|
||||||||||||||||||||||||||||||||||||||||
|
Реферат: Солнечная система (Солнце, Земля, Марс). Солнце реферат 3 классРеферат СолнцескачатьРеферат на тему: План:
ВведениеСо́лнце — единственная звезда Солнечной системы, вокруг которой обращаются другие объекты этой системы: планеты и их спутники, карликовые планеты и их спутники, астероиды, метеороиды, кометы и космическая пыль. Масса Солнца составляет 99,866 % от суммарной массы всей Солнечной системы[5]. Солнечное излучение поддерживает жизнь на Земле[6] (фотоны необходимы для начальных стадий процесса фотосинтеза), определяет климат. Солнце состоит из водорода (~73 % от массы и ~92 % от объёма), гелия (~25 % от массы и ~7 % от объёма[7]) и других элементов с меньшей концентрацией: железа, никеля, кислорода, азота, кремния, серы, магния, углерода, неона, кальция и хрома[8]. На 1 млн атомов водорода приходится 98 000 атомов гелия, 851 кислорода, 398 углерода, 123 неона, 100 азота, 47 железа, 38 магния, 35 кремния, 16 серы, 4 аргона, 3 алюминия, по 2 атома никеля, натрия и кальция, а также совсем немного всех прочих элементов. По спектральной классификации Солнце относится к типу G2V («жёлтый карлик»). Температура поверхности Солнца достигает 6000 K, поэтому Солнце светит почти белым светом, но из-за более сильного рассеяния и поглощения коротковолновой части спектра атмосферой Земли прямой свет Солнца у поверхности нашей планеты приобретает некоторый жёлтый оттенок (при ясном небе, в сумме с голубым оттенком рассеянного света от неба общее освещение объектов на земле вновь становится белым). Солнечный спектр содержит линии ионизированных и нейтральных металлов, а также ионизированного водорода. В нашей галактике Млечный Путь насчитывается свыше 100 миллиардов звёзд[9]. При этом 85 % звёзд нашей галактики — это звёзды, менее яркие, чем Солнце (в большинстве своём красные карлики). Как и все звёзды главной последовательности, Солнце вырабатывает энергию путём термоядерного синтеза. В случае Солнца подавляющая часть энергии вырабатывается при синтезе гелия из водорода. Удалённость Солнца от Земли, 149,6 миллиона километров, приблизительно равна астрономической единице, а видимый угловой диаметр, как и у Луны — чуть больше полградуса (31-32 минуты). Солнце находится на расстоянии около 26 000 световых лет от центра Млечного Пути и вращается вокруг него, делая один оборот более чем за 200 миллионов лет[10]. Орбитальная скорость Солнца равна 217 км/с — таким образом, оно проходит один световой год за 1400 земных лет, а одну астрономическую единицу за 8 земных суток[11]. В настоящее время Солнце находится во внутреннем крае рукава Ориона нашей Галактики, между рукавом Персея и рукавом Стрельца, в так называемом «Местном межзвёздном облаке» — области повышенной плотности, расположенной, в свою очередь, в имеющем меньшую плотность «Местном пузыре» — зоне рассеянного высокотемпературного межзвёздного газа. Из звёзд, принадлежащих 50 самым близким звёздным системам в пределах 17 световых лет, известным в настоящее время, Солнце является четвёртой по яркости звездой (его абсолютная звёздная величина +4,83m). 1. Общие сведенияСолнце принадлежит к первому типу звёздного населения. Одна из распространённых теорий возникновения Солнечной системы предполагает, что её формирование было вызвано взрывами одной или нескольких сверхновых звёзд[12]. Это предположение основано, в частности, на том, что в веществе Солнечной системы содержится аномально большая доля золота и урана, которые могли бы быть результатом эндотермических реакций, вызванных этим взрывом, или ядерного превращения элементов путём поглощения нейтронов веществом массивной звезды второго поколения. Земля и Солнце (фотомонтаж с сохранением соотношения размеров) Излучение Солнца — основной источник энергии на Земле. Его мощность характеризуется солнечной постоянной — количеством энергии, проходящей через площадку единичной площади, перпендикулярную солнечным лучам. На расстоянии в одну астрономическую единицу (то есть на орбите Земли) эта постоянная равна приблизительно 1370 Вт/м². Проходя сквозь атмосферу Земли, солнечное излучение теряет в энергии примерно 370 Вт/м², и до земной поверхности доходит только 1000 Вт/м² (при ясной погоде и когда Солнце находится в зените). Эта энергия может использоваться в различных естественных и искусственных процессах. Так, растения с помощью фотосинтеза перерабатывают её в химическую форму (кислород и органические соединения). Прямое нагревание солнечными лучами или преобразование энергии с помощью фотоэлементов может быть использовано для производства электроэнергии (солнечными электростанциями) или выполнения другой полезной работы. Путём фотосинтеза