, физики считают исследование черных дыр одним из важнейших направлений, поскольку вблизи черных дыр проявляются скрытые свойства гравитации. Для поведения вещества и излучения в слабых гравитационных полях различные теории тяготения дают почти неразличимые прогнозы, однако в сильных полях, характерных для черных дыр, предсказания различных теорий существенно расходятся, что дает ключ к выявлению лучшей среди них. В рамках наиболее популярной сейчас теории гравитации – ОТО Эйнштейна – свойства черных дыр изучены весьма подробно. Вот некоторые важнейшие из них:

1) Вблизи черной дыры время течет медленнее, чем вдали от нее. Если удаленный наблюдатель бросит в сторону черной дыры зажженный фонарь, то увидит, как фонарь будет падать все быстрее и быстрее, но затем, приближаясь к поверхности Шварцшильда, начнет замедляться, а его свет будет тускнеть и краснеть (поскольку замедлится темп колебания всех его атомов и молекул). С точки зрения далекого наблюдателя фонарь практически остановится и станет невидим, так и не сумев пересечь поверхность черной дыры. Но если бы наблюдатель сам прыгнул туда вместе с фонарем, то он за короткое время пересек бы поверхность Шварцшильда и упал к центру черной дыры, будучи при этом разорван ее мощными приливными гравитационными силами, возникающими из-за разницы притяжения на разных расстояниях от центра.

2) Каким бы сложным ни было исходное тело, после его сжатия в черную дыру внешний наблюдатель может определить только три его параметра: полную массу, момент импульса (связанный с вращением) и электрический заряд. Все остальные особенности тела (форма, распределение плотности, химический состав и т.д.)в ходе коллапса "стираются". То, что для стороннего наблюдателя структура черной дыры выглядит чрезвычайно простой, Джон Уилер выразил шутливым утверждением: "Черная дыра не имеет волос".

В процессе коллапса звезды в черную дыру за малую долю секунды (по часам удаленного наблюдателя) все ее внешние особенности, связанные с исходной неоднородностью, излучаются в виде гравитационных и электромагнитных волн. Образовавшаяся стационарная черная дыра "забывает" всю информацию об исходной звезде, кроме трех величин: полной массы, момента импульса (связанного с вращением) и электрического заряда. Изучая черную дыру, уже невозможно узнать, состояла ли исходная звезда из вещества или антивещества, была ли она вытянутой или сплюснутой и т.п. В реальных астрофизических условиях заряженная черная дыра будет притягивать к себе из межзвездной среды частицы противоположного знака, и ее заряд быстро станет нулевым. Оставшийся стационарный объект либо будет невращающейся "шварцшильдовой черной дырой", которая характеризуется только массой, либо вращающейся "керровской черной дырой", которая характеризуется массой и моментом импульса.

3) Если исходное тело вращалось, то вокруг черной дыры сохраняется "вихревое" гравитационное поле, увлекающее все соседние тела во вращательное движение вокруг нее. Поле тяготения вращающейся черной дыры называют полем Керра (математик Рой Керр в 1963 нашел решение соответствующих уравнений). Этот эффект характерен не только для черной дыры, но для любого вращающегося тела, даже для Земли. По этой причине размещенный на искусственном спутнике Земли свободно вращающийся гироскоп испытывает медленную прецессию относительно далеких звезд. Вблизи Земли этот эффект едва заметен, но вблизи черной дыры он выражен гораздо сильнее: по скорости прецессии гироскопа можно измерить момент импульса черной дыры, хотя сама она не видна.

Чем ближе мы подходим к горизонту черной дыры, тем сильнее становится эффект увлечения "вихревым полем". Прежде чем достичь горизонта, мы окажемся на поверхности, где увлечение становится настолько сильным, что ни один наблюдатель не может оставаться неподвижным (т. е. быть "статическим") относительно далеких звезд. На этой поверхности (называемой пределом статичности) и внутри нее все объекты должны двигаться по орбите вокруг черной дыры в том же направлении, в котором вращается сама дыра. Независимо от того, какую мощность развивают его реактивные двигатели, наблюдатель внутри предела статичности никогда не сможет остановить свое вращательное движение относительно далеких звезд.

Предел статичности всюду лежит вне горизонта и соприкасается с ним лишь в двух точках, там, где они оба пересекаются с осью вращения черной дыры. Область пространства-времени, расположенная между горизонтом и пределом статичности, называется эргосферой. Объект, попавший в эргосферу, еще может вырваться наружу. Поэтому, хотя черная дыра "все съедает и ничего не отпускает", тем не менее, возможен обмен энергией между ней и внешним пространством. Например, пролетающие через эргосферу частицы или кванты могут уносить энергию ее вращения.

4) Все вещество внутри горизонта событий черной дыры непременно падает к ее центру и образует сингулярность с бесконечно большой плотностью. Английский физик Стивен Хоукинг определяет сингулярность как "место, где разрушается классическая концепция пространства и времени так же, как и все известные законы физики, поскольку все они формулируются на основе классического пространства-времени".

5) Кроме этого С.Хоукинг открыл возможность очень медленного самопроизвольного квантового "испарения" черных дыр. В 1974 он доказал, что черные дыры (не только вращающиеся, но любые) могут испускать вещество и излучение, однако заметно это будет лишь в том случае, если масса самой дыры относительно невелика. Мощное гравитационное поле вблизи черной дыры должно рождать пары частица-античастица. Одна из частиц каждой пары поглощается дырой, а вторая испускается наружу. Например, черная дыра с массой 1012 кг должна вести себя как тело с температурой 1011 К, излучающее очень жесткие гамма-кванты и частицы. Идея об "испарении" черных дыр полностью противоречит классическому представлению о них как о телах, не способных излучать.

4. Поиски черных дыр

Расчеты в рамках ОТО указывают лишь на возможность существования черных дыр, но отнюдь не доказывают их наличия в реальном мире, открытие черной дыры стало бы важным шагом в развитии физики. Поиск изолированных черных дыр в космосе невероятно труден: требуется заметить маленький темный объект на фоне космической черноты. Но есть надежда обнаружить черную дыру по ее взаимодействию с окружающими астрономическими телами, по ее характерному влиянию на них.

Учитывая важнейшие свойства черных дыр (массивность, компактность и невидимость) астрономы постепенно выработали стратегию их поиска. Проще всего обнаружить черную дыру по ее гравитационному взаимодействию с окружающим веществом, например, с близкими звездами. Попытки обнаружить невидимые массивные спутники в двойных звездах не увенчались успехом. Но после запуска на орбиту рентгеновских телескопов выяснилось, что черные дыры активно проявляют себя в тесных двойных системах, где они отбирают вещество у соседней звезды и поглощают его, нагревая при этом до температуры в миллионы градусов и делая его на короткое время источником рентгеновского излучения.

Поскольку в двойной системе черная дыра в паре с нормальной звездой обращается вокруг общего центра массы, используя эффект Доплера, удается измерить скорость звезды и определить массу ее невидимого компаньона. Астрономы выявили уже несколько десятков двойных систем, где масса невидимого компаньона превосходит 3 массы Солнца и заметны характерные проявления активности вещества, движущегося вокруг компактного объекта, например, очень быстрые колебания яркости потоков горячего газа, стремительно вращающегося вокруг невидимого тела.

Особенно перспективной считают рентгеновскую двойную звезду V404 Лебедя, масса невидимого компонента которой оценивается не менее, чем в 6 масс Солнца. Другие кандидаты в черные дыры находятся в двойных системах Лебедь X-1, LMC X-3, V616 Единорога, QZ Лисички, а также в рентгеновских новых Змееносец 1977, Муха 1981 и Скорпион 1994. Почти все они расположены в пределах нашей Галактики, а система LMC X-3 – в близкой к нам галактике Большое Магелланово Облако.

Другим направлением поиска черных дыр служит изучение ядер галактик. В них скапливаются и уплотняются огромные массы вещества, сталкиваются и сливаются звезды, поэтому там могут формироваться сверхмассивные черные дыры, превосходящие по массе Солнце в миллионы раз. Они притягивают к себе окружающие звезды, создавая в центре галактики пик яркости. Они разрушают близко подлетающие к ним звезды, вещество которых образует вокруг черной дыры аккреционный диск и частично выбрасывается вдоль оси диска в виде быстрых струй и потоков частиц. Это не умозрительная теория, а процессы, реально наблюдаемые в ядрах некоторых галактик и указывающие на присутствие в них черных дыр с массами до нескольких миллиардов масс Солнца. В последнее время получены весьма убедительные доказательства того, что и в центре нашей Галактики есть черная дыра с массой около 2,5 млн масс Солнца.

Вполне вероятно, что самые мощные процессы энерговыделения во Вселенной происходят с участием черных дыр. Именно их считают источником активности в ядрах квазаров – молодых массивных галактик. Именно их рождение, как полагают астрофизики, знаменуется самыми мощными взрывами во Вселенной, проявляющимися как гамма-всплески.

Представления о чёрной дыре как об абсолютно поглощающем объекте были скорректированы С.Хокингом в 1975 году. Изучая поведение квантовых полей вблизи чёрной дыры, он предсказал, что чёрная дыра обязательно излучает частицы во внешнее пространство и тем самым теряет массу. Этот эффект называется излучением (испарением) Хокинга. Упрощённо говоря, гравитационное поле поляризует вакуум, в результате чего возможно образование не только виртуальных, но и реальных пар частица-античастица. Одна из частиц, оказавшаяся чуть ниже горизонта событий, падает внутрь чёрной дыры, а другая, оказавшаяся чуть выше горизонта, улетает, унося энергию (то есть часть массы) чёрной дыры. Мощность излучения чёрной дыры равна

.

Состав излучения зависит от размера чёрной дыры: для больших чёрных дыр это в основном фотоны и нейтрино, а в спектре лёгких чёрных дыр начинают присутствовать и тяжёлые частицы. Спектр хокинговского излучения для безмассовых полей оказался строго совпадающим с излучением абсолютно чёрного тела, что позволило приписать чёрной дыре температуру

,

где — редуцированная постоянная Планка, c — скорость света, k — постоянная Больцмана, G — гравитационная постоянная, M — масса чёрной дыры.

На этой основе была построена термодинамика чёрных дыр, в том числе введено ключевое понятие энтропии чёрной дыры, которая оказалась пропорциональна площади её горизонта событий:

,

где A — площадь горизонта событий.

Скорость испарения чёрной дыры тем больше, чем меньше её размеры. Испарением чёрных дыр звёздных (и тем более галактических) масштабов можно пренебречь, однако для первичных и в особенности для квантовых чёрных дыр процессы испарения становятся центральными.

За счёт испарения все чёрные дыры теряют массу и время их жизни оказывается конечным:

.

При этом интенсивность испарения нарастает лавинообразно, и заключительный этап эволюции носит характер взрыва, например, чёрная дыра массой 1000 тонн испарится за время порядка 84 секунды, выделив энергию, равную взрыву примерно десяти миллионов атомных бомб средней мощности.

В то же время, большие чёрные дыры, температура которых ниже температуры реликтового излучения Вселенной (2,7К), на современном этапе развития Вселенной могут только расти, так как испускаемое ими излучение имеет меньшую энергию, чем поглощаемое. Данный процесс продлится до тех пор, пока фотонный газ реликтового излучения не остынет в результате расширения Вселенной.

Без квантовой теории гравитации невозможно описать заключительный этап испарения, когда чёрные дыры становятся микроскопическими (квантовыми). Согласно некоторым теориям, после испарения должен оставаться "огарок" — минимальная планковская чёрная дыра.

Представим себе, как должно выглядеть падение в шварцшильдовскую чёрную дыру. Тело, свободно падающее под действием сил гравитации, находится в состоянии невесомости. Падающее тело будет испытывать действие приливных сил, растягивающих тело в радиальном направлении и сжимающих — в тангенциальном. Величина этих сил растёт и стремится к бесконечности при . В некоторый момент собственного времени тело пересечёт горизонт событий. С точки зрения наблюдателя, падающего вместе с телом, этот момент ничем не выделен, однако возврата теперь нет. Тело оказывается в горловине (её радиус в точке, где находится тело и есть ), сжимающейся столь быстро, что улететь из неё до момента окончательного схлопывания (это и есть сингулярность) уже нельзя, даже двигаясь со скоростью света.

Рассмотрим теперь процесс падения тела в чёрную дыру с точки зрения удалённого наблюдателя. Пусть, например, тело будет светящимся и, кроме того, будет посылать сигналы назад с определённой частотой. Вначале удалённый наблюдатель будет видеть, что тело, находясь в процессе свободного падения, постепенно разгоняется под действием сил тяжести по направлению к центру. Цвет тела не изменяется, частота детектируемых сигналов практически постоянна. Однако, когда тело начнёт приближаться к горизонту событий, фотоны, идущие от тела, будут испытывать всё большее и большее гравитационное красное смещение. Кроме того, из-за гравитационного поля все физические процессы с точки зрения удалённого наблюдателя будут идти всё медленнее и медленнее гравитационного замедления времени): часы, закреплённые на радиальной координате r без вращения (), будут идти медленнее бесконечно удалённых в раз. Будет казаться, что тело — в чрезвычайно сплющенном виде — будет замедляться, приближаясь к горизонту событий и, в конце концов, практически остановится. Частота сигнала будет резко падать. Длина волны испускаемого телом света будет стремительно расти, так что свет быстро превратится в радиоволны и далее в низкочастотные электромагнитные колебания, зафиксировать которые уже будет невозможно. Пересечения телом горизонта событий наблюдатель не увидит никогда и в этом смысле падение в чёрную дыру будет длиться бесконечно долго. Есть, однако, момент, начиная с которого повлиять на падающее тело удалённый наблюдатель уже не сможет. Луч света, посланный вслед этому телу, его либо вообще никогда не догонит, либо догонит уже за горизонтом. Кроме того, расстояние между телом и горизонтом событий, а также "толщина" сплющенного (с точки зрения стороннего наблюдателя) тела довольно быстро достигнут планковской длины и (с математической точки зрения) будут уменьшаться и далее. Для реального физического наблюдателя (ведущего измерения с планковской погрешностью) это равносильно тому, что масса чёрной дыры увеличится на массу падающего тела, а значит радиус горизонта событий возрастёт и падающее тело окажется "внутри" горизонта событий за конечное время.

Аналогично будет выглядеть для удалённого наблюдателя и процесс гравитационного коллапса. Вначале вещество ринется к центру, но вблизи горизонта событий оно станет резко замедляться, его излучение уйдёт в радиодиапазон, и в результате удалённый наблюдатель увидит, что звезда погасла.

А) Сверхмассивные чёрные дыры

Разросшиеся очень массивные чёрные дыры, по современным представлениям, образуют ядра большинства галактик. В их число входит и массивная чёрная дыра в ядре нашей галактики — Стрелец A*.

В настоящее время существование чёрных дыр звёздных и галактических масштабов считается большинством учёных надёжно доказанным астрономическими наблюдениями.

Американские астрономы установили, что массы сверхмассивных чёрных дыр могут быть значительно недооценены. Исследователи установили, что для того, чтобы звёзды двигались в галактике М87 (которая расположена на расстоянии 50 миллионов световых лет от Земли) так, как это наблюдается сейчас, масса центральной чёрной дыры должна быть как минимум 6,4 миллиарда солнечных масс, то есть в два раза больше нынешних оценок ядра М87, которые составляют 3 млрд солнечных масс.

Б) Первичные чёрные дыры

Первичные чёрные дыры в настоящее время носят статус гипотезы. Если в начальные моменты жизни Вселенной существовали достаточной величины отклонения от однородности гравитационного поля и плотности материи, то из них путём коллапса могли образовываться чёрные дыры. При этом их масса не ограничена снизу, как при звёздном коллапсе — их масса, вероятно, могла бы быть достаточно малой. Обнаружение первичных чёрных дыр представляет особенный интерес в связи с возможностями изучения явления испарения чёрных дыр.

В)Квантовые чёрные дыры

Предполагается, что в результате ядерных реакций могут возникать устойчивые микроскопические чёрные дыры, так называемые квантовые чёрные дыры. Для математического описания таких объектов необходима квантовая теория гравитации. Однако из общих соображенийвесьма вероятно, что спектр масс чёрных дыр дискретен и существует минимальная чёрная дыра — планковская чёрная дыра. Её масса порядка 10−5 г, радиус — 10−35 м. Комптоновская длина волны планковской чёрной дыры по порядку величины равна её гравитационному радиусу.

Таким образом, все "элементарные объекты" можно разделить на элементарные частицы (их длина волны больше их гравитационного радиуса) и чёрные дыры (длина волны меньше гравитационного радиуса). Планковская чёрная дыра является пограничным объектом, для неё можно встретить название максимон, указывающее на то, что это самая тяжёлая из возможных элементарных частиц. Другой иногда употребляемый для её обозначения термин — планкеон.

Даже если квантовые чёрные дыры существуют, время их существования крайне мало, что делает их непосредственное обнаружение очень проблематичным.

В последнее время предложены эксперименты с целью обнаружения свидетельств появления чёрных дыр в ядерных реакциях. Однако для непосредственного синтеза чёрной дыры в ускорителе необходима недостижимая на сегодня энергия 1026 эВ. По-видимому, в реакциях сверхвысоких энергий могут возникать виртуальные промежуточные чёрные дыры.

1. Карпенков С.Х. Концепции современного естествознания, М, Высш. школа 2003г.

2. http://nrc.edu.ru/est/pos/24.html

3. http://www.krugosvet.ru/enc/nauka_i_tehnika/astronomiya/CHERNAYA_DIRA.html

4. http://ru.wikipedia.org/

www.yurii.ru

Доклад: Черные дыры

Черная дыра является порождением тяготения. Поэтому предысторию открытия черных дыр можно начать со времени И. Ньютона, открывшего закон всемирного тяготения.

В 1783 году Английское королевское общество заслушало доклад Д. Митчелла, который утверждал, что если бы на месте Солнца находилась звезда такой же плотности, но с радиусом в 500 раз больше, чем у солнца, световые лучи не могли бы покинуть поверхность такой звезды.

Митчелл аргументировал свое предложение следующим образом. Если свет представляет собой поток частиц, то эти частицы подвергаются воздействию тяготения точно так же, как и любое другое тело. Хорошо известно, что на поверхности Земли, например, необходимо сообщить телу скорость порядка 11 километров в секунду, и тогда это тело навсегда потеряет связь с Землей. Такая скорость называется второй космической скоростью.

Ясно, что чем больше масса тела и чем меньше его радиус, тем больше скорость убегания. Численное значение скорости света Митчеллу было известно. Нужно было определить массу тела, на поверхности которого скорость убегания равна скорости света. Через 30-ть лет великий французский математик П. Лаплас вновь рассмотрел эту задачу и получил результат аналогичный результату Митчеллу. 200 лет назад эта задача ни кого не заинтересовала. И тем не менее к этому курьезу пришлось вернуться сто с лишнем лет спустя после работ Митчелла и Лапласа. Немецкий физик К. Шварцшильд изучал, в частности, поведение света в сильном поле тяготения, создаваемом сферическим телом (звездой). Он получил удивительный результат, состоящий в том, что, если тело массы М имеет радиус Rg, то при Rg=2GM/ccила тяготения совпадает с простой формулой, полученных из закона Ньютона. Бесконечное значение тяготения в механике Ньютона получается лишь в том случае, если мы сожмем тело в точку. При этом радиус тела будет равен нулю. Шварцшильд же получил выражение для некоторого вполне определенного значения радиуса гравитирующего тела, когда тяготение становится бесконечным. Так как силы тяготения стали бесконечными это приведет к непрерывному сжатию вещества в точку, в так называемую сингулярность. Если мы только дошли до гравитационного радиуса, то дальше начинается гравитационный коллапс.

Нет сил, которые могли бы препятствовать этому процессу. Коллапсирующий объект будет сжиматься до бесконечной плотности и бесконечно малых размеров. Таким образом, швардшильдовская черная дыра – это область пространства, радиус которой равен радиусу Шварцшильда. В ее центре находится сингулярность, где вещество сжато до беспредельных плотностей бесконечными силами тяготения. Возникает вопрос о том, существует ли в природе такое явление? Что бы ответить на этот вопрос обратимся к изучению более поздних стадий эволюции звезд.