была в далёком прошлом получена и энергия, запасённая в нефти и других видах ископаемого топлива. Ультрафиолетовое излучение Солнца имеет антисептические свойства, позволяющие использовать его для дезинфекции воды и различных предметов. Оно также вызывает загар и имеет другие биологические эффекты — например, стимулирует производство в организме витамина D. Воздействие ультрафиолетовой части солнечного спектра сильно ослабляется озоновым слоем в земной атмосфере, поэтому интенсивность ультрафиолетового излучения на поверхности Земли сильно меняется с широтой. Угол, под которым Солнце стоит над горизонтом в полдень, влияет на многие типы биологической адаптации — например, от него зависит цвет кожи человека в различных регионах земного шара[13]. Наблюдаемый с Земли путь Солнца по небесной сфере изменяется в течение года. Путь, описываемый в течение года той точкой, которую занимает Солнце на небе в определённое заданное время, называется аналеммой и имеет форму цифры 8, вытянутой вдоль оси север — юг. Самая заметная вариация в видимом положения Солнца на небе — его колебание вдоль направления север — юг с амплитудой 47° (вызванное наклоном плоскости эклиптики к плоскости небесного экватора, равным 23,5°). Существует также другая компонента этой вариации, направленная вдоль оси восток — запад и вызванная увеличением скорости орбитального движения Земли при её приближении к перигелию и уменьшением — при приближении к афелию. Первое из этих движений (север — юг) является причиной смены времён года. Земля проходит через точку афелия в начале июля и удаляется от Солнца на расстояние 152 млн км, а через точку перигелия — в начале января и приближается к Солнцу на расстояние 147 млн км[14]. Видимый диаметр Солнца между этими двумя датами меняется на 3 процента[15]. Поскольку разница в расстоянии составляет примерно 5 млн км, то в афелии Земля получает примерно на 7 % меньше тепла. Таким образом, зимы в северном полушарии немного теплее, чем в южном, а лето немного прохладнее. Солнце — магнитно-активная звезда. Она обладает сильным магнитным полем, напряжённость которого меняется со временем, и которое меняет направление приблизительно каждые 11 лет, во время солнечного максимума. Вариации магнитного поля Солнца вызывают разнообразные эффекты, совокупность которых называется солнечной активностью и включает в себя такие явления как солнечные пятна, солнечные вспышки, вариации солнечного ветра и т. д., а на Земле вызывает полярные сияния в высоких и средних широтах и геомагнитные бури, которые негативно сказываются на работе средств связи, средств передачи электроэнергии, а также негативно воздействует на живые организмы, вызывая у людей головную боль и плохое самочувствие (у людей, чувствительных к магнитным бурям). Предполагается, что солнечная активность играет большую роль в формировании и развитии Солнечной системы. Она также оказывает влияние на структуру земной атмосферы. 2. Жизненный циклСолнце является молодой звездой третьего поколения (популяции I) с высоким содержанием металлов, то есть оно образовалось из останков звёзд первого и второго поколений (соответственно популяций III и II). Текущий возраст Солнца (точнее — время его существования на главной последовательности), оценённый с помощью компьютерных моделей звёздной эволюции, равен приблизительно 4,57 миллиарда лет[16]. Жизненный цикл Солнца Считается[16], что Солнце сформировалось примерно 4,59 миллиарда лет назад, когда быстрое сжатие под действием сил гравитации облака молекулярного водорода привело к образованию в нашей области Галактики звезды первого типа звёздного населения типа T Тельца. Звезда такой массы, как Солнце, должна существовать на главной последовательности в общей сложности примерно 10 миллиардов лет. Таким образом, сейчас Солнце находится примерно в середине своего жизненного цикла. На современном этапе в солнечном ядре идут термоядерные реакции превращения водорода в гелий. Каждую секунду в ядре Солнца около 4 миллионов тонн вещества превращается в лучистую энергию, в результате чего генерируется солнечное излучение и поток солнечных нейтрино. Масса Солнца недостаточна для того, чтобы его эволюция завершилась взрывом сверхновой. Вместо этого, через 4—5 миллиардов лет оно превратится в звезду типа красный гигант. По мере того, как водородное топливо в ядре будет выгорать, его внешняя оболочка будет расширяться, а ядро — сжиматься и нагреваться. Примерно через 7,8 миллиарда лет, когда температура в ядре достигнет приблизительно 100 миллионов градусов Кельвина, в нём начнётся термоядерная реакция синтеза углерода и кислорода из гелия. На этой фазе развития температурные неустойчивости внутри Солнца приведут к тому, что оно начнёт терять массу и сбрасывать оболочку. По-видимому, расширяющиеся внешние слои Солнца в это время достигнут современной орбиты Земли. При этом исследования показывают, что ещё до этого момента потеря Солнцем массы приведёт к тому, что Земля перейдёт на более далёкую от Солнца орбиту и, таким образом, избежит поглощения внешними слоями солнечной плазмы[17]. Несмотря на это, вся вода на Земле перейдёт в газообразное состояние, а большая часть её атмосферы рассеется в космическое пространство. Увеличение температуры Солнца в этот период таково, что в течение следующих 500—700 миллионов лет поверхность Земли будет слишком горяча для того, чтобы на ней могла существовать жизнь в её современном понимании. После того, как Солнце пройдёт фазу красного гиганта, термические пульсации приведут к тому, что его внешняя оболочка будет сорвана и из неё образуется планетарная туманность. В центре этой туманности останется сформированная из очень горячего ядра Солнца звезда типа белый карлик, которая в течение многих миллиардов лет будет постепенно остывать и угасать. Описанный выше сценарий эволюции Солнца типичен для звёзд малой и средней массы. 3. Структура3.1. Внутреннее строение СолнцаСтроение Солнца. В центре Солнца находится солнечное ядро. Фотосфера — это видимая поверхность Солнца, которая и является основным источником излучения. Солнце окружает солнечная корона, которая имеет очень высокую температуру, однако она крайне разрежена, поэтому видима невооружённым глазом только в периоды полного солнечного затмения. 3.1.1. Солнечное ядроЦентральная часть Солнца с радиусом примерно 150 000 километров, в которой идут термоядерные реакции, называется солнечным ядром. Плотность вещества в ядре составляет примерно 150 000 кг/м³ (в 150 раз выше плотности воды и в ~6,6 раз выше плотности самого плотного металла на Земле — осмия), а температура в центре ядра — более 14 миллионов градусов. Анализ данных, проведённый миссией SOHO, показал, что в ядре скорость вращения Солнца вокруг своей оси значительно выше, чем на поверхности[18][16]. В ядре осуществляется протон-протонная термоядерная реакция, в результате которой из четырёх протонов образуется гелий-4. При этом каждую секунду в излучение превращаются 4,26 миллиона тонн вещества, однако эта величина ничтожна по сравнению с массой Солнца — 2×1027 тонн. 3.1.2. Зона лучистого переносаНад ядром, на расстояниях примерно от 0,2 до 0,7 радиуса Солнца от его центра, находится зона лучистого переноса, в которой отсутствуют макроскопические движения, энергия переносится с помощью переизлучения фотонов. 3.1.3. Конвективная зона СолнцаБлиже к поверхности Солнца возникает вихревое перемешивание плазмы, и перенос энергии к поверхности совершается преимущественно движениями самого вещества. Такой способ передачи энергии называется конвекцией, а подповерхностный слой Солнца, толщиной примерно 200 000 км, где она происходит — конвективной зоной. По современным данным, её роль в физике солнечных процессов исключительно велика, так как именно в ней зарождаются разнообразные движения солнечного вещества и магнитные поля. 3.2. Атмосфера СолнцаИзображение поверхности и короны Солнца, полученное Солнечным оптическим телескопом (SOT) на борту спутника Hinode. Получено 12 января 2007 года. 3.2.1. ФотосфераФотосфера (слой, излучающий свет) достигает толщины ~320 км и образует видимую поверхность Солнца. Из фотосферы исходит основная часть оптического (видимого) излучения Солнца, излучение же из более глубоких слоёв до неё уже не доходит. Температура в фотосфере достигает в среднем 5800 К. Здесь средняя плотность газа составляет менее 1/1000 плотности земного воздуха, а температура по мере приближения к внешнему краю фотосферы уменьшается до 4800 К. Водород при таких условиях сохраняется почти полностью в нейтральном состоянии. Фотосфера образует видимую поверхность Солнца, от которой определяются размеры Солнца, расстояние от поверхности Солнца и т. д. 3.2.2. ХромосфераХромосфера (от др.-греч. χρομα — цвет, σφαίρα — шар, сфера) — внешняя оболочка Солнца толщиной около 10 000 км, окружающая фотосферу. Происхождение названия этой части солнечной атмосферы связано с её красноватым цветом, вызванным тем, что в её видимом спектре доминирует красная H-альфа линия излучения водорода из серии Бальмера. Верхняя граница хромосферы не имеет выраженной гладкой поверхности, из неё постоянно происходят горячие выбросы, называемые спикулами (из-за этого в конце XIX века итальянский астроном Секки, наблюдая хромосферу в телескоп, сравнил её с горящими прериями). Температура хромосферы увеличивается с высотой от 4000 до 15 000 градусов. Плотность хромосферы невелика, поэтому яркость её недостаточна, чтобы наблюдать её в обычных условиях. Но при полном солнечном затмении, когда Луна закрывает яркую фотосферу, расположенная над ней хромосфера становится видимой и светится красным цветом. Её можно также наблюдать в любое время с помощью специальных узкополосных оптических фильтров. 