Массивные звезды могут исчезнуть вообще в результате мощного мгновенного термоядерного взрыва. Остатком после взрыва может быть нейтронная звезда. Происходит процесс гибели и рождения звезд. Гибнет гигант и во время своей гибели, проходят этап катастрофического взрыва, порождает, оставляет вместо себя нейтронную звезду. Эта звезда устойчива: сила гравитации огромны, но давление вырожденной нейтронной жидкости еще может уравновесить эти силы. Однако, если масса ядра более трех масс Солнца, сила тяготения выигрывают схватку. А это значит, что сила гравитации будет сжимать вещество звезды в состояние с бесконечной плотностью, в точку. Говоря другими словами, некоторые массивные звезды должны в конце своей жизни превратиться в черные дыры.

В 1918 году астрономы попытались провести первые эксперименты по проверки общей теории относительности (ОТО). В этом году пришлось полное солнечное затмение, и во время наблюдений за ним удалось заметить отклонение лучей света в поле тяготения Солнца. В окрестностях Солнца эффект искривления светового луча невелик, но достаточен для прямых наблюдений.

Поле тяготения черной дыры неизмеримо сильнее поля тяготения Солнца, и эффект ОТО должен проявляться там гораздо заметнее. И действительно, расчеты показали, что свет, проходящий по близости от черной дыры, будет гравитационно захвачен ею. На расстоянии, равном примерно, полутора шварцшильдовским радиусам, существует воображаемая окружность, на которую световой луч будет “навиваться”. Если луч проходит от дыры на более близком расстоянии, он будет поглощен ею. Так же возможно столь сильное искривление луча света, что фотоны могут двигаться по замкнутой окружности.

Ряд дополнительных, интересных эффектов возникает в случаи с вращающейся черной дырой. Дело в том, что Шварцшильд получил свое решение для неподвижной черной дыры, а в природе, этот случай не должен иметь места вообще. Ведь нейтронные звезды вращаются очень быстро, а поскольку и нейтронные звезды, и черные дыры – продукт эволюции массивных звезд, черные дыры также должны иметь собственное вращение.

Скорость вращения и масса полностью определяют свойства черной дыры. Основные свойства вращающейся дыры состоит в том, что вокруг нее образуется область пространства-времени с весьма необычными свойствами, называемая эргосферой. Эта область ограничена воображаемой поверхностью, которая называется пределом стационарности. Между горизонтом событий и пределом стационарности ничто не может оставаться в покое, там само пространство-время как бы закручивается вокруг оси вращения черной дыры.

Экватор придела стационарности вращающийся черной дыры имеет одинаковый диаметр с горизонтом событий невращающейся черной дыры той же массы. Процесс вращения дыры приводит к одной удивительной возможности, на которую впервые обратил внимание английский физик-теоретик Р. Пенроуз в 1969 году. Он доказал, что из эргосферы черной дыры можно черпать энергию.

Если какое-то тело попадает в эргосферу и разделяется там на две части таким образом, что одна из них будет двигаться к горизонту событий, а другая в противоположную сторону, то эта вторая часть будет подхвачена гравитационным вихрем эргосферы и выброшена с огромной скоростью из нее. Заметим, что энергия осколка будет превышать первоначальную энергию исходного тала.

Поскольку законы сохранения вещь незыблемая, должна уменьшаться общая энергия дыры. Ясно, что из самой дыры мы ничего извлечь не можем, по определению, а следовательно, энергия черпается из эргосферы за счет уменьшения энергии вращения дыры, замедления вращения. Таким образом, вращающиеся черные дыры могут быть в принципе самыми мощными источниками энергии во Вселенной.

Наиболее поразительный эффект в поведение черных дыр был открыт в 1973 году профессором кафедры математики Кембриджского университета С. Хокингом. Хогинг, один из крупнейших физиков-теоретиков нашего времени, заинтересовался вопросом об эволюции черных дыр. Он исследовал квантовые эффекты поведения частиц вблизи горизонта событий, и именно этот новый подход позволил ему сделать выдающееся открытие.

Суть открытия Хокинга состоит в том, что чудовищное гравитационное поле черной дыры рождает частицы и античастицы. Иногда частица и античастица падают обратно в черную дыру, но возможен случай, когда в дыру попадает лишь один партнер, а другой покидает окрестности черной дыры с помощью туннельного эффекта. Ясно, для рождения пары должна быть затрачена энергия. Хокинг строго доказал, что весь этот процесс должен идти за счет уменьшения массы черной дыры, ее испарения. Ну а если происходит процесс испарения, то можно сказать, что тело имеет некоторую температуру.

Ясно, что чем горячее дыра, тем быстрее она теряет массу.

Черные дыры – совершенно исключительные объекты, не похожие ни на что, известное до сих пор. Изучение физики черных дыр позволяет расширить познания о фундаментальных свойствах пространства и времени. Образно говоря, черные дыры – это дверь в новую, широчайшую область познания физического мира.

superbotanik.net

Реферат: Реферат: Черные дыры

Исторический факультет

Реферат по КСЕ на тему :

"Черные дыры"

Оглавление

ВВЕДЕНИЕ

1.      История идеи о черных дырах

2.      Формирование черных дыр

3.      Свойства черных дыр

4.      Поиски черных дыр

5.      Термодинамика и испарение чёрных дыр

6.      Падение в чёрную дыру

7.      Виды черных дыр

Заключение

Список литературы

Черная дыра – область пространства, в которой гравитационное притяжение настолько сильно, что ни вещество, ни излучение не могут эту область покинуть. Для находящихся там тел вторая космическая скорость (скорость убегания) должна была бы превышать скорость света, что невозможно, поскольку ни вещество, ни излучение не могут двигаться быстрее света. Поэтому из черной дыры ничто не может вылететь. Границу области, за которую не выходит свет, называют "горизонтом событий", или просто "горизонтом" черной дыры.

Сущность гипотезы образования черных дыр заключается в следующем: если некоторая масса вещества оказывается в сравнительно небольшом объеме, критическом для нее, то под действием сил собственного тяготения такое вещество начинает неудержимо сжиматься. Наступает своеобразная гравитационная катастрофа — гравитационный коллапс. В результате сжатия растет концентрация вещества. Наконец, наступает момент, когда сила тяготения на ее поверхности становится столь велика, что для ее преодоления надо развить скорость, превосходящую скорость света. Такие скорости практически недостижимы, и из замкнутого пространства черной дыры не могут вырваться ни лучи света, ни частицы материи. Излучение черной дыры оказывается "запертым" гравитацией. Черные дыры способны только поглощать излучение

Чтобы поле тяготения смогло "запереть" излучение, создающая это поле, масса (M) должна сжаться до объема с радиусом, меньшим "гравитационного радиуса" rg = 2GM/c2 . По этой причине создать и исследовать черную дыру в лаборатории практически невозможно: чтобы тело любой разумной массы (даже в миллионы тонн) стало черной дырой, его нужно сжать до размера, меньшего, чем размер протона или нейтрона, поэтому свойства черных дыр пока изучаются только теоретически.

Однако расчеты показывают, что тела астрономического масштаба (например, массивные звезды) после истощения в них термоядерного топлива могут под действием собственного тяготения сжиматься до размера своего гравитационного радиуса. Поиск таких объектов ведется уже более 40 лет, и сейчас можно с большой уверенностью указать несколько весьма вероятных кандидатов в черные дыры с массами от единиц до миллиардов масс Солнца. Однако их изучение затруднено огромными расстояниями от Земли. И хотя сам факт существования черных дыр уже трудно подвергать сомнению, практическое изучение их свойств еще впереди.

Английский геофизик и астроном Джон Мичелл предположил, что в природе могут существовать столь массивные звезды, что даже луч света не способен покинуть их поверхность. Используя законы Ньютона, Мичелл рассчитал, что если бы звезда с массой Солнца имела радиус не более 3 км, то даже частицы света (которые он, вслед за Ньютоном, считал корпускулами) не могли бы улететь далеко от такой звезды. Поэтому такая звезда казалась бы издалека абсолютно темной. Эту идею Мичелл представил на заседании Лондонского Королевского общества 27 ноября 1783. Так родилась концепция "ньютоновской" черной дыры.

Такую же идею высказал в своей книге Система мира (1796) французский математик и астроном Пьер Симон Лаплас. Простой расчет позволил ему написать: "Светящаяся звезда с плотностью, равной плотности Земли, и диаметром, в 250 раз большим диаметра Солнца, не дает ни одному световому лучу достичь нас из-за своего тяготения; поэтому возможно, что самые яркие небесные тела во Вселенной оказываются по этой причине невидимыми". Однако масса такой звезды должна была бы в десятки миллионов раз превосходить солнечную. А поскольку дальнейшие астрономические измерения показали, что массы реальных звезд не очень сильно отличаются от солнечной, идея Митчела и Лапласа о черных дырах была забыта.

На протяжении XIX века идея тел, невидимых вследствие своей массивности, не вызывала большого интереса у учёных. Это было связано с тем, что в рамках классической физики скорость света не имеет фундаментального значения. Однако в конце XIX — начале XX века было установлено, что сформулированные Дж.Максвеллом законы электродинамики, с одной стороны, выполняются во всех инерциальных системах отсчёта, а с другой стороны, не обладают инвариантностью относительно преобразований Галилея. Это означало, что сложившиеся в физике представления о характере перехода от одной инерциальной системы отсчёта к другой нуждаются в значительной корректировке.

В ходе дальнейшей разработки электродинамики Г.Лоренцем была предложена новая система преобразований пространственно-временных координат (известных сегодня как преобразования Лоренца), относительно которых уравнения Максвелла оставались инвариантными. Развивая идеи Лоренца, А.Пуанкаре предположил, что все прочие физические законы также инвариантны относительно этих преобразований.

В 1905 году А.Эйнштейн использовал концепции Лоренца и Пуанкаре в своей специальной теории относительности (СТО), в которой роль закона преобразования инерциальных систем отсчёта окончательно перешла от преобразований Галилея к преобразованиям Лоренца. Классическая (галилеевски-инвариантная) механика была при этом заменена на новую, лоренц-инвариантную релятивистскую механику. В рамках последней скорость света оказалась предельной скоростью, которую может развить физическое тело, что радикально изменило значение чёрных дыр в теоретической физике.

Однако ньютоновская теория тяготения (на которой базировалась первоначальная теория чёрных дыр) не является лоренц-инвариантной. Поэтому она не может быть применена к телам, движущимся с околосветовыми и световыми скоростями. Лишённая этого недостатка релятивистская теория тяготения была создана, в основном, Эйнштейном (сформулировавшим её окончательно к концу 1915 года) и получила название общей теории относительности (ОТО).

Во второй раз ученые "столкнулись" с черными дырами в 1916, когда немецкий астроном Карл Шварцшильд получил первое точное решение уравнений ОТО. Оказалось, что пустое пространство вокруг массивной точки обладает особенностью на расстоянии rg от нее; именно поэтому величину rg часто называют "шварцшильдовским радиусом", а соответствующую поверхность (горизонт событий) – шварцшильдовской поверхностью. В следующие полвека усилиями теоретиков были выяснены многие удивительные особенности решения Шварцшильда, но как реальный объект исследования черные дыры еще не рассматривались.

Правда, в 1930-е, после создания квантовой механики и открытия нейтрона, физики исследовали возможность формирования компактных объектов (белых карликов и нейтронных звезд)как продуктов эволюции нормальных звезд. Оценки показали, что после истощения в недрах звезды ядерного топлива, ее ядро может сжаться превратиться в маленький и очень плотный белый карлик или же в еще более плотную и совсем крохотную нейтронную звезду.

В 1934 работавшие в США европейские астрономы Фриц Цвикки и Вальтер Бааде выдвинули гипотезу – вспышки сверхновых представляют собой совершенно особый тип звездных взрывов, вызванных катастрофическим сжатием ядра звезды. Так впервые родилась идея о возможности наблюдать коллапс звезды. Бааде и Цвикки высказали предположение, что в результате взрыва сверхновой образуется сверхплотная вырожденная звезда, состоящая из нейтронов. Расчеты показали, что такие объекты действительно могут рождаться и быть устойчивыми, но лишь при умеренной начальной массе звезды. Но если масса звезды превышает три массы Солнца, то уже ничто не сможет остановить ее катастрофического коллапса.

В 1939 американские физики Роберт Оппенгеймер и Хартланд Снайдер обосновали вывод, что ядро массивной звезды должно безостановочно коллапсировать в предельно малый объект, свойства пространства вокруг которого (если он не вращается) описываются решением Шварцшильда. Иными словами, ядро массивной звезды в конце ее эволюции должно стремительно сжиматься и уходить под горизонт событий, становясь черной дырой. Но поскольку такой объект (как говорили тогда, "коллапсар", или "застывшая звезда") не излучает электромагнитные волны, то астрономы понимали, что обнаружить его в космосе будет невероятно трудно и поэтому долго не приступали к поиску.

Поскольку никакой носитель информации не способен выйти из-под горизонта событий, внутренняя часть черной дыры причинно не связана с остальной Вселенной, происходящие внутри черной дыры физические процессы не могут влиять на процессы вне ее. В то же время, вещество и излучение, падающие снаружи на черную дыру, свободно проникают внутрь через горизонт. Можно сказать, что черная дыра все поглощает и ничего не выпускает. По этой причине и родился термин "черная дыра", предложенный в 1967 американским физиком Джоном Арчибальдом Уилером.

2.  Формирование черных дыр

Самый очевидный путь образования черной дыры – коллапс ядра массивной звезды. Пока в недрах звезды не истощился запас ядерного топлива, ее равновесие поддерживается за счет термоядерных реакций (превращение водорода в гелий, затем в углерод, и т.д., вплоть до железа у наиболее массивных звезд). Выделяющееся при этом тепло компенсирует потерю энергии, уходящей от звезды с ее излучением и звездным ветром. Термоядерные реакции поддерживают высокое давление в недрах звезды, препятствуя ее сжатию под действием собственной гравитации. Однако со временем ядерное топливо истощается и звезда начинает сжиматься.

Наиболее быстро сжимается ядро звезды, при этом оно сильно разогревается (его гравитационная энергия переходит в тепло) и нагревает окружающую его оболочку. В итоге звезда теряет свои наружные слои в виде медленно расширяющейся планетарной туманности или катастрофически сброшенной оболочки сверхновой. А судьба сжимающегося ядра зависит от его массы. Расчеты показывают, что если масса ядра звезды не превосходит трех масс Солнца, то она "выигрывает битву с гравитацией": его сжатие будет остановлено давлением вырожденного вещества, и звезда превратится в белый карлик или нейтронную звезду. Но если масса ядра звезды более трех солнечных, то уже ничто не сможет остановить его катастрофический коллапс, и оно быстро уйдет под горизонт событий, став черной дырой. Как следует из формулы для rg, черная дыра с массой 3 солнечных имеет гравитационный радиус 8,8 км.

Астрономические наблюдения хорошо согласуются с этими расчетами: все компоненты двойных звездных систем, проявляющие свойства черных дыр (в 2005 их известно около 20), имеют массы от 4 до 16 масс Солнца. Теория звездной эволюции указывает, что за 12 млрд. лет существования нашей Галактики, содержащей порядка 100 млрд. звезд, в результате коллапса наиболее массивных из них должно было образоваться несколько десятков миллионов черных дыр. К тому же, черные дыры очень большой массы (от миллионов до миллиардов масс Солнца)могут находиться в ядрах крупных галактик, в том числе, и нашей. Об этом свидетельствуют астрономические наблюдения, хотя пути формирования этих гигантских черных дыр не вполне ясны.

Если в нашу эпоху высокая плотность вещества, необходимая для рождения черной дыры, может возникнуть лишь в сжимающихся ядрах массивных звезд, то в далеком прошлом, сразу после Большого взрыва, с которого около 14 млрд. лет назад началось расширение Вселенной, высокая плотность материи была повсюду. Поэтому небольшие флуктуации плотности в ту эпоху могли приводить к рождению черных дыр любой массы, в том числе и малой. Но самые маленькие из них в силу квантовых эффектов должны были испариться, потеряв свою массу в виде излучения и потоков частиц. "Первичные черные дыры" с массой более 1012 кг могли сохраниться до наших дней. Самые мелкие из них, массой 1012 кг (как у небольшого астероида), должны иметь размер порядка 10–15 м (как у протона или нейтрона).

Наконец, существует гипотетическая возможность рождения микроскопических черных дыр при взаимных соударениях быстрых элементарных частиц. Таков один из прогнозов теории струн – одной из конкурирующих сейчас физических теорий строения материи. Теория струн предсказывает, что пространство имеет более трех измерений. Гравитация, в отличие от прочих сил, должна распространяться по всем этим измерениям и поэтому существенно усиливаться на коротких расстояниях. При мощном столкновении двух частиц (например, протонов) они могут сжаться достаточно сильно, чтобы родилась микроскопическая черная дыра. После этого она почти мгновенно разрушится ("испарится"), но наблюдение за этим процессом представляет для физики большой интерес, поскольку, испаряясь, дыра будет испускать все существующие в природе виды частиц. Если гипотеза теории струн верна, то рождение таких черных дыр может происходить при столкновениях энергичных частиц космических лучей с атомами земной атмосферы, а также в наиболее мощных ускорителях элементарных частиц.

3.  Свойства черных дыр

Вблизи черной дыры напряженность гравитационного поля так велика, что физические процессы там можно описывать только с помощью релятивистской теории тяготения. Согласно ОТО, пространство и время искривляются гравитационным полем массивных тел, причем наибольшее искривление происходит вблизи черных дыр. Когда физики говорят об интервалах времени и пространства, они имеют в виду числа, считанные с каких-либо физических часов и линеек. Например, роль часов может играть молекула с определенной частотой колебаний, количество которых между двумя событиями можно называть "интервалом времени".

Важно, что гравитация действует на все физические системы одинаково: все часы показывают, что время замедляется, а все линейки, что пространство растягивается вблизи черной дыры. Это означает, что черная дыра искривляет вокруг себя геометрию пространства и времени. Вдали от черной дыры это искривление мало, а вблизи так велико, что лучи света могут двигаться вокруг нее по окружности. Вдали от черной дыры ее поле тяготения в точности описывается теорией Ньютона для тела такой же массы, но вблизи гравитация становится значительно сильнее, чем предсказывает ньютонова теория.

Если бы можно было наблюдать в телескоп за звездой в момент ее превращения в черную дыру, то сначала было бы видно, как звезда все быстрее и быстрее сжимается, но по мере приближения ее поверхности к гравитационному радиусу сжатие начнет замедляться, пока не остановится совсем. При этом приходящий от звезды свет будет слабеть и краснеть пока окончательно не потухнет. Это происходит потому, что, преодолевая силу тяжести, фотоны теряют энергию и им требуется все больше времени, чтобы дойти до нас. Когда поверхность звезды достигнет гравитационного радиуса, покинувшему ее свету потребуется бесконечное время, чтобы достичь любого наблюдателя, даже расположенного сравнительно близко к звезде (и при этом фотоны полностью потеряют свою энергию). Следовательно, мы никогда не дождемся этого момента и, тем более, не увидим того, что происходит со звездой под горизонтом событий, но теоретически этот процесс исследовать можно.

Расчет идеализированного сферического коллапса показывает, что за короткое время вещество под горизонтом событий сжимается в точку, где достигаются бесконечно большие значения плотности и тяготения. Такую точку называют "сингулярностью". Более того, математический анализ показывает, что если возник горизонт событий, то даже несферический коллапс приводит к сингулярности. Однако, все это верно лишь в том случае, если общая теория относительности применима вплоть до очень малых пространственных масштабов, в чем пока нет уверенности. В микромире действуют квантовые законы, а квантовая теория гравитации еще не создана. Ясно, что квантовые эффекты не могут остановить сжатие звезды в черную дыру, а вот предотвратить появление сингулярности они могли бы.