3.2.3. КоронаСолнечная корона во время солнечного затмения 1999 года Корона — последняя внешняя оболочка Солнца. Несмотря на её очень высокую температуру, от 600 000 до 5 000 000 градусов, она видна невооружённым глазом только во время полного солнечного затмения, так как плотность вещества в короне мала, а потому невелика и её яркость. Необычайно интенсивный нагрев этого слоя вызван, по-видимому, магнитным эффектом и воздействием ударных волн (см. Проблема нагрева короны). Форма короны меняется в зависимости от фазы цикла солнечной активности: в периоды максимальной активности она имеет округлую форму, а в минимуме — вытянута вдоль солнечного экватора. Поскольку температура короны очень велика, она интенсивно излучает в ультрафиолетовом и рентгеновском диапазонах. Эти излучения не проходят сквозь земную атмосферу, но в последнее время появилась возможность изучать их с помощью космических аппаратов. Излучение в разных областях короны происходит неравномерно. Существуют горячие активные и спокойные области, а также корональные дыры с относительно невысокой температурой в 600 000 градусов, из которых в пространство выходят магнитные силовые линии. Такая («открытая») магнитная конфигурация позволяет частицам беспрепятственно покидать Солнце, поэтому солнечный ветер испускается в основном из корональных дыр. 3.2.4. Солнечный ветерИз внешней части солнечной короны истекает солнечный ветер — поток ионизированных частиц (в основном протонов, электронов и α-частиц), имеющий скорость 300—1200 км/с и распространяющийся, с постепенным уменьшением своей плотности, до границ гелиосферы. Многие природные явления на Земле связаны с возмущениями в солнечном ветре, в том числе геомагнитные бури и полярные сияния. 4. Магнитные поля СолнцаКорональные выбросы массы на Солнце. Струи плазмы вытянуты вдоль арок магнитного поля 4.1. Происхождение и виды солнечных магнитных полейТак как солнечная плазма имеет достаточно высокую электропроводность, в ней могут возникать электрические токи и, как следствие, магнитные поля. Непосредственно наблюдаемые в солнечной фотосфере магнитные поля принято разделять на два типа, в соответствии с их масштабом. Крупномасштабное (общее или глобальное) магнитное поле с характерными размерами, сравнимыми с размерами Солнца, имеет среднюю напряжённость на уровне фотосферы порядка нескольких Гаусс. В минимуме цикла солнечной активности оно имеет приблизительно дипольную структуру, при этом напряжённость поля на полюсах Солнца максимальна. Затем, по мере приближения к максимуму цикла солнечной активности, напряжённости поля на полюсах постепенно уменьшаются и через один-два года после максимума цикла становятся равными нулю (так называемая «переполюсовка солнечного магнитного поля»). На этой фазе общее магнитное поле Солнца не исчезает полностью, но его структура носит не дипольный, а квадрупольный характер. После этого напряжённость солнечного диполя снова возрастает, но при этом он имеет уже другую полярность. Таким образом, полный цикл изменения общего магнитного поля Солнца, с учётом перемены знака, равен удвоенной продолжительности 11-летнего цикла солнечной активности — примерно 22 года («закон Хейла»). Средне- и мелкомасштабные (локальные) поля Солнца отличаются значительно бо́льшими напряжённостями полей и меньшей регулярностью. Самые мощные магнитные поля (до нескольких тысяч гаусс) наблюдаются в группах солнечных пятен в максимуме солнечного цикла. При этом типична ситуация, когда магнитное поле пятен в западной («головной») части данной группы, в том числе самого крупного пятна (т. н. «лидера группы») совпадает с полярностью общего магнитного поля на соответствующем полюсе Солнца («p-полярностью»), а в восточной («хвостовой») части — противоположна ему («f-полярность»). Таким образом, магнитные поля пятен имеют, как правило, биполярную или мультиполярную структуру. В фотосфере также наблюдаются униполярные области магнитного поля, которые, в отличие от групп солнечных пятен, располагаются ближе к полюсам и имеют значительно меньшую напряжённость магнитного поля (несколько гаусс), но большую площадь и продолжительность жизни (до нескольких оборотов Солнца). Согласно современным представлениям, разделяемым большей частью исследователей, магнитное поле Солнца генерируется в нижней части конвективной зоны с помощью механизма гидромагнитного конвективного динамо, а затем всплывает в фотосферу под воздействием магнитной плавучести. Этим же механизмом объясняется 22-летняя цикличность солнечного магнитного поля. Существуют также некоторые указания[19] на наличие первичного (то есть возникшего вместе с Солнцем) или, по крайней мере, очень долгоживущего магнитного поля ниже дна конвективной зоны — в лучистой зоне и ядре Солнца. 4.2. Солнечная активность и солнечный циклКомплекс явлений, вызванных генерацией сильных магнитных полей на Солнце, называют солнечной активностью. Эти поля проявляются в фотосфере как солнечные пятна и вызывают такие явления, как солнечные вспышки, генерацию потоков ускоренных частиц, изменения в уровнях электромагнитного излучения Солнца в различных диапазонах, корональные выбросы массы, возмущения солнечного ветра, вариации потоков галактических космических лучей (Форбуш-эффект) и т. д. С солнечной активностью связаны также вариации геомагнитной активности (в том числе и магнитные бури), которые являются следствием достигающих Земли возмущений межпланетной среды, вызванных, в свою очередь, активными явлениями на Солнце. Одним из наиболее распространённых показателей уровня солнечной активности является число Вольфа, связанное с количеством солнечных пятен на видимой полусфере Солнца. Общий уровень солнечной активности меняется с характерным периодом, примерно равным 11 годам (так называемый «цикл солнечной активности» или «одиннадцатилетний цикл»). Этот период выдерживается неточно и в XX веке был ближе к 10 годам, а за последние 300 лет варьировался примерно от 7 до 17 лет. Циклам солнечной активности принято приписывать последовательные номера, начиная от условно выбранного первого цикла, максимум которого был в 1761 году. В 2000 году наблюдался максимум 23-го цикла солнечной активности. Существуют также вариации солнечной активности большей длительности. Так, во второй половине XVII века солнечная активность и, в частности, её одиннадцатилетний цикл были сильно ослаблены (минимум Маундера). В эту же эпоху в Европе отмечалось снижение среднегодовых температур (т. н. Малый ледниковый период), что, возможно, вызвано воздействием солнечной активности на климат Земли. Существует также точка зрения, что глобальное потепление до некоторой степени вызвано повышением глобального уровня солнечной активности во второй половине XX века. Тем не менее, механизмы такого воздействия пока ещё недостаточно ясны. 4.3. Солнце как переменная звездаТак как магнитная активность Солнца подвержена периодическим изменениям, а вместе с этим изменяется и его светимость (см. Солнечный цикл), его можно рассматривать как переменную звезду. Некоторые исследователи относят Солнце к классу низкоактивных переменных звёзд типа BY Дракона[20][21]. Данный тип переменных звёзд в молодости имеет значительный процент покрытия пятнами (до 30 % от общей площади поверхности звезды). На основе последних исследований было выявлено также периодическое изменение Солнечной постоянной: с амплитудой 0,1 % (в абсолютных значениях это 1 Вт/м², при среднем значении 1361,5 Вт/м²). В года максимума солнечной активности Солнечная постоянная выше, чем в года минимума[22]. 5. Теоретические проблемы5.1. Проблема солнечных нейтриноЯдерные реакции, происходящие в ядре Солнца, приводят к образованию большого количества электронных нейтрино. При этом измерения потока нейтрино на Земле, которые постоянно производятся с конца 1960-х годов, показали, что количество регистрируемых солнечных электронных нейтрино приблизительно в два-три раза меньше, чем предсказывает стандартная солнечная модель, описывающая процессы в Солнце. Это рассогласование между экспериментом и теорией получило название «проблема солнечных нейтрино» и более 30 лет было одной из загадок солнечной физики. Положение осложняется тем, что нейтрино крайне слабо взаимодействует с веществом, и создание нейтринного детектора, который способен достаточно точно измерить поток нейтрино даже такой мощности, как исходящий от Солнца — технически сложная и дорогостоящая задача (см. Нейтринная астрономия). Предлагалось два главных пути решения проблемы солнечных нейтрино. Во-первых, можно было модифицировать модель Солнца таким образом, чтобы уменьшить предполагаемую термоядерную активность (а, значит, и температуру) в его ядре и, следовательно, поток излучаемых Солнцем нейтрино. Во-вторых, можно было предположить, что часть электронных нейтрино, излучаемых ядром Солнца, при движении к Земле превращается в нерегистрируемые обычными детекторами нейтрино других поколений (мюонные и тау-нейтрино)[23]. Сегодня понятно, что правильным, скорее всего, является второй путь. Для того, чтобы имел место переход одного