Изучая фундаментальные свойства материи и пространства-времени, физики считают исследование черных дыр одним из важнейших направлений, поскольку вблизи черных дыр проявляются скрытые свойства гравитации. Для поведения вещества и излучения в слабых гравитационных полях различные теории тяготения дают почти неразличимые прогнозы, однако в сильных полях, характерных для черных дыр, предсказания различных теорий существенно расходятся, что дает ключ к выявлению лучшей среди них. В рамках наиболее популярной сейчас теории гравитации – ОТО Эйнштейна – свойства черных дыр изучены весьма подробно. Вот некоторые важнейшие из них:

1) Вблизи черной дыры время течет медленнее, чем вдали от нее. Если удаленный наблюдатель бросит в сторону черной дыры зажженный фонарь, то увидит, как фонарь будет падать все быстрее и быстрее, но затем, приближаясь к поверхности Шварцшильда, начнет замедляться, а его свет будет тускнеть и краснеть (поскольку замедлится темп колебания всех его атомов и молекул). С точки зрения далекого наблюдателя фонарь практически остановится и станет невидим, так и не сумев пересечь поверхность черной дыры. Но если бы наблюдатель сам прыгнул туда вместе с фонарем, то он за короткое время пересек бы поверхность Шварцшильда и упал к центру черной дыры, будучи при этом разорван ее мощными приливными гравитационными силами, возникающими из-за разницы притяжения на разных расстояниях от центра.

2) Каким бы сложным ни было исходное тело, после его сжатия в черную дыру внешний наблюдатель может определить только три его параметра: полную массу, момент импульса (связанный с вращением) и электрический заряд. Все остальные особенности тела (форма, распределение плотности, химический состав и т.д.)в ходе коллапса "стираются". То, что для стороннего наблюдателя структура черной дыры выглядит чрезвычайно простой, Джон Уилер выразил шутливым утверждением: "Черная дыра не имеет волос".

В процессе коллапса звезды в черную дыру за малую долю секунды (по часам удаленного наблюдателя) все ее внешние особенности, связанные с исходной неоднородностью, излучаются в виде гравитационных и электромагнитных волн. Образовавшаяся стационарная черная дыра "забывает" всю информацию об исходной звезде, кроме трех величин: полной массы, момента импульса (связанного с вращением) и электрического заряда. Изучая черную дыру, уже невозможно узнать, состояла ли исходная звезда из вещества или антивещества, была ли она вытянутой или сплюснутой и т.п. В реальных астрофизических условиях заряженная черная дыра будет притягивать к себе из межзвездной среды частицы противоположного знака, и ее заряд быстро станет нулевым. Оставшийся стационарный объект либо будет невращающейся "шварцшильдовой черной дырой", которая характеризуется только массой, либо вращающейся "керровской черной дырой", которая характеризуется массой и моментом импульса.

3) Если исходное тело вращалось, то вокруг черной дыры сохраняется "вихревое" гравитационное поле, увлекающее все соседние тела во вращательное движение вокруг нее. Поле тяготения вращающейся черной дыры называют полем Керра (математик Рой Керр в 1963 нашел решение соответствующих уравнений). Этот эффект характерен не только для черной дыры, но для любого вращающегося тела, даже для Земли. По этой причине размещенный на искусственном спутнике Земли свободно вращающийся гироскоп испытывает медленную прецессию относительно далеких звезд. Вблизи Земли этот эффект едва заметен, но вблизи черной дыры он выражен гораздо сильнее: по скорости прецессии гироскопа можно измерить момент импульса черной дыры, хотя сама она не видна.

Чем ближе мы подходим к горизонту черной дыры, тем сильнее становится эффект увлечения "вихревым полем". Прежде чем достичь горизонта, мы окажемся на поверхности, где увлечение становится настолько сильным, что ни один наблюдатель не может оставаться неподвижным (т. е. быть "статическим") относительно далеких звезд. На этой поверхности (называемой пределом статичности) и внутри нее все объекты должны двигаться по орбите вокруг черной дыры в том же направлении, в котором вращается сама дыра. Независимо от того, какую мощность развивают его реактивные двигатели, наблюдатель внутри предела статичности никогда не сможет остановить свое вращательное движение относительно далеких звезд.

Предел статичности всюду лежит вне горизонта и соприкасается с ним лишь в двух точках, там, где они оба пересекаются с осью вращения черной дыры. Область пространства-времени, расположенная между горизонтом и пределом статичности, называется эргосферой. Объект, попавший в эргосферу, еще может вырваться наружу. Поэтому, хотя черная дыра "все съедает и ничего не отпускает", тем не менее, возможен обмен энергией между ней и внешним пространством. Например, пролетающие через эргосферу частицы или кванты могут уносить энергию ее вращения.

4) Все вещество внутри горизонта событий черной дыры непременно падает к ее центру и образует сингулярность с бесконечно большой плотностью. Английский физик Стивен Хоукинг определяет сингулярность как "место, где разрушается классическая концепция пространства и времени так же, как и все известные законы физики, поскольку все они формулируются на основе классического пространства-времени".

5) Кроме этого С.Хоукинг открыл возможность очень медленного самопроизвольного квантового "испарения" черных дыр. В 1974 он доказал, что черные дыры (не только вращающиеся, но любые) могут испускать вещество и излучение, однако заметно это будет лишь в том случае, если масса самой дыры относительно невелика. Мощное гравитационное поле вблизи черной дыры должно рождать пары частица-античастица. Одна из частиц каждой пары поглощается дырой, а вторая испускается наружу. Например, черная дыра с массой 1012 кг должна вести себя как тело с температурой 1011 К, излучающее очень жесткие гамма-кванты и частицы. Идея об "испарении" черных дыр полностью противоречит классическому представлению о них как о телах, не способных излучать.

4.  Поиски черных дыр

Расчеты в рамках ОТО указывают лишь на возможность существования черных дыр, но отнюдь не доказывают их наличия в реальном мире, открытие черной дыры стало бы важным шагом в развитии физики. Поиск изолированных черных дыр в космосе невероятно труден: требуется заметить маленький темный объект на фоне космической черноты. Но есть надежда обнаружить черную дыру по ее взаимодействию с окружающими астрономическими телами, по ее характерному влиянию на них.

Учитывая важнейшие свойства черных дыр (массивность, компактность и невидимость) астрономы постепенно выработали стратегию их поиска. Проще всего обнаружить черную дыру по ее гравитационному взаимодействию с окружающим веществом, например, с близкими звездами. Попытки обнаружить невидимые массивные спутники в двойных звездах не увенчались успехом. Но после запуска на орбиту рентгеновских телескопов выяснилось, что черные дыры активно проявляют себя в тесных двойных системах, где они отбирают вещество у соседней звезды и поглощают его, нагревая при этом до температуры в миллионы градусов и делая его на короткое время источником рентгеновского излучения.

Поскольку в двойной системе черная дыра в паре с нормальной звездой обращается вокруг общего центра массы, используя эффект Доплера, удается измерить скорость звезды и определить массу ее невидимого компаньона. Астрономы выявили уже несколько десятков двойных систем, где масса невидимого компаньона превосходит 3 массы Солнца и заметны характерные проявления активности вещества, движущегося вокруг компактного объекта, например, очень быстрые колебания яркости потоков горячего газа, стремительно вращающегося вокруг невидимого тела.

Особенно перспективной считают рентгеновскую двойную звезду V404 Лебедя, масса невидимого компонента которой оценивается не менее, чем в 6 масс Солнца. Другие кандидаты в черные дыры находятся в двойных системах Лебедь X-1, LMC X-3, V616 Единорога, QZ Лисички, а также в рентгеновских новых Змееносец 1977, Муха 1981 и Скорпион 1994. Почти все они расположены в пределах нашей Галактики, а система LMC X-3 – в близкой к нам галактике Большое Магелланово Облако.

Другим направлением поиска черных дыр служит изучение ядер галактик. В них скапливаются и уплотняются огромные массы вещества, сталкиваются и сливаются звезды, поэтому там могут формироваться сверхмассивные черные дыры, превосходящие по массе Солнце в миллионы раз. Они притягивают к себе окружающие звезды, создавая в центре галактики пик яркости. Они разрушают близко подлетающие к ним звезды, вещество которых образует вокруг черной дыры аккреционный диск и частично выбрасывается вдоль оси диска в виде быстрых струй и потоков частиц. Это не умозрительная теория, а процессы, реально наблюдаемые в ядрах некоторых галактик и указывающие на присутствие в них черных дыр с массами до нескольких миллиардов масс Солнца. В последнее время получены весьма убедительные доказательства того, что и в центре нашей Галактики есть черная дыра с массой около 2,5 млн масс Солнца.

Вполне вероятно, что самые мощные процессы энерговыделения во Вселенной происходят с участием черных дыр. Именно их считают источником активности в ядрах квазаров – молодых массивных галактик. Именно их рождение, как полагают астрофизики, знаменуется самыми мощными взрывами во Вселенной, проявляющимися как гамма-всплески.

Представления о чёрной дыре как об абсолютно поглощающем объекте были скорректированы С.Хокингом в 1975 году. Изучая поведение квантовых полей вблизи чёрной дыры, он предсказал, что чёрная дыра обязательно излучает частицы во внешнее пространство и тем самым теряет массу. Этот эффект называется излучением (испарением) Хокинга. Упрощённо говоря, гравитационное поле поляризует вакуум, в результате чего возможно образование не только виртуальных, но и реальных пар частица-античастица. Одна из частиц, оказавшаяся чуть ниже горизонта событий, падает внутрь чёрной дыры, а другая, оказавшаяся чуть выше горизонта, улетает, унося энергию (то есть часть массы) чёрной дыры. Мощность излучения чёрной дыры равна

L=\frac{\hbar c^6}{15360\pi G^2M^2}.

Состав излучения зависит от размера чёрной дыры: для больших чёрных дыр это в основном фотоны и нейтрино, а в спектре лёгких чёрных дыр начинают присутствовать и тяжёлые частицы. Спектр хокинговского излучения для безмассовых полей оказался строго совпадающим с излучением абсолютно чёрного тела, что позволило приписать чёрной дыре температуру

T_H=\frac{\hbar c^3}{8\pi kGM},

где \hbar— редуцированная постоянная Планка, c — скорость света, k — постоянная Больцмана, G — гравитационная постоянная, M — масса чёрной дыры.

На этой основе была построена термодинамика чёрных дыр, в том числе введено ключевое понятие энтропии чёрной дыры, которая оказалась пропорциональна площади её горизонта событий:

S = \frac{Akc^3}{4\hbar G},

где A — площадь горизонта событий.

Скорость испарения чёрной дыры тем больше, чем меньше её размеры. Испарением чёрных дыр звёздных (и тем более галактических) масштабов можно пренебречь, однако для первичных и в особенности для квантовых чёрных дыр процессы испарения становятся центральными.

За счёт испарения все чёрные дыры теряют массу и время их жизни оказывается конечным:

\tau=\frac{5120\pi G^2M^3}{\hbar c^4}.

При этом интенсивность испарения нарастает лавинообразно, и заключительный этап эволюции носит характер взрыва, например, чёрная дыра массой 1000 тонн испарится за время порядка 84 секунды, выделив энергию, равную взрыву примерно десяти миллионов атомных бомб средней мощности.

В то же время, большие чёрные дыры, температура которых ниже температуры реликтового излучения Вселенной (2,7К), на современном этапе развития Вселенной могут только расти, так как испускаемое ими излучение имеет меньшую энергию, чем поглощаемое. Данный процесс продлится до тех пор, пока фотонный газ реликтового излучения не остынет в результате расширения Вселенной.

Без квантовой теории гравитации невозможно описать заключительный этап испарения, когда чёрные дыры становятся микроскопическими (квантовыми). Согласно некоторым теориям, после испарения должен оставаться "огарок" — минимальная планковская чёрная дыра.

Представим себе, как должно выглядеть падение в шварцшильдовскую чёрную дыру. Тело, свободно падающее под действием сил гравитации, находится в состоянии невесомости. Падающее тело будет испытывать действие приливных сил, растягивающих тело в радиальном направлении и сжимающих — в тангенциальном. Величина этих сил растёт и стремится к бесконечности при ~r\to 0. В некоторый момент собственного времени тело пересечёт горизонт событий. С точки зрения наблюдателя, падающего вместе с телом, этот момент ничем не выделен, однако возврата теперь нет. Тело оказывается в горловине (её радиус в точке, где находится тело и есть ~r), сжимающейся столь быстро, что улететь из неё до момента окончательного схлопывания (это и есть сингулярность) уже нельзя, даже двигаясь со скоростью света.

Рассмотрим теперь процесс падения тела в чёрную дыру с точки зрения удалённого наблюдателя. Пусть, например, тело будет светящимся и, кроме того, будет посылать сигналы назад с определённой частотой. Вначале удалённый наблюдатель будет видеть, что тело, находясь в процессе свободного падения, постепенно разгоняется под действием сил тяжести по направлению к центру. Цвет тела не изменяется, частота детектируемых сигналов практически постоянна. Однако, когда тело начнёт приближаться к горизонту событий, фотоны, идущие от тела, будут испытывать всё большее и большее гравитационное красное смещение. Кроме того, из-за гравитационного поля все физические процессы с точки зрения удалённого наблюдателя будут идти всё медленнее и медленнее гравитационного замедления времени): часы, закреплённые на радиальной координате r без вращения ( r=const, \theta=const, \varphi=const ), будут идти медленнее бесконечно удалённых в  1/\sqrt{1-r_s/r} раз. Будет казаться, что тело — в чрезвычайно сплющенном виде — будет замедляться, приближаясь к горизонту событий и, в конце концов, практически остановится. Частота сигнала будет резко падать. Длина волны испускаемого телом света будет стремительно расти, так что свет быстро превратится в радиоволны и далее в низкочастотные электромагнитные колебания, зафиксировать которые уже будет невозможно. Пересечения телом горизонта событий наблюдатель не увидит никогда и в этом смысле падение в чёрную дыру будет длиться бесконечно долго. Есть, однако, момент, начиная с которого повлиять на падающее тело удалённый наблюдатель уже не сможет. Луч света, посланный вслед этому телу, его либо вообще никогда не догонит, либо догонит уже за горизонтом. Кроме того, расстояние между телом и горизонтом событий, а также "толщина" сплющенного (с точки зрения стороннего наблюдателя) тела довольно быстро достигнут планковской длины и (с математической точки зрения) будут уменьшаться и далее. Для реального физического наблюдателя (ведущего измерения с планковской погрешностью) это равносильно тому, что масса чёрной дыры увеличится на массу падающего тела, а значит радиус горизонта событий возрастёт и падающее тело окажется "внутри" горизонта событий за конечное время.

Аналогично будет выглядеть для удалённого наблюдателя и процесс гравитационного коллапса. Вначале вещество ринется к центру, но вблизи горизонта событий оно станет резко замедляться, его излучение уйдёт в радиодиапазон, и в результате удалённый наблюдатель увидит, что звезда погасла.

А) Сверхмассивные чёрные дыры

Разросшиеся очень массивные чёрные дыры, по современным представлениям, образуют ядра большинства галактик. В их число входит и массивная чёрная дыра в ядре нашей галактики — Стрелец A*.

В настоящее время существование чёрных дыр звёздных и галактических масштабов считается большинством учёных надёжно доказанным астрономическими наблюдениями.

Американские астрономы установили, что массы сверхмассивных чёрных дыр могут быть значительно недооценены. Исследователи установили, что для того, чтобы звёзды двигались в галактике М87 (которая расположена на расстоянии 50 миллионов световых лет от Земли) так, как это наблюдается сейчас, масса центральной чёрной дыры должна быть как минимум 6,4 миллиарда солнечных масс, то есть в два раза больше нынешних оценок ядра М87, которые составляют 3 млрд солнечных масс.

Б) Первичные чёрные дыры

Первичные чёрные дыры в настоящее время носят статус гипотезы. Если в начальные моменты жизни Вселенной существовали достаточной величины отклонения от однородности гравитационного поля и плотности материи, то из них путём коллапса могли образовываться чёрные дыры. При этом их масса не ограничена снизу, как при звёздном коллапсе — их масса, вероятно, могла бы быть достаточно малой. Обнаружение первичных чёрных дыр представляет особенный интерес в связи с возможностями изучения явления испарения чёрных дыр.

В)Квантовые чёрные дыры

Предполагается, что в результате ядерных реакций могут возникать устойчивые микроскопические чёрные дыры, так называемые квантовые чёрные дыры. Для математического описания таких объектов необходима квантовая теория гравитации. Однако из общих соображенийвесьма вероятно, что спектр масс чёрных дыр дискретен и существует минимальная чёрная дыра — планковская чёрная дыра. Её масса порядка 10−5 г, радиус — 10−35 м. Комптоновская длина волны планковской чёрной дыры по порядку величины равна её гравитационному радиусу.

Таким образом, все "элементарные объекты" можно разделить на элементарные частицы (их длина волны больше их гравитационного радиуса) и чёрные дыры (длина волны меньше гравитационного радиуса). Планковская чёрная дыра является пограничным объектом, для неё можно встретить название максимон, указывающее на то, что это самая тяжёлая из возможных элементарных частиц. Другой иногда употребляемый для её обозначения термин — планкеон.

Даже если квантовые чёрные дыры существуют, время их существования крайне мало, что делает их непосредственное обнаружение очень проблематичным.

В последнее время предложены эксперименты с целью обнаружения свидетельств появления чёрных дыр в ядерных реакциях. Однако для непосредственного синтеза чёрной дыры в ускорителе необходима недостижимая на сегодня энергия 1026 эВ. По-видимому, в реакциях сверхвысоких энергий могут возникать виртуальные промежуточные чёрные дыры.

1.  Карпенков С.Х. Концепции современного естествознания, М, Высш. школа 2003г.

2.  http://nrc.edu.ru/est/pos/24.html

3.  http://www.krugosvet.ru/enc/nauka_i_tehnika/astronomiya/CHERNAYA_DIRA.html

4.  http://ru.wikipedia.org/

www.neuch.ru

Реферат - Черные дыры - Астрономия

Изложеныновейшие данные по определению масс черных дыр в рентгеновских двойных звездныхсистемах. К настоящему времени известно 10 рентгеновских двойных систем,содержащих массивные (с массой более трехсолнечных) рентгеновские источники — кандидаты в черные дыры. Замечательно, что ни у одного из них не наблюдаетсяфеноменов рентгеновского пульсара или рентгеновского барстера I типа.

Какизвестно, черной дырой называется область пространства-времени, в которойгравитационное поле настолько сильно, что даже свет не может покинуть этуобласть. Это происходит, если размеры тела меньше его гравитационного радиуса гдеG — постоянная тяготения, c — скорость света, М — масса тела. Гравитационныйрадиус Солнца 3 км, Земли — около 9 мм.

Общаятеория относительности А. Эйнштейна предсказывает удивительные свойства черныхдыр, из которых важнейшее — наличие у черной дыры горизонта событий. Дляневращающейся  черной дыры радиус горизонта событий совпадает с гравитационнымрадиусом. На горизонте событий для внешнего наблюдателя ход времениостанавливается. Космический корабль, посланный к черной дыре, с точки зрениядалекого наблюдателя, никогда не пересечет горизонт событий, а будет непрерывнозамедляться по мере приближения к нему. Все, что происходит под горизонтомсобытий, внутри черной дыры, внешний наблюдатель не видит. Космонавт в своемкорабле в принципе способен проникнуть под горизонт событий, но передатькакую-либо информацию внешнему наблюдателю он не сможет. При этом космонавт,свободно падающий под горизонтом событий, вероятно, увидит другую Вселенную, идаже свое будущее. Связано это с тем, что внутри черной дыры пространственная ивременная координаты меняются местами и путешествие в пространстве здесьзаменяется путешествием во времени.

Еще болеенеобычны свойства вращающихся черных дыр. У них горизонт событий имеет меньшийрадиус, и погружен он внутрь эргосферы — области пространства-времени, вкоторой тела должны непрерывно двигаться, подхваченные вихревым гравитационнымполем вращающейся черной дыры.