сорта нейтрино в другой — то есть происходили так называемые нейтринные осцилляции — нейтрино должно иметь отличную от нуля массу. В настоящее время установлено, что это действительно так[24]. В 2001 году в нейтринной обсерватории в Садбери (англ.) были непосредственно зарегистрированы солнечные нейтрино всех трёх сортов и было показано, что их полный поток согласуется со стандартной солнечной моделью. При этом только около трети долетающих до Земли нейтрино оказывается электронными. Это количество согласуется с теорией, которая предсказывает переход электронных нейтрино в нейтрино другого поколения как в вакууме (собственно «нейтринные осцилляции»), так и в солнечном веществе («эффект Михеева — Смирнова — Вольфенштейна»). Таким образом, в настоящее время проблема солнечных нейтрино, по-видимому, решена. 5.2. Проблема нагрева короныНад видимой поверхностью Солнца (фотосферой), имеющей температуру около 6000 K, находится солнечная корона с температурой более 1 000 000 K. Можно показать, что прямого потока тепла из фотосферы недостаточно для того, чтобы привести к такой высокой температуре короны. Предполагается, что энергия для нагрева короны поставляется турбулентными движениями подфотосферной конвективной зоны. При этом для переноса энергии в корону предложено два механизма. Во-первых, это волновое нагревание — звук и магнитогидродинамические волны, генерируемые в турбулентной конвективной зоне, распространяются в корону и там рассеиваются, при этом их энергия переходит в тепловую энергию корональной плазмы. Альтернативный механизм — магнитное нагревание, при котором магнитная энергия, непрерывно генерируемая фотосферными движениями, высвобождается путём пересоединения магнитного поля в форме больших солнечных вспышек, или же большого количества мелких вспышек[25]. В настоящий момент неясно, какой тип волн обеспечивает эффективный механизм нагрева короны. Можно показать, что все волны, кроме магнитогидродинамических альфвеновских, рассеиваются или отражаются до того, как достигнут короны[26], диссипация же альфвеновских волн в короне затруднена. Поэтому современные исследователи сконцентрировали основное внимание на механизм нагревания с помощью солнечных вспышек. Один из возможных кандидатов в источники нагрева короны — непрерывно происходящие мелкомасштабные вспышки[27], хотя окончательная ясность в этом вопросе ещё не достигнута. 6. История наблюдений за Солнцем6.1. Ранние наблюдения СолнцаСолнечная повозка из Трундхольма — скульптура, которая, как полагают, отражает поверье о движении солнца на колеснице, характерное для праиндоевропейской религии. С самых ранних времён человечество отмечало важную роль Солнца — яркого диска на небе, несущего свет и тепло. Во многих доисторических и античных культурах Солнце почиталось как божество. Культ Солнца занимал важное место в религиях цивилизаций Египта, инков, ацтеков. Многие древние памятники связаны с Солнцем: например, мегалиты, точно отмечают положение летнего солнечного солнцестояния (одни из крупнейших мегалитов такого рода находятся в Набта-Плайя (Египет) и в Стоунхендже (Англия)), пирамиды в Чичен-Ице (Мексика) построены таким образом, чтобы тень от земли скользила по пирамиде в дни весеннего и осеннего равноденствий, и т. д. Древнегреческие астрономы, наблюдая видимое годовое движение Солнца вдоль эклиптики, считали Солнце одной из семи планет (от др.-греч. ἀστὴρ πλανήτης — блуждающая звезда). В некоторых языках Солнцу, наравне с планетами, посвящён день недели. 6.2. Развитие современного научного пониманияОдним из первых попытался взглянуть на Солнце с научной точки зрения греческий философ Анаксагор. Он говорил, что Солнце — это не колесница Гелиоса, как учила греческая мифология, а гигантский, «размерами больше, чем Пелопоннес», раскалённый металлический шар. За это еретическое учение он был брошен в тюрьму, приговорён к смерти, и освобождён только из-за вмешательства Перикла. Идея о том, что Солнце — это центр, вокруг которого обращаются планеты, высказывалась Аристархом Самосским и древнеиндийскими учёными (см. Гелиоцентрическая система мира). Эта теория была возрождена Коперником в XVI веке. Первым расстояние от Земли до Солнца пытался измерить Аристарх Самосский. По Аристарху, расстояние до Солнца в 18 раз больше расстояния до Луны. (На самом деле расстояние до Солнца в 394 раза больше расстояния до Луны. А вот расстояние до Луны в античности было определено весьма точно.) Китайские астрономы в течение столетий, со времён династии Хань, наблюдали солнечные пятна. Впервые пятна были зарисованы в 1128 году в хронике Иоанна Вустерского[28]. С 1610 года начинается эпоха инструментального исследования солнца. Изобретение телескопа и его специальной разновидности для наблюдения за Солнцем — гелиоскопа, позволило Галилею, Томасу Хэрриоту, Кристофу Шейнеру и другим учёным рассмотреть солнечные пятна. Галилей, по-видимому, первым среди исследователей признал пятна частью солнечной структуры, в отличие от Шейнера, посчитавшего их проходящими перед Солнцем планетами. Это предположение позволило Галилею открыть вращение Солнца и вычислить его период. Приоритету открытия пятен и их природе была посвящена более чем десятилетняя полемика между Галилеем и Шейнером, однако, скорее всего, и первое наблюдение и первая публикация не принадлежат ни одному из них.