Стольнеобычные свойства черных дыр многим кажутся просто фантастическими, поэтомусуществование черных дыр в природе часто ставится под сомнение. Однако, забегаявперед, отметим, что, согласно новейшим наблюдательным данным, черные дырыдействительно существуют и им присущи удивительные свойства.

КАКОБРАЗУЮТСЯ ЧЕРНЫЕ ДЫРЫ

Известно,что если масса ядра звезды, претерпевшего изменения химического состава из-затермоядерных реакций и состоящего в основном из элементов группы железа,превышает 1,4 солнечной массы M, но не превосходит трех солнечных масс, то вконце ядерной эволюции звезды происходит коллапс (быстрое сжатие) ядра, врезультате которого внешняя оболочка звезды, не затронутая термоядернымипревращениями, сбрасывается, что приводит к явлению вспышки сверхновой звезды.Это приводит к формированию нейтронной звезды, в которой силам гравитационногопритяжения противодействует градиент давления вырожденного нейтронноговещества. Огромные силы давления вырожденного нейтронного вещества обусловленытем, что нейтроны обладают полуцелым спином и подчиняются принципу Паули,согласно которому в данном энергетическом состоянии может находиться толькоодин нейтрон.

Присжатии ядра звезды на поздней стадии эволюции температура поднимается догигантских значений — порядка миллиарда кельвинов, поэтому ядра атомовразваливаются на протоны и нейтроны. Протоны поглощают электроны, превращаютсяв нейтроны и испускают нейтрино. Нейтроны же, согласно квантовомеханическомупринципу Паули, запрещающему им находиться в одинаковых состояниях, начинаютпри сильном сжатии эффективно отталкиваться друг от друга. В случае массыколлапсирующего ядра звезды меньше 3M скорости нейтронов значительно меньшескорости света и упругость вещества, обусловленная в основном эффективнымотталкиванием нейтронов, может уравновесить силы гравитации и привести кобразованию устойчивых нейтронных звезд. В случае массивных ядер звезд (m >3M) скорости нейтронов велики, силы отталкивания между ними не могутуравновесить силы гравитации. В этом случае образующаяся нейтронная звезда,остывая коллапсирует, согласно существующим представлениям, в черную дыру.Поскольку при образовании нейтронной звезды радиус звезды уменьшается от 106 до10 км, из условия сохранения магнитного потока следует, что магнитное поленейтронной звезды радиусом 10 км может достигать очень большой величины — порядка 1012 Гс. Радиус нейтронной звезды порядка 10 км, плотность веществадостигает миллиарда тонн в кубическом сантиметре.

Хорошоизвестные радиопульсары и рентгеновские пульсары как раз и представляют собойнейтронные звезды, причем число известных радиопульсаров достигает 700.Радиопульсары наблюдаются как источники строго периодических импульсов радиоизлучения,что связано с переработкой энергии быстрого вращения звезды в направленноерадиоизлучение через посредство сильного магнитного поля. Рентгеновскиепульсары светят за счет аккреции вещества в тесных двойных звездных системах:сильное магнитное поле нейтронной звезды направляет плазму на магнитные полюсы,где она сталкивается с поверхностью нейтронной звезды и разогревается в ударнойволне до температур в десятки и сотни миллионов градусов. Это приводит кизлучению рентгеновских квантов. Поскольку ось магнитного диполя не совпадает сосью вращения нейтронной звезды, рентгеновские пятна (их называют аккреционнымиколонками) при вращении нейтронной звезды то видны для земного наблюдателя, тоэкранируются телом нейтронной звезды, что приводит к эффекту маяка и феноменурентгеновского пульсара — строго периодической переменности рентгеновскогоизлучения на временах от долей секунды до тысяч секунд. Периодические пульсациирадио- или рентгеновского излучения говорят о том, что у нейтронной звезды естьсильное магнитное поле (~ 1012 Гс), твердая поверхность и быстрое вращение(периоды радиопульсаров достигают миллисекунд времени). У черной дыры строгопериодических пульсаций излучения ожидать не приходится, поскольку, согласнопредсказанию общей теории относительности (ОТО) Эйнштейна, описывающей сильныегравитационные поля, черная дыра не имеет ни твердой поверхности, ни сильногомагнитного поля.

Длязвезд, массы железных ядер которых в конце эволюции превышают три солнечных,ОТО предсказывает неограниченное сжатие ядра (релятивистский коллапс) собразованием черной дыры. Это объясняется тем, что силы гравитации, стремящиесясжать звезду, определяются плотностью энергии, а при громадных плотностяхвещества, достигаемых при сжатии ядра звезды (порядка миллиарда тонн вкубическом сантиметре), главный вклад в плотность энергии вносит уже не энергияпокоя частиц, а энергия их движения и взаимодействия. Получается, что давлениевещества при больших плотностях как бы само «весит»: чем большедавление, тем больше плотность энергии и, следовательно, силы гравитации,стремящиеся сжать вещество. Кроме того, при сильных гравитационных полях,согласно ОТО, становятся принципиально важными эффекты искривленияпространства-времени, что также способствует неограниченному сжатию ядразвезды.

Черныедыры с очень большими массами (до миллиардов солнечных масс), по-видимому,существуют в ядрах галактик, и в последние годы в наблюдательном исследованиисверхмассивных черных дыр наметился существенный прогресс в связи сиспользованием космического телескопа им. Хаббла и применения методоврадиоинтерферометрии со сверхдлинными базами. Кроме того, теория предсказываетвозможность существования первичных черных дыр, образовавшихся в моментобразования Вселенной. Мы ограничимся рассмотрением лишь черных дыр звездноймассы, образовавшихся на конечных этапах эволюции массивных (с массами вдесятки солнечных) звезд.

МЕТОДЫОПРЕДЕЛЕНИЯ МАСС ЧЕРНЫХ ДЫР

Известно,что массу звезды можно измерить, если она входит в двойную систему. Наблюдаядвижение звезд — компонент двойной системы и применяя законы Кеплера,вытекающие из закона тяготения Ньютона, можно измерить массы звезд. При этом,поскольку размеры орбиты двойной системы в миллионы раз больше гравитационныхрадиусов компонент, для определения масс звезд, в том числе и масс нейтронныхзвезд и черных дыр в двойных системах, вполне достаточно использования законатяготения Ньютона. Мы не рассматриваем здесь случай двойных радиопульсаров, гдегромадная точность определения моментов прихода радиоимпульсов позволяетнаблюдать релятивистские эффекты (обусловленные ОТО) в движении пульсара, и поним определять с высокой точностью массы пульсаров, и даже наблюдать вековоеукорочение орбитального периода двойной системы, обусловленное излучениемпотока гравитационных волн.

Оптическаязвезда в двойной системе является не только пробным телом в гравитационном полечерной дыры, позволяющим измерить ее массу, но также своеобразным донором,поставляющим вещество на соседний релятивистский объект (нейтронную звезду иличерную дыру). Аккреция этого вещества на релятивистский объект приводит кразогреву плазмы до температур в десятки и сотни миллионов градусов и кпоявлению мощного рентгеновского источника. Теоретическое предсказание мощногоэнерговыделения при несферической аккреции вещества на черную дыру было сделанов 1964 году Я.Б. Зельдовичем и Е.Е. Салпитером. Теория дисковой аккрециивещества на релятивистский объект в тесной двойной звездной системе развита вначале 70-х годов в работах Н.И. Шакуры и Р.А. Сюняева, Дж. Прингла и М. Риса,И.Д. Новикова и К.С. Торна.

НОВЕЙШИЕДАННЫЕ

/>Обнаружена одна из ближайших к Солнечной системе черных дыр,которая образовалась в результате старения и последующей гибели звезды классаголубой гигант. И впервые довольно точно удалось вычислить ее орбиту обращениявокруг нашей Галактики – Млечный Путь.

Чернаядыра была обнаружена благодаря тому, что “пожирала” вещество соседки – болеемалой звезды.

Открытиебыло сделано в результате наблюдений радиотелескопов Национального Научногообщества (VLBA), объединенных в систему радиоинтерферометрии со сверхдлиннойбазой вместе со спутниками приема рентгеновского излучения Rossi.

Доказательствомподтверждения открытия послужили оптические снимки, сделанные на ПаломарскойОбсерватории (POSS). Это впервые, когда орбитальное движение черной дыры былоизмерено.

Результатыисследований были сообщены 13 сентября 2001 года в выпуске журнала “Природа”.

Объектназывается XTE J1118+480 и был обнаружен спутником Rossi X- 29 марта 2000 года.Более поздние наблюдения в оптическом и радиодиапазоне показали, что чернаядыра отстоит на 6,000 световых лет от Земли и представляет собой бинарнуюсистему, в которой она засасывает звездный газ из соседней звезды, формируягорячий вращающийся диск, напоминающий воронку водоворота в море. Этот процесссопровождается выбросом субатомных частиц, которые испускают радиоволны.

Большинствозвезд в нашей Галактике — Млечный Путь, находятся в пределах галактическойплоскости. Однако, также имеются шаровые звездные скопления, которые содержатсотни тысяч самых старых звезд в Галактике, и которые находятся вне плоскостиГалактики. XTE J1118+480 подобно таким шаровым скоплениям, перемещающимся соскоростью 145 километров в секунду относительно Земли, совершает замысловатыепетли вокруг Галактики. Эта черная дыра образовалась в результате смертимассивной звезды, которая по классу была на уровне голубого гиганта. Такиезвезды, когда полностью выработают свой ресурс, либо взрываются как новыезвезды, оставляя после себя ядро оболочки в виде нейтронной звезды, либозаканчивают путь “гравитационным хлопком” сжатия, образуя черную дыру.

Этачерная дыра имеет массу, больше солнечной в 7 раз. Чтобы разогнаться досуществующей скорости, ей потребовался толчок ускорения, который могла датьтолько гравитационная сила общей массы шарового звездного скопления, изкоторого она когда-то и была выброшена.

/>Расположенная неподалеку от Млечного Пути галактика Centeurus Aимеет в своем центре массивную черную дыру. Это удалось установитьмеждународной команде астрономов из Южной Европейской Обсерватории, проводившихнаблюдения с помощью телескопа VLT (Very Large Telescope) в Чили. Измеренияпозволили определить массу черной дыры — около 200 миллионов масс Солнца.Галактика Centaurus A, известная также как NGC 5128, удалена от Земли на 11миллионов световых лет. Это один из самых изученных объектов Вселенной. Какгалактика она была каталогизирована в 1847 году британским астроном ДжономГершелем (John Herschel) и уже полтора века изучается с использованием всегонабора астрономических инструментов. О том, что в центре галактики находитсячерная дыра, подозревали давно, но никто не думал, что она настолько массивна.

/>Дж.Моран (J.Moran; Астрофизический центр вКембридже, штат Массачусетс, США) утверждает, что ему удалось обнаружитьсверхмассивную черную дыру в центре весьма удаленной от нас спиральнойгалактики NGC 4258, по результатам изучения мощного мазерного излучения,создаваемом молекулами воды газовых облаков, которые подвергаются воздействиюинтенсивной радиации.

Сопоставляяскорость движения космических облаков с их расположением, Моран установил, чтоони обращаются вокруг некоего центрального объекта, подобно планетам вокругСолнца. По значениям скоростей удалось вычислить массу притягивающего центра:она оказалась близкой к 36 млн М*! Причем вся эта гигантская массасосредоточена в области, поперечник которой менее 1 светового года. Такимихарактеристиками может обладать только черная дыра.

Источникимазерного излучения находятся на окружающей галактику NGC 4258 внешнейпериферии диска (или сферы — на этот счет среди астрофизиков нет единогомнения). Однако на столь значительных расстояниях, как в данном случае,наиболее вероятна, по общему мнению, форма диска. Мазеры располагаются там поS-образной кривой; такой изгиб, считает Моран, вызван давлением рентгеновскогоизлучения от скопления сверхраскаленного газа, находящегося в центре даннойсистемы.

Изучениедвижения мощных мазеров поможет, по мнению Моргана, поиску свермассивных черныхдыр. Ближайшим кандидатом он считает галактику NGC 1068, в которой, судя понаблюдаемым скоростям мазеров, может находиться черная дыра с массой,превышающей солнечную в 10 млн раз.

Что внутри у черной дыры

/>

Чернойдырой называется область пространства-времени, ограниченная горизонтом, то естьповерхностью, которую даже свет не может покинуть вследствие действиягравитационных сил. Точка зрения теории относительности (ОТО) на черные дыры (иих внутреннюю структуру) состоит в следующем. Мы (по определению) не можемполучить никакой информации из черной дыры, поэтому она для нас именно ЧЕРНАЯ,то есть в рамках этого подхода вопрос о внутренней структуре черной дыры неявляется полностью корректным, т.к. мы не можем произвести соответствующиеизмерения, а можем лишь предполагать что-то, не получая непосредственнойинформацию оттуда.

Черная дыра (как идея) первоначально появилась в 18 веке благодаря работам Митчеллаи Лапласа как предсказание в ньютоновской теории. Затем уже — какматематическое решение ОТО. Для наиболее простой оценки радиуса горизонтачерной дыры (как у Митчелла и Лапласа) достаточно лишь положить вторуюкосмическую скорость равной скорости света. Для случае вращающихся и заряженныхчерных дыр решения получаются уже только в рамках ОТО.

Существуют или нет черные дыры во Вселенной, или, все-таки, это лишь наша играума и математики — вопрос пока остается открытым. Сейчас есть более 10кандидатов в черные дыры в тесных двойных системах и несколько десятковкандидатов в сверхмассивные черные дыры в ядрах галактик (в том числе и нашей).Однако, это лишь кандидаты, хотя и очень хорошие, и Нобелевская премия заоткрытие черных дыр пока никому не вручена. Но, оставив вопрос о физическомобосновании, никто не запрещает продлить решение внутрь черной дыры.Оказывается, что решение гладко продолжается под горизонт и заканчивается вточке, в которой одна из важнейших характеристик пространства — кривизна — становится равной бесконечности (как говорят «расходится»). Такоеповедение и называется сингулярностью, то есть областью, в которой не работаетне только физика, но и математика.

  В какой-то мере исследование сингулярностейможно считать физичным и в рамках ОТО, особенно в свете недавних результатов оконечной стадии гравитационного коллапса. Дело в том, что несколько десятилетийназад была сформулирована «гипотеза космической цензуры», котораяутверждает, что в обыкновенной Вселенной сингулярность может существовать, лишьзакрытая от нас горизонтом, то есть в виде черной дыры. Так вот, недавно в ходечисленного анализа разных сценариев гравитационного коллапса было установлено,что при определенных начальных условиях (вполне физических, надо отметить)процесс гравитационного коллапса может закончится возникновением«голой» сингулярности. В рамках ОТО аналитического ответа на этотвопрос пока нет.

У ОТО есть один очень большой недостаток — она не поддается процедуреквантования, в отличии от теорий остальных физических взаимодействий(электромагнитного, слабого и сильного). Поэтому создаются так называемыетеории суперобъединения, в которые входит не сама ОТО, а какой-либо (еще доконца не ясно, какой) вариант эффективной теории гравитации, включающий ОТО. Сточки зрения идей квантовой механики, лежащей в основе объединениявзаимодействий, вопрос о внутренней структуре вполне правомерен, потому что всепространство должно описываться одной характеристикой — волновой функцией. Врамках этого нового подхода были открыты (в математическом плане, конечно)новые типы сингулярностей, которых нет в ОТО. Можно выделить характеристикисингулярности, например, по скорости, с которой кривизна расходится. В какой-томере и горизонт событий черной дыры можно считать сингулярностью, но неистинной, потому что кривизна в этом случае конечна (расходится лишь одинкоэффициент), более того, эту сингулярность можно убрать после соответствующегопреобразования координат.

Черныедыры сливаются

/>    Ученые открыли, что в одной галактике вполнемогут сосуществовать две сверхмассивные черные дыры, которые в конечном итогеобязательно сольются в одну. Это событие будет сопровождаться такими выбросамиэнергии, что звезды будут вытеснены из центра галактики, где будет бушеватьрадиоактивное и гравитационное цунами.    Ученые давно знали, что в галактике NGC 6240существует два ярких пятна, что зовутся ядрами. Поскольку центр галактикизакрыт от обзора пылью, ученые направили в ту сторону телескоп Чандра, внадежде определить, является ли любое из этих ядер активной сверхмассивнойчерной дырой. Каково же было их удивление, когда они поняли, что оба объектаявляются активными черными дырами.  

/>

/>

Странствующая пара: черная дыра и ее звезда (слева — путь через Млечный путь).

 Этагалактика находится от нас на расстоянии около 400 световых лет — довольноблизко по космическим масштабам и образовалась она в результате столкновениядвух галактик, которое началось 30 миллионов лет назад. Астрономы считают, чтослияние галактик на самом деле происходит очень мирно. Поскольку звездырасположены очень редко, они почти не «ощущают» происходящего. Сейчаспока центры сталкивающихся галактик только слегка гравитационно взаимодействуют.Но постепенно расстояние, равное сейчас 3 тысячам световых лет, будетуменьшаться. И тогда они неизбежно начнут взаимодействовать. Звезды, чтовращаются вокруг центров, ускорят свое движение и вылетят из центра галактики.Когда черные дыры приблизятся на расстояние около одного светового года, они начнутсливаться. Тогда газ, вращающийся вокруг черных дыр разогреется до такихтемператур, что начнет излучать радиоактивные волны. В конце концов полерадиоактивности уничтожит все объекты, находящиеся вокруг ядер, что даствозможность обозревать ядро. Ни одна звезда не уцелеет в поле влияния болеемассивной черной дыры после того, как они сольются.    Ученые также построили компьютерную версию того,что происходит сейчас в галактике NGC 362. До этого астрономы никогда не виделидвойных черных дыр. Это наводило их на мысли, что такого явления, как двойнаячерная дыра не бывает, что черные дыры сливаются в одну. Недавно они получилидоказательство этого: джеты, испускаемые черными дырами в объекте, известномпод номером NGC 362, сместились. Это говорит о том, что черные дыры всталкивающихся галактиках «почувствовали» существование друг друга.

 

Списокиспользованной литературы:

1.Новиков И.Д. Черные дыры и Вселенная. М.: Мол. гвардия, 1985.

2.Липунов В.М. В мире двойных звезд. М.: Квант, 1986.

3.Черепащук А.М. Массивные тесные двойные системы. Земля и Вселенная. 1985. № 1.

 С.16-24.

4. ЛютыйВ.М., Черепащук А.М. Оптические исследования рентгеновских двойных систем //Там же. 1986. № 5. С. 18-25.

5.Черепащук А.М. Черные дыры: новые данные // Там же. 1992. № 3. С. 23-30.

6.Гинзбург В.Л. О физике и астрофизике. М.: Бюро «Квантум», 1995. 106с.

www.ronl.ru

Реферат : Черные дыры (работа 1)

Исторический факультет

Реферат по КСЕ на тему :

"Черные дыры"

Оглавление

ВВЕДЕНИЕ

1. История идеи о черных дырах

2. Формирование черных дыр

3. Свойства черных дыр

4. Поиски черных дыр

5. Термодинамика и испарение чёрных дыр

6. Падение в чёрную дыру

7. Виды черных дыр

Заключение

Список литературы

ВВЕДЕНИЕ

Черная дыра – область пространства, в которой гравитационное притяжение настолько сильно, что ни вещество, ни излучение не могут эту область покинуть. Для находящихся там тел вторая космическая скорость (скорость убегания) должна была бы превышать скорость света, что невозможно, поскольку ни вещество, ни излучение не могут двигаться быстрее света. Поэтому из черной дыры ничто не может вылететь. Границу области, за которую не выходит свет, называют "горизонтом событий", или просто "горизонтом" черной дыры.

Сущность гипотезы образования черных дыр заключается в следующем: если некоторая масса вещества оказывается в сравнительно небольшом объеме, критическом для нее, то под действием сил собственного тяготения такое вещество начинает неудержимо сжиматься. Наступает своеобразная гравитационная катастрофа — гравитационный коллапс. В результате сжатия растет концентрация вещества. Наконец, наступает момент, когда сила тяготения на ее поверхности становится столь велика, что для ее преодоления надо развить скорость, превосходящую скорость света. Такие скорости практически недостижимы, и из замкнутого пространства черной дыры не могут вырваться ни лучи света, ни частицы материи. Излучение черной дыры оказывается "запертым" гравитацией. Черные дыры способны только поглощать излучение

Чтобы поле тяготения смогло "запереть" излучение, создающая это поле, масса (M) должна сжаться до объема с радиусом, меньшим "гравитационного радиуса" rg = 2GM/c2 . По этой причине создать и исследовать черную дыру в лаборатории практически невозможно: чтобы тело любой разумной массы (даже в миллионы тонн) стало черной дырой, его нужно сжать до размера, меньшего, чем размер протона или нейтрона, поэтому свойства черных дыр пока изучаются только теоретически.

Однако расчеты показывают, что тела астрономического масштаба (например, массивные звезды) после истощения в них термоядерного топлива могут под действием собственного тяготения сжиматься до размера своего гравитационного радиуса. Поиск таких объектов ведется уже более 40 лет, и сейчас можно с большой уверенностью указать несколько весьма вероятных кандидатов в черные дыры с массами от единиц до миллиардов масс Солнца. Однако их изучение затруднено огромными расстояниями от Земли. И хотя сам факт существования черных дыр уже трудно подвергать сомнению, практическое изучение их свойств еще впереди.

  1. История идеи о черных дырах.

Английский геофизик и астроном Джон Мичелл предположил, что в природе могут существовать столь массивные звезды, что даже луч света не способен покинуть их поверхность. Используя законы Ньютона, Мичелл рассчитал, что если бы звезда с массой Солнца имела радиус не более 3 км, то даже частицы света (которые он, вслед за Ньютоном, считал корпускулами) не могли бы улететь далеко от такой звезды. Поэтому такая звезда казалась бы издалека абсолютно темной. Эту идею Мичелл представил на заседании Лондонского Королевского общества 27 ноября 1783. Так родилась концепция "ньютоновской" черной дыры.

Такую же идею высказал в своей книге Система мира (1796) французский математик и астроном Пьер Симон Лаплас. Простой расчет позволил ему написать: "Светящаяся звезда с плотностью, равной плотности Земли, и диаметром, в 250 раз большим диаметра Солнца, не дает ни одному световому лучу достичь нас из-за своего тяготения; поэтому возможно, что самые яркие небесные тела во Вселенной оказываются по этой причине невидимыми". Однако масса такой звезды должна была бы в десятки миллионов раз превосходить солнечную. А поскольку дальнейшие астрономические измерения показали, что массы реальных звезд не очень сильно отличаются от солнечной, идея Митчела и Лапласа о черных дырах была забыта.

На протяжении XIX века идея тел, невидимых вследствие своей массивности, не вызывала большого интереса у учёных. Это было связано с тем, что в рамках классической физики скорость света не имеет фундаментального значения. Однако в конце XIX — начале XX века было установлено, что сформулированные Дж.Максвеллом законы электродинамики, с одной стороны, выполняются во всех инерциальных системах отсчёта, а с другой стороны, не обладают инвариантностью относительно преобразований Галилея. Это означало, что сложившиеся в физике представления о характере перехода от одной инерциальной системы отсчёта к другой нуждаются в значительной корректировке.

В ходе дальнейшей разработки электродинамики Г.Лоренцем была предложена новая система преобразований пространственно-временных координат (известных сегодня как преобразования Лоренца), относительно которых уравнения Максвелла оставались инвариантными. Развивая идеи Лоренца, А.Пуанкаре предположил, что все прочие физические законы также инвариантны относительно этих преобразований.

В 1905 году А.Эйнштейн использовал концепции Лоренца и Пуанкаре в своей специальной теории относительности (СТО), в которой роль закона преобразования инерциальных систем отсчёта окончательно перешла от преобразований Галилея к преобразованиям Лоренца. Классическая (галилеевски-инвариантная) механика была при этом заменена на новую, лоренц-инвариантную релятивистскую механику. В рамках последней скорость света оказалась предельной скоростью, которую может развить физическое тело, что радикально изменило значение чёрных дыр в теоретической физике.

Однако ньютоновская теория тяготения (на которой базировалась первоначальная теория чёрных дыр) не является лоренц-инвариантной. Поэтому она не может быть применена к телам, движущимся с околосветовыми и световыми скоростями. Лишённая этого недостатка релятивистская теория тяготения была создана, в основном, Эйнштейном (сформулировавшим её окончательно к концу 1915 года) и получила название общей теории относительности (ОТО).

Во второй раз ученые "столкнулись" с черными дырами в 1916, когда немецкий астроном Карл Шварцшильд получил первое точное решение уравнений ОТО. Оказалось, что пустое пространство вокруг массивной точки обладает особенностью на расстоянии rg от нее; именно поэтому величину rg часто называют "шварцшильдовским радиусом", а соответствующую поверхность (горизонт событий) – шварцшильдовской поверхностью. В следующие полвека усилиями теоретиков были выяснены многие удивительные особенности решения Шварцшильда, но как реальный объект исследования черные дыры еще не рассматривались.

Правда, в 1930-е, после создания квантовой механики и открытия нейтрона, физики исследовали возможность формирования компактных объектов (белых карликов и нейтронных звезд)как продуктов эволюции нормальных звезд. Оценки показали, что после истощения в недрах звезды ядерного топлива, ее ядро может сжаться превратиться в маленький и очень плотный белый карлик или же в еще более плотную и совсем крохотную нейтронную звезду.

В 1934 работавшие в США европейские астрономы Фриц Цвикки и Вальтер Бааде выдвинули гипотезу – вспышки сверхновых представляют собой совершенно особый тип звездных взрывов, вызванных катастрофическим сжатием ядра звезды. Так впервые родилась идея о возможности наблюдать коллапс звезды. Бааде и Цвикки высказали предположение, что в результате взрыва сверхновой образуется сверхплотная вырожденная звезда, состоящая из нейтронов. Расчеты показали, что такие объекты действительно могут рождаться и быть устойчивыми, но лишь при умеренной начальной массе звезды. Но если масса звезды превышает три массы Солнца, то уже ничто не сможет остановить ее катастрофического коллапса.

В 1939 американские физики Роберт Оппенгеймер и Хартланд Снайдер обосновали вывод, что ядро массивной звезды должно безостановочно коллапсировать в предельно малый объект, свойства пространства вокруг которого (если он не вращается) описываются решением Шварцшильда. Иными словами, ядро массивной звезды в конце ее эволюции должно стремительно сжиматься и уходить под горизонт событий, становясь черной дырой. Но поскольку такой объект (как говорили тогда, "коллапсар", или "застывшая звезда") не излучает электромагнитные волны, то астрономы понимали, что обнаружить его в космосе будет невероятно трудно и поэтому долго не приступали к поиску.

Поскольку никакой носитель информации не способен выйти из-под горизонта событий, внутренняя часть черной дыры причинно не связана с остальной Вселенной, происходящие внутри черной дыры физические процессы не могут влиять на процессы вне ее. В то же время, вещество и излучение, падающие снаружи на черную дыру, свободно проникают внутрь через горизонт. Можно сказать, что черная дыра все поглощает и ничего не выпускает. По этой причине и родился термин "черная дыра", предложенный в 1967 американским физиком Джоном Арчибальдом Уилером.

  1. Формирование черных дыр

Самый очевидный путь образования черной дыры – коллапс ядра массивной звезды. Пока в недрах звезды не истощился запас ядерного топлива, ее равновесие поддерживается за счет термоядерных реакций (превращение водорода в гелий, затем в углерод, и т.д., вплоть до железа у наиболее массивных звезд). Выделяющееся при этом тепло компенсирует потерю энергии, уходящей от звезды с ее излучением и звездным ветром. Термоядерные реакции поддерживают высокое давление в недрах звезды, препятствуя ее сжатию под действием собственной гравитации. Однако со временем ядерное топливо истощается и звезда начинает сжиматься.

Наиболее быстро сжимается ядро звезды, при этом оно сильно разогревается (его гравитационная энергия переходит в тепло) и нагревает окружающую его оболочку. В итоге звезда теряет свои наружные слои в виде медленно расширяющейся планетарной туманности или катастрофически сброшенной оболочки сверхновой. А судьба сжимающегося ядра зависит от его массы. Расчеты показывают, что если масса ядра звезды не превосходит трех масс Солнца, то она "выигрывает битву с гравитацией": его сжатие будет остановлено давлением вырожденного вещества, и звезда превратится в белый карлик или нейтронную звезду. Но если масса ядра звезды более трех солнечных, то уже ничто не сможет остановить его катастрофический коллапс, и оно быстро уйдет под горизонт событий, став черной дырой. Как следует из формулы для rg, черная дыра с массой 3 солнечных имеет гравитационный радиус 8,8 км.

Астрономические наблюдения хорошо согласуются с этими расчетами: все компоненты двойных звездных систем, проявляющие свойства черных дыр (в 2005 их известно около 20), имеют массы от 4 до 16 масс Солнца. Теория звездной эволюции указывает, что за 12 млрд. лет существования нашей Галактики, содержащей порядка 100 млрд. звезд, в результате коллапса наиболее массивных из них должно было образоваться несколько десятков миллионов черных дыр. К тому же, черные дыры очень большой массы (от миллионов до миллиардов масс Солнца)могут находиться в ядрах крупных галактик, в том числе, и нашей. Об этом свидетельствуют астрономические наблюдения, хотя пути формирования этих гигантских черных дыр не вполне ясны.

Если в нашу эпоху высокая плотность вещества, необходимая для рождения черной дыры, может возникнуть лишь в сжимающихся ядрах массивных звезд, то в далеком прошлом, сразу после Большого взрыва, с которого около 14 млрд. лет назад началось расширение Вселенной, высокая плотность материи была повсюду. Поэтому небольшие флуктуации плотности в ту эпоху могли приводить к рождению черных дыр любой массы, в том числе и малой. Но самые маленькие из них в силу квантовых эффектов должны были испариться, потеряв свою массу в виде излучения и потоков частиц. "Первичные черные дыры" с массой более 1012 кг могли сохраниться до наших дней. Самые мелкие из них, массой 1012 кг (как у небольшого астероида), должны иметь размер порядка 10–15 м (как у протона или нейтрона).

Наконец, существует гипотетическая возможность рождения микроскопических черных дыр при взаимных соударениях быстрых элементарных частиц. Таков один из прогнозов теории струн – одной из конкурирующих сейчас физических теорий строения материи. Теория струн предсказывает, что пространство имеет более трех измерений. Гравитация, в отличие от прочих сил, должна распространяться по всем этим измерениям и поэтому существенно усиливаться на коротких расстояниях. При мощном столкновении двух частиц (например, протонов) они могут сжаться достаточно сильно, чтобы родилась микроскопическая черная дыра. После этого она почти мгновенно разрушится ("испарится"), но наблюдение за этим процессом представляет для физики большой интерес, поскольку, испаряясь, дыра будет испускать все существующие в природе виды частиц. Если гипотеза теории струн верна, то рождение таких черных дыр может происходить при столкновениях энергичных частиц космических лучей с атомами земной атмосферы, а также в наиболее мощных ускорителях элементарных частиц.

  1. Свойства черных дыр

Вблизи черной дыры напряженность гравитационного поля так велика, что физические процессы там можно описывать только с помощью релятивистской теории тяготения. Согласно ОТО, пространство и время искривляются гравитационным полем массивных тел, причем наибольшее искривление происходит вблизи черных дыр. Когда физики говорят об интервалах времени и пространства, они имеют в виду числа, считанные с каких-либо физических часов и линеек. Например, роль часов может играть молекула с определенной частотой колебаний, количество которых между двумя событиями можно называть "интервалом времени".

Важно, что гравитация действует на все физические системы одинаково: все часы показывают, что время замедляется, а все линейки, что пространство растягивается вблизи черной дыры. Это означает, что черная дыра искривляет вокруг себя геометрию пространства и времени. Вдали от черной дыры это искривление мало, а вблизи так велико, что лучи света могут двигаться вокруг нее по окружности. Вдали от черной дыры ее поле тяготения в точности описывается теорией Ньютона для тела такой же массы, но вблизи гравитация становится значительно сильнее, чем предсказывает ньютонова теория.

Если бы можно было наблюдать в телескоп за звездой в момент ее превращения в черную дыру, то сначала было бы видно, как звезда все быстрее и быстрее сжимается, но по мере приближения ее поверхности к гравитационному радиусу сжатие начнет замедляться, пока не остановится совсем. При этом приходящий от звезды свет будет слабеть и краснеть пока окончательно не потухнет. Это происходит потому, что, преодолевая силу тяжести, фотоны теряют энергию и им требуется все больше времени, чтобы дойти до нас. Когда поверхность звезды достигнет гравитационного радиуса, покинувшему ее свету потребуется бесконечное время, чтобы достичь любого наблюдателя, даже расположенного сравнительно близко к звезде (и при этом фотоны полностью потеряют свою энергию). Следовательно, мы никогда не дождемся этого момента и, тем более, не увидим того, что происходит со звездой под горизонтом событий, но теоретически этот процесс исследовать можно.

Расчет идеализированного сферического коллапса показывает, что за короткое время вещество под горизонтом событий сжимается в точку, где достигаются бесконечно большие значения плотности и тяготения. Такую точку называют "сингулярностью". Более того, математический анализ показывает, что если возник горизонт событий, то даже несферический коллапс приводит к сингулярности. Однако, все это верно лишь в том случае, если общая теория относительности применима вплоть до очень малых пространственных масштабов, в чем пока нет уверенности. В микромире действуют квантовые законы, а квантовая теория гравитации еще не создана. Ясно, что квантовые эффекты не могут остановить сжатие звезды в черную дыру, а вот предотвратить появление сингулярности они могли бы.

Изучая фундаментальные свойства материи и пространства-времени, физики считают исследование черных дыр одним из важнейших направлений, поскольку вблизи черных дыр проявляются скрытые свойства гравитации. Для поведения вещества и излучения в слабых гравитационных полях различные теории тяготения дают почти неразличимые прогнозы, однако в сильных полях, характерных для черных дыр, предсказания различных теорий существенно расходятся, что дает ключ к выявлению лучшей среди них. В рамках наиболее популярной сейчас теории гравитации – ОТО Эйнштейна – свойства черных дыр изучены весьма подробно. Вот некоторые важнейшие из них:

1) Вблизи черной дыры время течет медленнее, чем вдали от нее. Если удаленный наблюдатель бросит в сторону черной дыры зажженный фонарь, то увидит, как фонарь будет падать все быстрее и быстрее, но затем, приближаясь к поверхности Шварцшильда, начнет замедляться, а его свет будет тускнеть и краснеть (поскольку замедлится темп колебания всех его атомов и молекул). С точки зрения далекого наблюдателя фонарь практически остановится и станет невидим, так и не сумев пересечь поверхность черной дыры. Но если бы наблюдатель сам прыгнул туда вместе с фонарем, то он за короткое время пересек бы поверхность Шварцшильда и упал к центру черной дыры, будучи при этом разорван ее мощными приливными гравитационными силами, возникающими из-за разницы притяжения на разных расстояниях от центра.

2) Каким бы сложным ни было исходное тело, после его сжатия в черную дыру внешний наблюдатель может определить только три его параметра: полную массу, момент импульса (связанный с вращением) и электрический заряд. Все остальные особенности тела (форма, распределение плотности, химический состав и т.д.)в ходе коллапса "стираются". То, что для стороннего наблюдателя структура черной дыры выглядит чрезвычайно простой, Джон Уилер выразил шутливым утверждением: "Черная дыра не имеет волос".

В процессе коллапса звезды в черную дыру за малую долю секунды (по часам удаленного наблюдателя) все ее внешние особенности, связанные с исходной неоднородностью, излучаются в виде гравитационных и электромагнитных волн. Образовавшаяся стационарная черная дыра "забывает" всю информацию об исходной звезде, кроме трех величин: полной массы, момента импульса (связанного с вращением) и электрического заряда. Изучая черную дыру, уже невозможно узнать, состояла ли исходная звезда из вещества или антивещества, была ли она вытянутой или сплюснутой и т.п. В реальных астрофизических условиях заряженная черная дыра будет притягивать к себе из межзвездной среды частицы противоположного знака, и ее заряд быстро станет нулевым. Оставшийся стационарный объект либо будет невращающейся "шварцшильдовой черной дырой", которая характеризуется только массой, либо вращающейся "керровской черной дырой", которая характеризуется массой и моментом импульса.

3) Если исходное тело вращалось, то вокруг черной дыры сохраняется "вихревое" гравитационное поле, увлекающее все соседние тела во вращательное движение вокруг нее. Поле тяготения вращающейся черной дыры называют полем Керра (математик Рой Керр в 1963 нашел решение соответствующих уравнений). Этот эффект характерен не только для черной дыры, но для любого вращающегося тела, даже для Земли. По этой причине размещенный на искусственном спутнике Земли свободно вращающийся гироскоп испытывает медленную прецессию относительно далеких звезд. Вблизи Земли этот эффект едва заметен, но вблизи черной дыры он выражен гораздо сильнее: по скорости прецессии гироскопа можно измерить момент импульса черной дыры, хотя сама она не видна.

Чем ближе мы подходим к горизонту черной дыры, тем сильнее становится эффект увлечения "вихревым полем". Прежде чем достичь горизонта, мы окажемся на поверхности, где увлечение становится настолько сильным, что ни один наблюдатель не может оставаться неподвижным (т. е. быть "статическим") относительно далеких звезд. На этой поверхности (называемой пределом статичности) и внутри нее все объекты должны двигаться по орбите вокруг черной дыры в том же направлении, в котором вращается сама дыра. Независимо от того, какую мощность развивают его реактивные двигатели, наблюдатель внутри предела статичности никогда не сможет остановить свое вращательное движение относительно далеких звезд.

Предел статичности всюду лежит вне горизонта и соприкасается с ним лишь в двух точках, там, где они оба пересекаются с осью вращения черной дыры. Область пространства-времени, расположенная между горизонтом и пределом статичности, называется эргосферой. Объект, попавший в эргосферу, еще может вырваться наружу. Поэтому, хотя черная дыра "все съедает и ничего не отпускает", тем не менее, возможен обмен энергией между ней и внешним пространством. Например, пролетающие через эргосферу частицы или кванты могут уносить энергию ее вращения.

4) Все вещество внутри горизонта событий черной дыры непременно падает к ее центру и образует сингулярность с бесконечно большой плотностью. Английский физик Стивен Хоукинг определяет сингулярность как "место, где разрушается классическая концепция пространства и времени так же, как и все известные законы физики, поскольку все они формулируются на основе классического пространства-времени".

5) Кроме этого С.Хоукинг открыл возможность очень медленного самопроизвольного квантового "испарения" черных дыр. В 1974 он доказал, что черные дыры (не только вращающиеся, но любые) могут испускать вещество и излучение, однако заметно это будет лишь в том случае, если масса самой дыры относительно невелика. Мощное гравитационное поле вблизи черной дыры должно рождать пары частица-античастица. Одна из частиц каждой пары поглощается дырой, а вторая испускается наружу. Например, черная дыра с массой 1012 кг должна вести себя как тело с температурой 1011 К, излучающее очень жесткие гамма-кванты и частицы. Идея об "испарении" черных дыр полностью противоречит классическому представлению о них как о телах, не способных излучать.

  1. Поиски черных дыр

Расчеты в рамках ОТО указывают лишь на возможность существования черных дыр, но отнюдь не доказывают их наличия в реальном мире, открытие черной дыры стало бы важным шагом в развитии физики. Поиск изолированных черных дыр в космосе невероятно труден: требуется заметить маленький темный объект на фоне космической черноты. Но есть надежда обнаружить черную дыру по ее взаимодействию с окружающими астрономическими телами, по ее характерному влиянию на них.