[29] Первую более или менее приемлемую оценку расстояния от Земли до Солнца способом параллакса получили Джованни Доменико Кассини и Жан Рише. В 1672 году, когда Марс находился в великом противостоянии с Землёй, они измерили положение Марса одновременно в Париже и в Кайенне — административном центре Французской Гвианы. Наблюдавшийся параллакс составил 24″. По результатам этих наблюдений было найдено расстояние от Земли до Марса, которое было затем пересчитано в расстояние от Земли до Солнца — 140 млн км. В начале XIX века возник новый метод исследования — спектроскопия — и Фраунгофер обнаружил линии поглощения в спектре Солнца. Долгое время непонятными оставались источники солнечной энергии. В 1848 году Роберт Майер выдвинул метеоритную гипотезу, согласно которой Солнце нагревается благодаря бомбардировке метеоритами. Однако при таком количестве метеоритов сильно нагревалась бы и Земля; кроме того, земные геологические напластования состояли бы в основном из метеоритов; наконец, масса Солнца должна была расти, и это сказалось бы на движении планет[30]. Поэтому во второй половине XIX века многими исследователями наиболее правдоподобной считалась теория, развитая Гельмгольцем (1853) и лордом Кельвином[31], которые предположили, что Солнце нагревается за счёт медленного гравитационного сжатия («механизм Кельвина — Гельмгольца»). Основанные на этом механизме расчёты оценивали максимальный возраст Солнца в 20 миллионов лет, а время, через которое Солнце потухнет — не более чем в 15 миллионов[30]. Однако эта гипотеза противоречила геологическим данным о возрасте горных пород, которые указывали на намного бо́льшие цифры. Тем не менее, энциклопедия Брокгауза и Ефрона считает гравитационную модель единственно допустимой[30]. Только в XX веке было найдено правильное решение этой проблемы. Первоначально Резерфорд выдвинул гипотезу, что источником внутренней энергии Солнца является радиоактивный распад[32]. В 1920 году Артур Эддингтон предположил, что давление и температура в недрах Солнца настолько высоки, что там могут идти термоядерные реакции, при которой ядра водорода (протоны) сливаются в ядро гелия-4. Так как масса последнего меньше, чем сумма масс четырёх свободных протонов, то часть массы в этой реакции, согласно формуле Эйнштейна E = mc2, переходит в энергию фотонов[33]. То, что водород преобладает в составе Солнца, подтвердила в 1925 году Сесилия Пейн (англ.). Теория термоядерного синтеза была развита в 1930-х годах астрофизиками Чандрасекаром и Гансом Бете. Бете детально рассчитал две главные термоядерные реакции, которые являются источниками энергии Солнца[34][35]. Наконец, в 1957 году появилась работа Маргарет Бербидж (англ.) «Синтез элементов в звёздах»[36], в которой было показано, что большинство элементов во Вселенной возникло в результате нуклеосинтеза, идущего в звёздах. 6.3. Космические исследования СолнцаСолнце в рентгеновских лучах Атмосфера Земли препятствует прохождению многих видов электромагнитного излучения из космоса. Кроме того, даже в видимой части спектра, для которой атмосфера довольно прозрачна, изображения космических объектов могут искажаться её колебаниями, поэтому наблюдения этих объектов лучше производить на больших высотах (в высокогорных обсерваториях, с помощью приборов, поднятых в верхние слои атмосферы, и т. п.) или даже из космоса. Верно это и в отношении наблюдений Солнца. Если нужно получить очень чёткое изображение Солнца, исследовать его ультрафиолетовое или рентгеновское излучение, точно измерить солнечную постоянную, то наблюдения и съёмки проводят с аэростатов, ракет, спутников и космических станций. Фактически первые внеатмосферные наблюдения Солнца были проведены вторым искусственным спутником Земли Спутник-2 в 1957 году. Наблюдения проводились в нескольких спектральных диапазонах от 1 до 120 Å, выделяемых при помощи органических и металлических фильтров[37]. Обнаружение солнечного ветра опытным путем было осуществлено в 1959 году с помощью ионных ловушек космических аппаратов «Луна-1» и «Луна-2», экспериментами