Учитывая важнейшие свойства черных дыр (массивность, компактность и невидимость) астрономы постепенно выработали стратегию их поиска. Проще всего обнаружить черную дыру по ее гравитационному взаимодействию с окружающим веществом, например, с близкими звездами. Попытки обнаружить невидимые массивные спутники в двойных звездах не увенчались успехом. Но после запуска на орбиту рентгеновских телескопов выяснилось, что черные дыры активно проявляют себя в тесных двойных системах, где они отбирают вещество у соседней звезды и поглощают его, нагревая при этом до температуры в миллионы градусов и делая его на короткое время источником рентгеновского излучения.

Поскольку в двойной системе черная дыра в паре с нормальной звездой обращается вокруг общего центра массы, используя эффект Доплера, удается измерить скорость звезды и определить массу ее невидимого компаньона. Астрономы выявили уже несколько десятков двойных систем, где масса невидимого компаньона превосходит 3 массы Солнца и заметны характерные проявления активности вещества, движущегося вокруг компактного объекта, например, очень быстрые колебания яркости потоков горячего газа, стремительно вращающегося вокруг невидимого тела.

Особенно перспективной считают рентгеновскую двойную звезду V404 Лебедя, масса невидимого компонента которой оценивается не менее, чем в 6 масс Солнца. Другие кандидаты в черные дыры находятся в двойных системах Лебедь X-1, LMC X-3, V616 Единорога, QZ Лисички, а также в рентгеновских новых Змееносец 1977, Муха 1981 и Скорпион 1994. Почти все они расположены в пределах нашей Галактики, а система LMC X-3 – в близкой к нам галактике Большое Магелланово Облако.

Другим направлением поиска черных дыр служит изучение ядер галактик. В них скапливаются и уплотняются огромные массы вещества, сталкиваются и сливаются звезды, поэтому там могут формироваться сверхмассивные черные дыры, превосходящие по массе Солнце в миллионы раз. Они притягивают к себе окружающие звезды, создавая в центре галактики пик яркости. Они разрушают близко подлетающие к ним звезды, вещество которых образует вокруг черной дыры аккреционный диск и частично выбрасывается вдоль оси диска в виде быстрых струй и потоков частиц. Это не умозрительная теория, а процессы, реально наблюдаемые в ядрах некоторых галактик и указывающие на присутствие в них черных дыр с массами до нескольких миллиардов масс Солнца. В последнее время получены весьма убедительные доказательства того, что и в центре нашей Галактики есть черная дыра с массой около 2,5 млн масс Солнца.

Вполне вероятно, что самые мощные процессы энерговыделения во Вселенной происходят с участием черных дыр. Именно их считают источником активности в ядрах квазаров – молодых массивных галактик. Именно их рождение, как полагают астрофизики, знаменуется самыми мощными взрывами во Вселенной, проявляющимися как гамма-всплески.

  1. Термодинамика и испарение чёрных дыр

Представления о чёрной дыре как об абсолютно поглощающем объекте были скорректированы С.Хокингом в 1975 году. Изучая поведение квантовых полей вблизи чёрной дыры, он предсказал, что чёрная дыра обязательно излучает частицы во внешнее пространство и тем самым теряет массу. Этот эффект называется излучением (испарением) Хокинга. Упрощённо говоря, гравитационное поле поляризует вакуум, в результате чего возможно образование не только виртуальных, но и реальных пар частица-античастица. Одна из частиц, оказавшаяся чуть ниже горизонта событий, падает внутрь чёрной дыры, а другая, оказавшаяся чуть выше горизонта, улетает, унося энергию (то есть часть массы) чёрной дыры. Мощность излучения чёрной дыры равна

.

Состав излучения зависит от размера чёрной дыры: для больших чёрных дыр это в основном фотоны и нейтрино, а в спектре лёгких чёрных дыр начинают присутствовать и тяжёлые частицы. Спектр хокинговского излучения для безмассовых полей оказался строго совпадающим с излучением абсолютно чёрного тела, что позволило приписать чёрной дыре температуру

,

где — редуцированная постоянная Планка, c — скорость света, k — постоянная Больцмана, G — гравитационная постоянная, M — масса чёрной дыры.

На этой основе была построена термодинамика чёрных дыр, в том числе введено ключевое понятие энтропии чёрной дыры, которая оказалась пропорциональна площади её горизонта событий:

,

где A — площадь горизонта событий.

Скорость испарения чёрной дыры тем больше, чем меньше её размеры. Испарением чёрных дыр звёздных (и тем более галактических) масштабов можно пренебречь, однако для первичных и в особенности для квантовых чёрных дыр процессы испарения становятся центральными.

За счёт испарения все чёрные дыры теряют массу и время их жизни оказывается конечным:

.

При этом интенсивность испарения нарастает лавинообразно, и заключительный этап эволюции носит характер взрыва, например, чёрная дыра массой 1000 тонн испарится за время порядка 84 секунды, выделив энергию, равную взрыву примерно десяти миллионов атомных бомб средней мощности.

В то же время, большие чёрные дыры, температура которых ниже температуры реликтового излучения Вселенной (2,7К), на современном этапе развития Вселенной могут только расти, так как испускаемое ими излучение имеет меньшую энергию, чем поглощаемое. Данный процесс продлится до тех пор, пока фотонный газ реликтового излучения не остынет в результате расширения Вселенной.

Без квантовой теории гравитации невозможно описать заключительный этап испарения, когда чёрные дыры становятся микроскопическими (квантовыми). Согласно некоторым теориям, после испарения должен оставаться "огарок" — минимальная планковская чёрная дыра.

  1. Падение в чёрную дыру

Представим себе, как должно выглядеть падение в шварцшильдовскую чёрную дыру. Тело, свободно падающее под действием сил гравитации, находится в состоянии невесомости. Падающее тело будет испытывать действие приливных сил, растягивающих тело в радиальном направлении и сжимающих — в тангенциальном. Величина этих сил растёт и стремится к бесконечности при . В некоторый момент собственного времени тело пересечёт горизонт событий. С точки зрения наблюдателя, падающего вместе с телом, этот момент ничем не выделен, однако возврата теперь нет. Тело оказывается в горловине (её радиус в точке, где находится тело и есть ), сжимающейся столь быстро, что улететь из неё до момента окончательного схлопывания (это и есть сингулярность) уже нельзя, даже двигаясь со скоростью света.

Рассмотрим теперь процесс падения тела в чёрную дыру с точки зрения удалённого наблюдателя. Пусть, например, тело будет светящимся и, кроме того, будет посылать сигналы назад с определённой частотой. Вначале удалённый наблюдатель будет видеть, что тело, находясь в процессе свободного падения, постепенно разгоняется под действием сил тяжести по направлению к центру. Цвет тела не изменяется, частота детектируемых сигналов практически постоянна. Однако, когда тело начнёт приближаться к горизонту событий, фотоны, идущие от тела, будут испытывать всё большее и большее гравитационное красное смещение. Кроме того, из-за гравитационного поля все физические процессы с точки зрения удалённого наблюдателя будут идти всё медленнее и медленнее гравитационного замедления времени): часы, закреплённые на радиальной координате r без вращения (), будут идти медленнее бесконечно удалённых в раз. Будет казаться, что тело — в чрезвычайно сплющенном виде — будет замедляться, приближаясь к горизонту событий и, в конце концов, практически остановится. Частота сигнала будет резко падать. Длина волны испускаемого телом света будет стремительно расти, так что свет быстро превратится в радиоволны и далее в низкочастотные электромагнитные колебания, зафиксировать которые уже будет невозможно. Пересечения телом горизонта событий наблюдатель не увидит никогда и в этом смысле падение в чёрную дыру будет длиться бесконечно долго. Есть, однако, момент, начиная с которого повлиять на падающее тело удалённый наблюдатель уже не сможет. Луч света, посланный вслед этому телу, его либо вообще никогда не догонит, либо догонит уже за горизонтом. Кроме того, расстояние между телом и горизонтом событий, а также "толщина" сплющенного (с точки зрения стороннего наблюдателя) тела довольно быстро достигнут планковской длины и (с математической точки зрения) будут уменьшаться и далее. Для реального физического наблюдателя (ведущего измерения с планковской погрешностью) это равносильно тому, что масса чёрной дыры увеличится на массу падающего тела, а значит радиус горизонта событий возрастёт и падающее тело окажется "внутри" горизонта событий за конечное время.

Аналогично будет выглядеть для удалённого наблюдателя и процесс гравитационного коллапса. Вначале вещество ринется к центру, но вблизи горизонта событий оно станет резко замедляться, его излучение уйдёт в радиодиапазон, и в результате удалённый наблюдатель увидит, что звезда погасла.

  1. Виды черных дыр

А) Сверхмассивные чёрные дыры

Разросшиеся очень массивные чёрные дыры, по современным представлениям, образуют ядра большинства галактик. В их число входит и массивная чёрная дыра в ядре нашей галактики — Стрелец A*.

В настоящее время существование чёрных дыр звёздных и галактических масштабов считается большинством учёных надёжно доказанным астрономическими наблюдениями.

Американские астрономы установили, что массы сверхмассивных чёрных дыр могут быть значительно недооценены. Исследователи установили, что для того, чтобы звёзды двигались в галактике М87 (которая расположена на расстоянии 50 миллионов световых лет от Земли) так, как это наблюдается сейчас, масса центральной чёрной дыры должна быть как минимум 6,4 миллиарда солнечных масс, то есть в два раза больше нынешних оценок ядра М87, которые составляют 3 млрд солнечных масс.

Б) Первичные чёрные дыры

Первичные чёрные дыры в настоящее время носят статус гипотезы. Если в начальные моменты жизни Вселенной существовали достаточной величины отклонения от однородности гравитационного поля и плотности материи, то из них путём коллапса могли образовываться чёрные дыры. При этом их масса не ограничена снизу, как при звёздном коллапсе — их масса, вероятно, могла бы быть достаточно малой. Обнаружение первичных чёрных дыр представляет особенный интерес в связи с возможностями изучения явления испарения чёрных дыр.

В)Квантовые чёрные дыры

Предполагается, что в результате ядерных реакций могут возникать устойчивые микроскопические чёрные дыры, так называемые квантовые чёрные дыры. Для математического описания таких объектов необходима квантовая теория гравитации. Однако из общих соображенийвесьма вероятно, что спектр масс чёрных дыр дискретен и существует минимальная чёрная дыра — планковская чёрная дыра. Её масса порядка 10−5 г, радиус — 10−35 м. Комптоновская длина волны планковской чёрной дыры по порядку величины равна её гравитационному радиусу.

Заключение

Таким образом, все "элементарные объекты" можно разделить на элементарные частицы (их длина волны больше их гравитационного радиуса) и чёрные дыры (длина волны меньше гравитационного радиуса). Планковская чёрная дыра является пограничным объектом, для неё можно встретить название максимон, указывающее на то, что это самая тяжёлая из возможных элементарных частиц. Другой иногда употребляемый для её обозначения термин — планкеон.

Даже если квантовые чёрные дыры существуют, время их существования крайне мало, что делает их непосредственное обнаружение очень проблематичным.

В последнее время предложены эксперименты с целью обнаружения свидетельств появления чёрных дыр в ядерных реакциях. Однако для непосредственного синтеза чёрной дыры в ускорителе необходима недостижимая на сегодня энергия 1026 эВ. По-видимому, в реакциях сверхвысоких энергий могут возникать виртуальные промежуточные чёрные дыры.

Список литературы

  1. Карпенков С.Х. Концепции современного естествознания, М, Высш. школа 2003г.

  2. http://nrc.edu.ru/est/pos/24.html

  3. http://www.krugosvet.ru/enc/nauka_i_tehnika/astronomiya/CHERNAYA_DIRA.html

  4. http://ru.wikipedia.org/

topref.ru

Черные дыры

Исторический факультет Реферат по КСЕ на тему : "Черные дыры"

Оглавление ВВЕДЕНИЕ 1.      История идеи о черных дырах 2.      Формирование черных дыр 3.      Свойства черных дыр 4.      Поиски черных дыр 5.      Термодинамика и испарение чёрных дыр 6.      Падение в чёрную дыру 7.      Виды черных дыр Заключение Список литературы

ВВЕДЕНИЕ

Черная дыра – область пространства, в которой гравитационное притяжение настолько сильно, что ни вещество, ни излучение не могут эту область покинуть. Для находящихся там тел вторая космическая скорость (скорость убегания) должна была бы превышать скорость света, что невозможно, поскольку ни вещество, ни излучение не могут двигаться быстрее света. Поэтому из черной дыры ничто не может вылететь. Границу области, за которую не выходит свет, называют "горизонтом событий", или просто "горизонтом" черной дыры. Сущность гипотезы образования черных дыр заключается в следующем: если некоторая масса вещества оказывается в сравнительно небольшом объеме, критическом для нее, то под действием сил собственного тяготения такое вещество начинает неудержимо сжиматься. Наступает своеобразная гравитационная катастрофа — гравитационный коллапс. В результате сжатия растет концентрация вещества. Наконец, наступает момент, когда сила тяготения на ее поверхности становится столь велика, что для ее преодоления надо развить скорость, превосходящую скорость света. Такие скорости практически недостижимы, и из замкнутого пространства черной дыры не могут вырваться ни лучи света, ни частицы материи. Излучение черной дыры оказывается "запертым" гравитацией. Черные дыры способны только поглощать излучение Чтобы поле тяготения смогло "запереть" излучение, создающая это поле, масса (M) должна сжаться до объема с радиусом, меньшим "гравитационного радиуса" rg = 2GM/c2 . По этой причине создать и исследовать черную дыру в лаборатории практически невозможно: чтобы тело любой разумной массы (даже в миллионы тонн) стало черной дырой, его нужно сжать до размера, меньшего, чем размер протона или нейтрона, поэтому свойства черных дыр пока изучаются только теоретически. Однако расчеты показывают, что тела астрономического масштаба (например, массивные звезды) после истощения в них термоядерного топлива могут под действием собственного тяготения сжиматься до размера своего гравитационного радиуса. Поиск таких объектов ведется уже более 40 лет, и сейчас можно с большой уверенностью указать несколько весьма вероятных кандидатов в черные дыры с массами от единиц до миллиардов масс Солнца. Однако их изучение затруднено огромными расстояниями от Земли. И хотя сам факт существования черных дыр уже трудно подвергать сомнению, практическое изучение их свойств еще впереди.

1.                История идеи о черных дырах.

Английский геофизик и астроном Джон Мичелл предположил, что в природе могут существовать столь массивные звезды, что даже луч света не способен покинуть их поверхность. Используя законы Ньютона, Мичелл рассчитал, что если бы звезда с массой Солнца имела радиус не более 3 км, то даже частицы света (которые он, вслед за Ньютоном, считал корпускулами) не могли бы улететь далеко от такой звезды. Поэтому такая звезда казалась бы издалека абсолютно темной. Эту идею Мичелл представил на заседании Лондонского Королевского общества 27 ноября 1783. Так родилась концепция "ньютоновской" черной дыры. Такую же идею высказал в своей книге Система мира (1796) французский математик и астроном Пьер Симон Лаплас. Простой расчет позволил ему написать: "Светящаяся звезда с плотностью, равной плотности Земли, и диаметром, в 250 раз большим диаметра Солнца, не дает ни одному световому лучу достичь нас из-за своего тяготения; поэтому возможно, что самые яркие небесные тела во Вселенной оказываются по этой причине невидимыми". Однако масса такой звезды должна была бы в десятки миллионов раз превосходить солнечную. А поскольку дальнейшие астрономические измерения показали, что массы реальных звезд не очень сильно отличаются от солнечной, идея Митчела и Лапласа о черных дырах была забыта. На протяжении XIX века идея тел, невидимых вследствие своей массивности, не вызывала большого интереса у учёных. Это было связано с тем, что в рамках классической физики скорость света не имеет фундаментального значения. Однако в конце XIX — начале XX века было установлено, что сформулированные Дж.Максвеллом законы электродинамики, с одной стороны, выполняются во всех инерциальных системах отсчёта, а с другой стороны, не обладают инвариантностью относительно преобразований Галилея. Это означало, что сложившиеся в физике представления о характере перехода от одной инерциальной системы отсчёта к другой нуждаются в значительной корректировке. В ходе дальнейшей разработки электродинамики Г.Лоренцем была предложена новая система преобразований пространственно-временных координат (известных сегодня как преобразования Лоренца), относительно которых уравнения Максвелла оставались инвариантными. Развивая идеи Лоренца, А.Пуанкаре предположил, что все прочие физические законы также инвариантны относительно этих преобразований. В 1905 году А.Эйнштейн использовал концепции Лоренца и Пуанкаре в своей специальной теории относительности (СТО), в которой роль закона преобразования инерциальных систем отсчёта окончательно перешла от преобразований Галилея к преобразованиям Лоренца. Классическая (галилеевски-инвариантная) механика была при этом заменена на новую, лоренц-инвариантную релятивистскую механику. В рамках последней скорость света оказалась предельной скоростью, которую может развить физическое тело, что радикально изменило значение чёрных дыр в теоретической физике. Однако ньютоновская теория тяготения (на которой базировалась первоначальная теория чёрных дыр) не является лоренц-инвариантной. Поэтому она не может быть применена к телам, движущимся с околосветовыми и световыми скоростями. Лишённая этого недостатка релятивистская теория тяготения была создана, в основном, Эйнштейном (сформулировавшим её окончательно к концу 1915 года) и получила название общей теории относительности (ОТО). Во второй раз ученые "столкнулись" с черными дырами в 1916, когда немецкий астроном Карл Шварцшильд получил первое точное решение уравнений ОТО. Оказалось, что пустое пространство вокруг массивной точки обладает особенностью на расстоянии rg от нее; именно поэтому величину rg часто называют "шварцшильдовским радиусом", а соответствующую поверхность (горизонт событий) – шварцшильдовской поверхностью. В следующие полвека усилиями теоретиков были выяснены многие удивительные особенности решения Шварцшильда, но как реальный объект исследования черные дыры еще не рассматривались. Правда, в 1930-е, после создания квантовой механики и открытия нейтрона, физики исследовали возможность формирования компактных объектов (белых карликов и нейтронных звезд)как продуктов эволюции нормальных звезд. Оценки показали, что после истощения в недрах звезды ядерного топлива, ее ядро может сжаться превратиться в маленький и очень плотный белый карлик или же в еще более плотную и совсем крохотную нейтронную звезду. В 1934 работавшие в США европейские астрономы Фриц Цвикки и Вальтер Бааде выдвинули гипотезу – вспышки сверхновых представляют собой совершенно особый тип звездных взрывов, вызванных катастрофическим сжатием ядра звезды. Так впервые родилась идея о возможности наблюдать коллапс звезды. Бааде и Цвикки высказали предположение, что в результате взрыва сверхновой образуется сверхплотная вырожденная звезда, состоящая из нейтронов. Расчеты показали, что такие объекты действительно могут рождаться и быть устойчивыми, но лишь при умеренной начальной массе звезды. Но если масса звезды превышает три массы Солнца, то уже ничто не сможет остановить ее катастрофического коллапса. В 1939 американские физики Роберт Оппенгеймер и Хартланд Снайдер обосновали вывод, что ядро массивной звезды должно безостановочно коллапсировать в предельно малый объект, свойства пространства вокруг которого (если он не вращается) описываются решением Шварцшильда. Иными словами, ядро массивной звезды в конце ее эволюции должно стремительно сжиматься и уходить под горизонт событий, становясь черной дырой. Но поскольку такой объект (как говорили тогда, "коллапсар", или "застывшая звезда") не излучает электромагнитные волны, то астрономы понимали, что обнаружить его в космосе будет невероятно трудно и поэтому долго не приступали к поиску. Поскольку никакой носитель информации не способен выйти из-под горизонта событий, внутренняя часть черной дыры причинно не связана с остальной Вселенной, происходящие внутри черной дыры физические процессы не могут влиять на процессы вне ее. В то же время, вещество и излучение, падающие снаружи на черную дыру, свободно проникают внутрь через горизонт. Можно сказать, что черная дыра все поглощает и ничего не выпускает. По этой причине и родился термин "черная дыра", предложенный в 1967 американским физиком Джоном Арчибальдом Уилером.

2.                Формирование черных дыр

Самый очевидный путь образования черной дыры – коллапс ядра массивной звезды. Пока в недрах звезды не истощился запас ядерного топлива, ее равновесие поддерживается за счет термоядерных реакций (превращение водорода в гелий, затем в углерод, и т.д., вплоть до железа у наиболее массивных звезд). Выделяющееся при этом тепло компенсирует потерю энергии, уходящей от звезды с ее излучением и звездным ветром. Термоядерные реакции поддерживают высокое давление в недрах звезды, препятствуя ее сжатию под действием собственной гравитации. Однако со временем ядерное топливо истощается и звезда начинает сжиматься. Наиболее быстро сжимается ядро звезды, при этом оно сильно разогревается (его гравитационная энергия переходит в тепло) и нагревает окружающую его оболочку. В итоге звезда теряет свои наружные слои в виде медленно расширяющейся планетарной туманности или катастрофически сброшенной оболочки сверхновой. А судьба сжимающегося ядра зависит от его массы. Расчеты показывают, что если масса ядра звезды не превосходит трех масс Солнца, то она "выигрывает битву с гравитацией": его сжатие будет остановлено давлением вырожденного вещества, и звезда превратится в белый карлик или нейтронную звезду. Но если масса ядра звезды более трех солнечных, то уже ничто не сможет остановить его катастрофический коллапс, и оно быстро уйдет под горизонт событий, став черной дырой. Как следует из формулы для rg, черная дыра с массой 3 солнечных имеет гравитационный радиус 8,8 км. Астрономические наблюдения хорошо согласуются с этими расчетами: все компоненты двойных звездных систем, проявляющие свойства черных дыр (в 2005 их известно около 20), имеют массы от 4 до 16 масс Солнца. Теория звездной эволюции указывает, что за 12 млрд. лет существования нашей Галактики, содержащей порядка 100 млрд. звезд, в результате коллапса наиболее массивных из них должно было образоваться несколько десятков миллионов черных дыр. К тому же, черные дыры очень большой массы (от миллионов до миллиардов масс Солнца)могут находиться в ядрах крупных галактик, в том числе, и нашей. Об этом свидетельствуют астрономические наблюдения, хотя пути формирования этих гигантских черных дыр не вполне ясны. Если в нашу эпоху высокая плотность вещества, необходимая для рождения черной дыры, может возникнуть лишь в сжимающихся ядрах массивных звезд, то в далеком прошлом, сразу после Большого взрыва, с которого около 14 млрд. лет назад началось расширение Вселенной, высокая плотность материи была повсюду. Поэтому небольшие флуктуации плотности в ту эпоху могли приводить к рождению черных дыр любой массы, в том числе и малой. Но самые маленькие из них в силу квантовых эффектов должны были испариться, потеряв свою массу в виде излучения и потоков частиц. "Первичные черные дыры" с массой более 1012 кг могли сохраниться до наших дней. Самые мелкие из них, массой 1012 кг (как у небольшого астероида), должны иметь размер порядка 10–15 м (как у протона или нейтрона). Наконец, существует гипотетическая возможность рождения микроскопических черных дыр при взаимных соударениях быстрых элементарных частиц. Таков один из прогнозов теории струн – одной из конкурирующих сейчас физических теорий строения материи. Теория струн предсказывает, что пространство имеет более трех измерений. Гравитация, в отличие от прочих сил, должна распространяться по всем этим измерениям и поэтому существенно усиливаться на коротких расстояниях. При мощном столкновении двух частиц (например, протонов) они могут сжаться достаточно сильно, чтобы родилась микроскопическая черная дыра. После этого она почти мгновенно разрушится ("испарится"), но наблюдение за этим процессом представляет для физики большой интерес, поскольку, испаряясь, дыра будет испускать все существующие в природе виды частиц. Если гипотеза теории струн верна, то рождение таких черных дыр может происходить при столкновениях энергичных частиц космических лучей с атомами земной атмосферы, а также в наиболее мощных ускорителях элементарных частиц.

3.                Свойства черных дыр

Вблизи черной дыры напряженность гравитационного поля так велика, что физические процессы там можно описывать только с помощью релятивистской теории тяготения. Согласно ОТО, пространство и время искривляются гравитационным полем массивных тел, причем наибольшее искривление происходит вблизи черных дыр. Когда физики говорят об интервалах времени и пространства, они имеют в виду числа, считанные с каких-либо физических часов и линеек. Например, роль часов может играть молекула с определенной частотой колебаний, количество которых между двумя событиями можно называть "интервалом времени". Важно, что гравитация действует на все физические системы одинаково: все часы показывают, что время замедляется, а все линейки, что пространство растягивается вблизи черной дыры. Это означает, что черная дыра искривляет вокруг себя геометрию пространства и времени. Вдали от черной дыры это искривление мало, а вблизи так велико, что лучи света могут двигаться вокруг нее по окружности. Вдали от черной дыры ее поле тяготения в точности описывается теорией Ньютона для тела такой же массы, но вблизи гравитация становится значительно сильнее, чем предсказывает ньютонова теория. Если бы можно было наблюдать в телескоп за звездой в момент ее превращения в черную дыру, то сначала было бы видно, как звезда все быстрее и быстрее сжимается, но по мере приближения ее поверхности к гравитационному радиусу сжатие начнет замедляться, пока не остановится совсем. При этом приходящий от звезды свет будет слабеть и краснеть пока окончательно не потухнет. Это происходит потому, что, преодолевая силу тяжести, фотоны теряют энергию и им требуется все больше времени, чтобы дойти до нас. Когда поверхность звезды достигнет гравитационного радиуса, покинувшему ее свету потребуется бесконечное время, чтобы достичь любого наблюдателя, даже расположенного сравнительно близко к звезде (и при этом фотоны полностью потеряют свою энергию). Следовательно, мы никогда не дождемся этого момента и, тем более, не увидим того, что происходит со звездой под горизонтом событий, но теоретически этот процесс исследовать можно. Расчет идеализированного сферического коллапса показывает, что за короткое время вещество под горизонтом событий сжимается в точку, где достигаются бесконечно большие значения плотности и тяготения. Такую точку называют "сингулярностью". Более того, математический анализ показывает, что если возник горизонт событий, то даже несферический коллапс приводит к сингулярности. Однако, все это верно лишь в том случае, если общая теория относительности применима вплоть до очень малых пространственных масштабов, в чем пока нет уверенности. В микромире действуют квантовые законы, а квантовая теория гравитации еще не создана. Ясно, что квантовые эффекты не могут остановить сжатие звезды в черную дыру, а вот предотвратить появление сингулярности они могли бы. Изучая фундаментальные свойства материи и пространства-времени, физики считают исследование черных дыр одним из важнейших направлений, поскольку вблизи черных дыр проявляются скрытые свойства гравитации. Для поведения вещества и излучения в слабых гравитационных полях различные теории тяготения дают почти неразличимые прогнозы, однако в сильных полях, характерных для черных дыр, предсказания различных теорий существенно расходятся, что дает ключ к выявлению лучшей среди них. В рамках наиболее популярной сейчас теории гравитации – ОТО Эйнштейна – свойства черных дыр изучены весьма подробно. Вот некоторые важнейшие из них:

www.coolreferat.com

Реферат на тему Черные дыры

Исторический факультет Реферат по КСЕ на тему : "Черные дыры"

Оглавление ВВЕДЕНИЕ 1.      История идеи о черных дырах 2.      Формирование черных дыр 3.      Свойства черных дыр 4.      Поиски черных дыр 5.      Термодинамика и испарение чёрных дыр 6.      Падение в чёрную дыру 7.      Виды черных дыр Заключение Список литературы

ВВЕДЕНИЕ

Черная дыра – область пространства, в которой гравитационное притяжение настолько сильно, что ни вещество, ни излучение не могут эту область покинуть. Для находящихся там тел вторая космическая скорость (скорость убегания) должна была бы превышать скорость света, что невозможно, поскольку ни вещество, ни излучение не могут двигаться быстрее света. Поэтому из черной дыры ничто не может вылететь. Границу области, за которую не выходит свет, называют "горизонтом событий", или просто "горизонтом" черной дыры. Сущность гипотезы образования черных дыр заключается в следующем: если некоторая масса вещества оказывается в сравнительно небольшом объеме, критическом для нее, то под действием сил собственного тяготения такое вещество начинает неудержимо сжиматься. Наступает своеобразная гравитационная катастрофа — гравитационный коллапс. В результате сжатия растет концентрация вещества. Наконец, наступает момент, когда сила тяготения на ее поверхности становится столь велика, что для ее преодоления надо развить скорость, превосходящую скорость света. Такие скорости практически недостижимы, и из замкнутого пространства черной дыры не могут вырваться ни лучи света, ни частицы материи. Излучение черной дыры оказывается "запертым" гравитацией. Черные дыры способны только поглощать излучение Чтобы поле тяготения смогло "запереть" излучение, создающая это поле, масса (M) должна сжаться до объема с радиусом, меньшим "гравитационного радиуса" rg = 2GM/c2 . По этой причине создать и исследовать черную дыру в лаборатории практически невозможно: чтобы тело любой разумной массы (даже в миллионы тонн) стало черной дырой, его нужно сжать до размера, меньшего, чем размер протона или нейтрона, поэтому свойства черных дыр пока изучаются только теоретически. Однако расчеты показывают, что тела астрономического масштаба (например, массивные звезды) после истощения в них термоядерного топлива могут под действием собственного тяготения сжиматься до размера своего гравитационного радиуса. Поиск таких объектов ведется уже более 40 лет, и сейчас можно с большой уверенностью указать несколько весьма вероятных кандидатов в черные дыры с массами от единиц до миллиардов масс Солнца. Однако их изучение затруднено огромными расстояниями от Земли. И хотя сам факт существования черных дыр уже трудно подвергать сомнению, практическое изучение их свойств еще впереди.

1.                История идеи о черных дырах.

Английский геофизик и астроном Джон Мичелл предположил, что в природе могут существовать столь массивные звезды, что даже луч света не способен покинуть их поверхность. Используя законы Ньютона, Мичелл рассчитал, что если бы звезда с массой Солнца имела радиус не более 3 км, то даже частицы света (которые он, вслед за Ньютоном, считал корпускулами) не могли бы улететь далеко от такой звезды. Поэтому такая звезда казалась бы издалека абсолютно темной. Эту идею Мичелл представил на заседании Лондонского Королевского общества 27 ноября 1783. Так родилась концепция "ньютоновской" черной дыры. Такую же идею высказал в своей книге Система мира (1796) французский математик и астроном Пьер Симон Лаплас. Простой расчет позволил ему написать: "Светящаяся звезда с плотностью, равной плотности Земли, и диаметром, в 250 раз большим диаметра Солнца, не дает ни одному световому лучу достичь нас из-за своего тяготения; поэтому возможно, что самые яркие небесные тела во Вселенной оказываются по этой причине невидимыми". Однако масса такой звезды должна была бы в десятки миллионов раз превосходить солнечную. А поскольку дальнейшие астрономические измерения показали, что массы реальных звезд не очень сильно отличаются от солнечной, идея Митчела и Лапласа о черных дырах была забыта. На протяжении XIX века идея тел, невидимых вследствие своей массивности, не вызывала большого интереса у учёных. Это было связано с тем, что в рамках классической физики скорость света не имеет фундаментального значения. Однако в конце XIX — начале XX века было установлено, что сформулированные Дж.Максвеллом законы электродинамики, с одной стороны, выполняются во всех инерциальных системах отсчёта, а с другой стороны, не обладают инвариантностью относительно преобразований Галилея. Это означало, что сложившиеся в физике представления о характере перехода от одной инерциальной системы отсчёта к другой нуждаются в значительной корректировке. В ходе дальнейшей разработки электродинамики Г.Лоренцем была предложена новая система преобразований пространственно-временных координат (известных сегодня как преобразования Лоренца), относительно которых уравнения Максвелла оставались инвариантными. Развивая идеи Лоренца, А.Пуанкаре предположил, что все прочие физические законы также инвариантны относительно этих преобразований. В 1905 году А.Эйнштейн использовал концепции Лоренца и Пуанкаре в своей специальной теории относительности (СТО), в которой роль закона преобразования инерциальных систем отсчёта окончательно перешла от преобразований Галилея к преобразованиям Лоренца. Классическая (галилеевски-инвариантная) механика была при этом заменена на новую, лоренц-инвариантную релятивистскую механику. В рамках последней скорость света оказалась предельной скоростью, которую может развить физическое тело, что радикально изменило значение чёрных дыр в теоретической физике. Однако ньютоновская теория тяготения (на которой базировалась первоначальная теория чёрных дыр) не является лоренц-инвариантной. Поэтому она не может быть применена к телам, движущимся с околосветовыми и световыми скоростями. Лишённая этого недостатка релятивистская теория тяготения была создана, в основном, Эйнштейном (сформулировавшим её окончательно к концу 1915 года) и получила название общей теории относительности (ОТО). Во второй раз ученые "столкнулись" с черными дырами в 1916, когда немецкий астроном Карл Шварцшильд получил первое точное решение уравнений ОТО. Оказалось, что пустое пространство вокруг массивной точки обладает особенностью на расстоянии rg от нее; именно поэтому величину rg часто называют "шварцшильдовским радиусом", а соответствующую поверхность (горизонт событий) – шварцшильдовской поверхностью. В следующие полвека усилиями теоретиков были выяснены многие удивительные особенности решения Шварцшильда, но как реальный объект исследования черные дыры еще не рассматривались. Правда, в 1930-е, после создания квантовой механики и открытия нейтрона, физики исследовали возможность формирования компактных объектов (белых карликов и нейтронных звезд)как продуктов эволюции нормальных звезд. Оценки показали, что после истощения в недрах звезды ядерного топлива, ее ядро может сжаться превратиться в маленький и очень плотный белый карлик или же в еще более плотную и совсем крохотную нейтронную звезду. В 1934 работавшие в США европейские астрономы Фриц Цвикки и Вальтер Бааде выдвинули гипотезу – вспышки сверхновых представляют собой совершенно особый тип звездных взрывов, вызванных катастрофическим сжатием ядра звезды. Так впервые родилась идея о возможности наблюдать коллапс звезды. Бааде и Цвикки высказали предположение, что в результате взрыва сверхновой образуется сверхплотная вырожденная звезда, состоящая из нейтронов. Расчеты показали, что такие объекты действительно могут рождаться и быть устойчивыми, но лишь при умеренной начальной массе звезды. Но если масса звезды превышает три массы Солнца, то уже ничто не сможет остановить ее катастрофического коллапса. В 1939 американские физики Роберт Оппенгеймер и Хартланд Снайдер обосновали вывод, что ядро массивной звезды должно безостановочно коллапсировать в предельно малый объект, свойства пространства вокруг которого (если он не вращается) описываются решением Шварцшильда. Иными словами, ядро массивной звезды в конце ее эволюции должно стремительно сжиматься и уходить под горизонт событий, становясь черной дырой. Но поскольку такой объект (как говорили тогда, "коллапсар", или "застывшая звезда") не излучает электромагнитные волны, то астрономы понимали, что обнаружить его в космосе будет невероятно трудно и поэтому долго не приступали к поиску. Поскольку никакой носитель информации не способен выйти из-под горизонта событий, внутренняя часть черной дыры причинно не связана с остальной Вселенной, происходящие внутри черной дыры физические процессы не могут влиять на процессы вне ее. В то же время, вещество и излучение, падающие снаружи на черную дыру, свободно проникают внутрь через горизонт. Можно сказать, что черная дыра все поглощает и ничего не выпускает. По этой причине и родился термин "черная дыра", предложенный в 1967 американским физиком Джоном Арчибальдом Уилером.

2.                Формирование черных дыр

Самый очевидный путь образования черной дыры – коллапс ядра массивной звезды. Пока в недрах звезды не истощился запас ядерного топлива, ее равновесие поддерживается за счет термоядерных реакций (превращение водорода в гелий, затем в углерод, и т.д., вплоть до железа у наиболее массивных звезд). Выделяющееся при этом тепло компенсирует потерю энергии, уходящей от звезды с ее излучением и звездным ветром. Термоядерные реакции поддерживают высокое давление в недрах звезды, препятствуя ее сжатию под действием собственной гравитации. Однако со временем ядерное топливо истощается и звезда начинает сжиматься. Наиболее быстро сжимается ядро звезды, при этом оно сильно разогревается (его гравитационная энергия переходит в тепло) и нагревает окружающую его оболочку. В итоге звезда теряет свои наружные слои в виде медленно расширяющейся планетарной туманности или катастрофически сброшенной оболочки сверхновой. А судьба сжимающегося ядра зависит от его массы. Расчеты показывают, что если масса ядра звезды не превосходит трех масс Солнца, то она "выигрывает битву с гравитацией": его сжатие будет остановлено давлением вырожденного вещества, и звезда превратится в белый карлик или нейтронную звезду. Но если масса ядра звезды более трех солнечных, то уже ничто не сможет остановить его катастрофический коллапс, и оно быстро уйдет под горизонт событий, став черной дырой. Как следует из формулы для rg, черная дыра с массой 3 солнечных имеет гравитационный радиус 8,8 км. Астрономические наблюдения хорошо согласуются с этими расчетами: все компоненты двойных звездных систем, проявляющие свойства черных дыр (в 2005 их известно около 20), имеют массы от 4 до 16 масс Солнца. Теория звездной эволюции указывает, что за 12 млрд. лет существования нашей Галактики, содержащей порядка 100 млрд. звезд, в результате коллапса наиболее массивных из них должно было образоваться несколько десятков миллионов черных дыр. К тому же, черные дыры очень большой массы (от миллионов до миллиардов масс Солнца)могут находиться в ядрах крупных галактик, в том числе, и нашей. Об этом свидетельствуют астрономические наблюдения, хотя пути формирования этих гигантских черных дыр не вполне ясны. Если в нашу эпоху высокая плотность вещества, необходимая для рождения черной дыры, может возникнуть лишь в сжимающихся ядрах массивных звезд, то в далеком прошлом, сразу после Большого взрыва, с которого около 14 млрд. лет назад началось расширение Вселенной, высокая плотность материи была повсюду. Поэтому небольшие флуктуации плотности в ту эпоху могли приводить к рождению черных дыр любой массы, в том числе и малой. Но самые маленькие из них в силу квантовых эффектов должны были испариться, потеряв свою массу в виде излучения и потоков частиц. "Первичные черные дыры" с массой более 1012 кг могли сохраниться до наших дней. Самые мелкие из них, массой 1012 кг (как у небольшого астероида), должны иметь размер порядка 10–15 м (как у протона или нейтрона). Наконец, существует гипотетическая возможность рождения микроскопических черных дыр при взаимных соударениях быстрых элементарных частиц. Таков один из прогнозов теории струн – одной из конкурирующих сейчас физических теорий строения материи. Теория струн предсказывает, что пространство имеет более трех измерений. Гравитация, в отличие от прочих сил, должна распространяться по всем этим измерениям и поэтому существенно усиливаться на коротких расстояниях. При мощном столкновении двух частиц (например, протонов) они могут сжаться достаточно сильно, чтобы родилась микроскопическая черная дыра. После этого она почти мгновенно разрушится ("испарится"), но наблюдение за этим процессом представляет для физики большой интерес, поскольку, испаряясь, дыра будет испускать все существующие в природе виды частиц. Если гипотеза теории струн верна, то рождение таких черных дыр может происходить при столкновениях энергичных частиц космических лучей с атомами земной атмосферы, а также в наиболее мощных ускорителях элементарных частиц.

3.                Свойства черных дыр

Вблизи черной дыры напряженность гравитационного поля так велика, что физические процессы там можно описывать только с помощью релятивистской теории тяготения. Согласно ОТО, пространство и время искривляются гравитационным полем массивных тел, причем наибольшее искривление происходит вблизи черных дыр. Когда физики говорят об интервалах времени и пространства, они имеют в виду числа, считанные с каких-либо физических часов и линеек. Например, роль часов может играть молекула с определенной частотой колебаний, количество которых между двумя событиями можно называть "интервалом времени". Важно, что гравитация действует на все физические системы одинаково: все часы показывают, что время замедляется, а все линейки, что пространство растягивается вблизи черной дыры. Это означает, что черная дыра искривляет вокруг себя геометрию пространства и времени. Вдали от черной дыры это искривление мало, а вблизи так велико, что лучи света могут двигаться вокруг нее по окружности. Вдали от черной дыры ее поле тяготения в точности описывается теорией Ньютона для тела такой же массы, но вблизи гравитация становится значительно сильнее, чем предсказывает ньютонова теория. Если бы можно было наблюдать в телескоп за звездой в момент ее превращения в черную дыру, то сначала было бы видно, как звезда все быстрее и быстрее сжимается, но по мере приближения ее поверхности к гравитационному радиусу сжатие начнет замедляться, пока не остановится совсем. При этом приходящий от звезды свет будет слабеть и краснеть пока окончательно не потухнет. Это происходит потому, что, преодолевая силу тяжести, фотоны теряют энергию и им требуется все больше времени, чтобы дойти до нас. Когда поверхность звезды достигнет гравитационного радиуса, покинувшему ее свету потребуется бесконечное время, чтобы достичь любого наблюдателя, даже расположенного сравнительно близко к звезде (и при этом фотоны полностью потеряют свою энергию). Следовательно, мы никогда не дождемся этого момента и, тем более, не увидим того, что происходит со звездой под горизонтом событий, но теоретически этот процесс исследовать можно. Расчет идеализированного сферического коллапса показывает, что за короткое время вещество под горизонтом событий сжимается в точку, где достигаются бесконечно большие значения плотности и тяготения. Такую точку называют "сингулярностью". Более того, математический анализ показывает, что если возник горизонт событий, то даже несферический коллапс приводит к сингулярности. Однако, все это верно лишь в том случае, если общая теория относительности применима вплоть до очень малых пространственных масштабов, в чем пока нет уверенности. В микромире действуют квантовые законы, а квантовая теория гравитации еще не создана. Ясно, что квантовые эффекты не могут остановить сжатие звезды в черную дыру, а вот предотвратить появление сингулярности они могли бы. Изучая фундаментальные свойства материи и пространства-времени, физики считают исследование черных дыр одним из важнейших направлений, поскольку вблизи черных дыр проявляются скрытые свойства гравитации. Для поведения вещества и излучения в слабых гравитационных полях различные теории тяготения дают почти неразличимые прогнозы, однако в сильных полях, характерных для черных дыр, предсказания различных теорий существенно расходятся, что дает ключ к выявлению лучшей среди них. В рамках наиболее популярной сейчас теории гравитации – ОТО Эйнштейна – свойства черных дыр изучены весьма подробно. Вот некоторые важнейшие из них: 1) Вблизи черной дыры время течет медленнее, чем вдали от нее. Если удаленный наблюдатель бросит в сторону черной дыры зажженный фонарь, то увидит, как фонарь будет падать все быстрее и быстрее, но затем, приближаясь к поверхности Шварцшильда, начнет замедляться, а его свет будет тускнеть и краснеть (поскольку замедлится темп колебания всех его атомов и молекул). С точки зрения далекого наблюдателя фонарь практически остановится и станет невидим, так и не сумев пересечь поверхность черной дыры. Но если бы наблюдатель сам прыгнул туда вместе с фонарем, то он за короткое время пересек бы поверхность Шварцшильда и упал к центру черной дыры, будучи при этом разорван ее мощными приливными гравитационными силами, возникающими из-за разницы притяжения на разных расстояниях от центра. 2) Каким бы сложным ни было исходное тело, после его сжатия в черную дыру внешний наблюдатель может определить только три его параметра: полную массу, момент импульса (связанный с вращением) и электрический заряд. Все остальные особенности тела (форма, распределение плотности, химический состав и т.д.)в ходе коллапса "стираются". То, что для стороннего наблюдателя структура черной дыры выглядит чрезвычайно простой, Джон Уилер выразил шутливым утверждением: "Черная дыра не имеет волос". В процессе коллапса звезды в черную дыру за малую долю секунды (по часам удаленного наблюдателя) все ее внешние особенности, связанные с исходной неоднородностью, излучаются в виде гравитационных и электромагнитных волн. Образовавшаяся стационарная черная дыра "забывает" всю информацию об исходной звезде, кроме трех величин: полной массы, момента импульса (связанного с вращением) и электрического заряда. Изучая черную дыру, уже невозможно узнать, состояла ли исходная звезда из вещества или антивещества, была ли она вытянутой или сплюснутой и т.п. В реальных астрофизических условиях заряженная черная дыра будет притягивать к себе из межзвездной среды частицы противоположного знака, и ее заряд быстро станет нулевым. Оставшийся стационарный объект либо будет невращающейся "шварцшильдовой черной дырой", которая характеризуется только массой, либо вращающейся "керровской черной дырой", которая характеризуется массой и моментом импульса. 3) Если исходное тело вращалось, то вокруг черной дыры сохраняется "вихревое" гравитационное поле, увлекающее все соседние тела во вращательное движение вокруг нее. Поле тяготения вращающейся черной дыры называют полем Керра (математик Рой Керр в 1963 нашел решение соответствующих уравнений). Этот эффект характерен не только для черной дыры, но для любого вращающегося тела, даже для Земли. По этой причине размещенный на искусственном спутнике Земли свободно вращающийся гироскоп испытывает медленную прецессию относительно далеких звезд. Вблизи Земли этот эффект едва заметен, но вблизи черной дыры он выражен гораздо сильнее: по скорости прецессии гироскопа можно измерить момент импульса черной дыры, хотя сама она не видна. Чем ближе мы подходим к горизонту черной дыры, тем сильнее становится эффект увлечения "вихревым полем". Прежде чем достичь горизонта, мы окажемся на поверхности, где увлечение становится настолько сильным, что ни один наблюдатель не может оставаться неподвижным (т. е. быть "статическим") относительно далеких звезд. На этой поверхности (называемой пределом статичности) и внутри нее все объекты должны двигаться по орбите вокруг черной дыры в том же направлении, в котором вращается сама дыра. Независимо от того, какую мощность развивают его реактивные двигатели, наблюдатель внутри предела статичности никогда не сможет остановить свое вращательное движение относительно далеких звезд. Предел статичности всюду лежит вне горизонта и соприкасается с ним лишь в двух точках, там, где они оба пересекаются с осью вращения черной дыры. Область пространства-времени, расположенная между горизонтом и пределом статичности, называется эргосферой. Объект, попавший в эргосферу, еще может вырваться наружу. Поэтому, хотя черная дыра "все съедает и ничего не отпускает", тем не менее, возможен обмен энергией между ней и внешним пространством. Например, пролетающие через эргосферу частицы или кванты могут уносить энергию ее вращения. 4) Все вещество внутри горизонта событий черной дыры непременно падает к ее центру и образует сингулярность с бесконечно большой плотностью. Английский физик Стивен Хоукинг определяет сингулярность как "место, где разрушается классическая концепция пространства и времени так же, как и все известные законы физики, поскольку все они формулируются на основе классического пространства-времени". 5) Кроме этого С.Хоукинг открыл возможность очень медленного самопроизвольного квантового "испарения" черных дыр. В 1974 он доказал, что черные дыры (не только вращающиеся, но любые) могут испускать вещество и излучение, однако заметно это будет лишь в том случае, если масса самой дыры относительно невелика. Мощное гравитационное поле вблизи черной дыры должно рождать пары частица-античастица. Одна из частиц каждой пары поглощается дырой, а вторая испускается наружу. Например, черная дыра с массой 1012 кг должна вести себя как тело с температурой 1011 К, излучающее очень жесткие гамма-кванты и частицы. Идея об "испарении" черных дыр полностью противоречит классическому представлению о них как о телах, не способных излучать.

4.                Поиски черных дыр

Расчеты в рамках ОТО указывают лишь на возможность существования черных дыр, но отнюдь не доказывают их наличия в реальном мире, открытие черной дыры стало бы важным шагом в развитии физики. Поиск изолированных черных дыр в космосе невероятно труден: требуется заметить маленький темный объект на фоне космической черноты. Но есть надежда обнаружить черную дыру по ее взаимодействию с окружающими астрономическими телами, по ее характерному влиянию на них. Учитывая важнейшие свойства черных дыр (массивность, компактность и невидимость) астрономы постепенно выработали стратегию их поиска. Проще всего обнаружить черную дыру по ее гравитационному взаимодействию с окружающим веществом, например, с близкими звездами. Попытки обнаружить невидимые массивные спутники в двойных звездах не увенчались успехом. Но после запуска на орбиту рентгеновских телескопов выяснилось, что черные дыры активно проявляют себя в тесных двойных системах, где они отбирают вещество у соседней звезды и поглощают его, нагревая при этом до температуры в миллионы градусов и делая его на короткое время источником рентгеновского излучения. Поскольку в двойной системе черная дыра в паре с нормальной звездой обращается вокруг общего центра массы, используя эффект Доплера, удается измерить скорость звезды и определить массу ее невидимого компаньона. Астрономы выявили уже несколько десятков двойных систем, где масса невидимого компаньона превосходит 3 массы Солнца и заметны характерные проявления активности вещества, движущегося вокруг компактного объекта, например, очень быстрые колебания яркости потоков горячего газа, стремительно вращающегося вокруг невидимого тела. Особенно перспективной считают рентгеновскую двойную звезду V404 Лебедя, масса невидимого компонента которой оценивается не менее, чем в 6 масс Солнца. Другие кандидаты в черные дыры находятся в двойных системах Лебедь X-1, LMC X-3, V616 Единорога, QZ Лисички, а также в рентгеновских новых Змееносец 1977, Муха 1981 и Скорпион 1994. Почти все они расположены в пределах нашей Галактики, а система LMC X-3 – в близкой к нам галактике Большое Магелланово Облако. Другим направлением поиска черных дыр служит изучение ядер галактик. В них скапливаются и уплотняются огромные массы вещества, сталкиваются и сливаются звезды, поэтому там могут формироваться сверхмассивные черные дыры, превосходящие по массе Солнце в миллионы раз. Они притягивают к себе окружающие звезды, создавая в центре галактики пик яркости. Они разрушают близко подлетающие к ним звезды, вещество которых образует вокруг черной дыры аккреционный диск и частично выбрасывается вдоль оси диска в виде быстрых струй и потоков частиц. Это не умозрительная теория, а процессы, реально наблюдаемые в ядрах некоторых галактик и указывающие на присутствие в них черных дыр с массами до нескольких миллиардов масс Солнца. В последнее время получены весьма убедительные доказательства того, что и в центре нашей Галактики есть черная дыра с массой около 2,5 млн масс Солнца. Вполне вероятно, что самые мощные процессы энерговыделения во Вселенной происходят с участием черных дыр. Именно их считают источником активности в ядрах квазаров – молодых массивных галактик. Именно их рождение, как полагают астрофизики, знаменуется самыми мощными взрывами во Вселенной, проявляющимися как гамма-всплески.

5.                Термодинамика и испарение чёрных дыр

Представления о чёрной дыре как об абсолютно поглощающем объекте были скорректированы С.Хокингом в 1975 году. Изучая поведение квантовых полей вблизи чёрной дыры, он предсказал, что чёрная дыра обязательно излучает частицы во внешнее пространство и тем самым теряет массу. Этот эффект называется излучением (испарением) Хокинга. Упрощённо говоря, гравитационное поле поляризует вакуум, в результате чего возможно образование не только виртуальных, но и реальных пар частица-античастица. Одна из частиц, оказавшаяся чуть ниже горизонта событий, падает внутрь чёрной дыры, а другая, оказавшаяся чуть выше горизонта, улетает, унося энергию (то есть часть массы) чёрной дыры. Мощность излучения чёрной дыры равна L=\frac{\hbar c^6}{15360\pi G^2M^2}. Состав излучения зависит от размера чёрной дыры: для больших чёрных дыр это в основном фотоны и нейтрино, а в спектре лёгких чёрных дыр начинают присутствовать и тяжёлые частицы. Спектр хокинговского излучения для безмассовых полей оказался строго совпадающим с излучением абсолютно чёрного тела, что позволило приписать чёрной дыре температуру T_H=\frac{\hbar c^3}{8\pi kGM}, где \hbar— редуцированная постоянная Планка, c — скорость света, k — постоянная Больцмана, G — гравитационная постоянная, M — масса чёрной дыры. На этой основе была построена термодинамика чёрных дыр, в том числе введено ключевое понятие энтропии чёрной дыры, которая оказалась пропорциональна площади её горизонта событий:

S = \frac{Akc^3}{4\hbar G}, где A — площадь горизонта событий. Скорость испарения чёрной дыры тем больше, чем меньше её размеры. Испарением чёрных дыр звёздных (и тем более галактических) масштабов можно пренебречь, однако для первичных и в особенности для квантовых чёрных дыр процессы испарения становятся центральными. За счёт испарения все чёрные дыры теряют массу и время их жизни оказывается конечным: \tau=\frac{5120\pi G^2M^3}{\hbar c^4}. При этом интенсивность испарения нарастает лавинообразно, и заключительный этап эволюции носит характер взрыва, например, чёрная дыра массой 1000 тонн испарится за время порядка 84 секунды, выделив энергию, равную взрыву примерно десяти миллионов атомных бомб средней мощности. В то же время, большие чёрные дыры, температура которых ниже температуры реликтового излучения Вселенной (2,7К), на современном этапе развития Вселенной могут только расти, так как испускаемое ими излучение имеет меньшую энергию, чем поглощаемое. Данный процесс продлится до тех пор, пока фотонный газ реликтового излучения не остынет в результате расширения Вселенной. Без квантовой теории гравитации невозможно описать заключительный этап испарения, когда чёрные дыры становятся микроскопическими (квантовыми). Согласно некоторым теориям, после испарения должен оставаться "огарок" — минимальная планковская чёрная дыра.

6.                Падение в чёрную дыру

Представим себе, как должно выглядеть падение в шварцшильдовскую чёрную дыру. Тело, свободно падающее под действием сил гравитации, находится в состоянии невесомости. Падающее тело будет испытывать действие приливных сил, растягивающих тело в радиальном направлении и сжимающих — в тангенциальном. Величина этих сил растёт и стремится к бесконечности при ~r\to 0. В некоторый момент собственного времени тело пересечёт горизонт событий. С точки зрения наблюдателя, падающего вместе с телом, этот момент ничем не выделен, однако возврата теперь нет. Тело оказывается в горловине (её радиус в точке, где находится тело и есть ~r), сжимающейся столь быстро, что улететь из неё до момента окончательного схлопывания (это и есть сингулярность) уже нельзя, даже двигаясь со скоростью света. Рассмотрим теперь процесс падения тела в чёрную дыру с точки зрения удалённого наблюдателя. Пусть, например, тело будет светящимся и, кроме того, будет посылать сигналы назад с определённой частотой. Вначале удалённый наблюдатель будет видеть, что тело, находясь в процессе свободного падения, постепенно разгоняется под действием сил тяжести по направлению к центру. Цвет тела не изменяется, частота детектируемых сигналов практически постоянна. Однако, когда тело начнёт приближаться к горизонту событий, фотоны, идущие от тела, будут испытывать всё большее и большее гравитационное красное смещение. Кроме того, из-за гравитационного поля все физические процессы с точки зрения удалённого наблюдателя будут идти всё медленнее и медленнее гравитационного замедления времени): часы, закреплённые на радиальной координате r без вращения ( r=const, \theta=const, \varphi=const ), будут идти медленнее бесконечно удалённых в  1/\sqrt{1-r_s/r} раз. Будет казаться, что тело — в чрезвычайно сплющенном виде — будет замедляться, приближаясь к горизонту событий и, в конце концов, практически остановится. Частота сигнала будет резко падать. Длина волны испускаемого телом света будет стремительно расти, так что свет быстро превратится в радиоволны и далее в низкочастотные электромагнитные колебания, зафиксировать которые уже будет невозможно. Пересечения телом горизонта событий наблюдатель не увидит никогда и в этом смысле падение в чёрную дыру будет длиться бесконечно долго. Есть, однако, момент, начиная с которого повлиять на падающее тело удалённый наблюдатель уже не сможет. Луч света, посланный вслед этому телу, его либо вообще никогда не догонит, либо догонит уже за горизонтом. Кроме того, расстояние между телом и горизонтом событий, а также "толщина" сплющенного (с точки зрения стороннего наблюдателя) тела довольно быстро достигнут планковской длины и (с математической точки зрения) будут уменьшаться и далее. Для реального физического наблюдателя (ведущего измерения с планковской погрешностью) это равносильно тому, что масса чёрной дыры увеличится на массу падающего тела, а значит радиус горизонта событий возрастёт и падающее тело окажется "внутри" горизонта событий за конечное время. Аналогично будет выглядеть для удалённого наблюдателя и процесс гравитационного коллапса. Вначале вещество ринется к центру, но вблизи горизонта событий оно станет резко замедляться, его излучение уйдёт в радиодиапазон, и в результате удалённый наблюдатель увидит, что звезда погасла.

7.                Виды черных дыр

А) Сверхмассивные чёрные дыры Разросшиеся очень массивные чёрные дыры, по современным представлениям, образуют ядра большинства галактик. В их число входит и массивная чёрная дыра в ядре нашей галактики — Стрелец A*. В настоящее время существование чёрных дыр звёздных и галактических масштабов считается большинством учёных надёжно доказанным астрономическими наблюдениями. Американские астрономы установили, что массы сверхмассивных чёрных дыр могут быть значительно недооценены. Исследователи установили, что для того, чтобы звёзды двигались в галактике М87 (которая расположена на расстоянии 50 миллионов световых лет от Земли) так, как это наблюдается сейчас, масса центральной чёрной дыры должна быть как минимум 6,4 миллиарда солнечных масс, то есть в два раза больше нынешних оценок ядра М87, которые составляют 3 млрд солнечных масс. Б) Первичные чёрные дыры Первичные чёрные дыры в настоящее время носят статус гипотезы. Если в начальные моменты жизни Вселенной существовали достаточной величины отклонения от однородности гравитационного поля и плотности материи, то из них путём коллапса могли образовываться чёрные дыры. При этом их масса не ограничена снизу, как при звёздном коллапсе — их масса, вероятно, могла бы быть достаточно малой. Обнаружение первичных чёрных дыр представляет особенный интерес в связи с возможностями изучения явления испарения чёрных дыр. В)Квантовые чёрные дыры Предполагается, что в результате ядерных реакций могут возникать устойчивые микроскопические чёрные дыры, так называемые квантовые чёрные дыры. Для математического описания таких объектов необходима квантовая теория гравитации. Однако из общих соображенийвесьма вероятно, что спектр масс чёрных дыр дискретен и существует минимальная чёрная дыра — планковская чёрная дыра. Её масса порядка 10−5 г, радиус — 10−35 м. Комптоновская длина волны планковской чёрной дыры по порядку величины равна её гравитационному радиусу.

Заключение

Таким образом, все "элементарные объекты" можно разделить на элементарные частицы (их длина волны больше их гравитационного радиуса) и чёрные дыры (длина волны меньше гравитационного радиуса). Планковская чёрная дыра является пограничным объектом, для неё можно встретить название максимон, указывающее на то, что это самая тяжёлая из возможных элементарных частиц. Другой иногда употребляемый для её обозначения термин — планкеон. Даже если квантовые чёрные дыры существуют, время их существования крайне мало, что делает их непосредственное обнаружение очень проблематичным. В последнее время предложены эксперименты с целью обнаружения свидетельств появления чёрных дыр в ядерных реакциях. Однако для непосредственного синтеза чёрной дыры в ускорителе необходима недостижимая на сегодня энергия 1026 эВ. По-видимому, в реакциях сверхвысоких энергий могут возникать виртуальные промежуточные чёрные дыры.

Список литературы

1.                Карпенков С.Х. Концепции современного естествознания, М, Высш. школа 2003г. 2.                http://nrc.edu.ru/est/pos/24.html 3.                http://www.krugosvet.ru/enc/nauka_i_tehnika/astronomiya/CHERNAYA_DIRA.html 4.                http://ru.wikipedia.org/

bukvasha.ru


Смотрите также