на которых руководил Константин Грингауз[38][39][40]. Другими космическими аппаратами, исследовавшими солнечный ветер, были созданные NASA спутники серии «Пионер» с номерами 5—9, запущенные между 1960 и 1968 годами. Эти спутники обращались вокруг Солнца вблизи орбиты Земли и выполнили детальные измерения параметров солнечного ветра. В 1970-е годы в рамках совместного проекта США и Германии были запущены спутники Гелиос-I и Гелиос-II (англ. Helios). Они находились на гелиоцентрической орбите, перигелий которой лежал внутри орбиты Меркурия, примерно в 40 миллионах километров от Солнца. Эти аппараты помогли получить новые данные о солнечном ветре. Другое интересное наблюдение, сделанное в рамках этой программы, состоит в том, что пространственная плотность мелких метеоритов вблизи Солнца в пятнадцать раз выше, чем около Земли[41][16]. В 1973 году вступила в строй космическая солнечная обсерватория Apollo Telescope Mount (англ.) на космической станции Skylab. С помощью этой обсерватории были сделаны первые наблюдения солнечной переходной области и ультрафиолетового излучения солнечной короны в динамическом режиме. С её помощью были также открыты корональные выбросы массы и корональные дыры, которые, как сейчас известно, тесно связаны с солнечным ветром. В 1980 году NASA вывело на околоземную орбиту космический зонд Solar Maximum Mission (англ.) (SolarMax), который был предназначен для наблюдений ультрафиолетового, рентгеновского и гамма-излучения от солнечных вспышек в период высокой солнечной активности. Однако всего через несколько месяцев после запуска из-за неисправности электроники зонд перешёл в пассивный режим. В 1984 году космическая экспедиция STS-41C на шаттле «Челленджер» устранила неисправность зонда и снова запустила его на орбиту. После этого, до своего входа в атмосферу в июне 1989 года, аппарат получил тысячи снимков солнечной короны[42]. Его измерения помогли также выяснить, что мощность полного излучения Солнца за полтора года наблюдений изменилась только на 0,01 %. Японский спутник «Yohkoh» (яп. ようこう ё:ко:?, «солнечный свет»), запущенный в 1991 году, проводил наблюдения излучения Солнца в рентгеновском диапазоне. Полученные им данные помогли учёным идентифицировать несколько разных типов солнечных вспышек и показали, что корона даже вдали от областей максимальной активности намного более динамична, чем принято было считать. «Ёко» функционировал в течение полного солнечного цикла и перешёл в пассивный режим во время солнечного затмения 2001 года, когда он потерял свою ориентировку на Солнце. В 2005 году спутник вошёл в атмосферу и был разрушен[43]. Очень важной для исследований Солнца является программа SOHO (SOlar and Heliospheric Observatory), организованная совместно Европейским космическим агентством и NASA. Запущенный 2 декабря 1995 года космический аппарат SOHO вместо планируемых двух лет работает уже более десяти (2009). Он оказался настолько полезным, что 11 февраля 2010 года был запущен следующий, аналогичный космический аппарат SDO (Solar Dynamics Observatory)[44]. SOHO находится в точке Лагранжа между Землёй и Солнцем (то есть в области, где земное и солнечное притяжение уравниваются) и с момента запуска передаёт на Землю изображения Солнца в различных диапазонах длин волн. Кроме своей основной задачи — исследования Солнца — SOHO исследовал большое количество комет, в основном очень малых, которые испаряются по мере своего приближения к Солнцу[45]. Изображение южного полюса Солнца, полученное в ходе миссии STEREO. В правой нижней части снимка виден выброс массы Все эти спутники наблюдали Солнце из плоскости эклиптики и поэтому могли детально изучить только далёкие от его полюсов области. В 1990 году был запущен космический зонд Ulysses для изучения полярных областей Солнца. Сначала он совершил гравитационный манёвр возле Юпитера, чтобы выйти из плоскости эклиптики. По счастливому стечению обстоятельств ему также удалось наблюдать столкновение кометы Шумейкеров — Леви 9 с Юпитером в 1994 году. После того как он вышел на запланированную орбиту, он приступил к наблюдению солнечного ветра и напряжённости магнитного поля на высоких гелиоширотах. Выяснилось, что солнечный ветер на этих широтах имеет скорость примерно 750 км/с, что меньше, чем ожидалось, и что на них существуют большие магнитные поля, рассеивающие галактические космические лучи[46]. Состав солнечной фотосферы хорошо изучен с помощью спектроскопических методов, однако данных о соотношении элементов в глубинных слоях Солнца гораздо меньше. Для того, чтобы получить прямые данные о составе Солнца, был запущен космический аппарат Genesis. Он вернулся на Землю в 2004 году, однако был повреждён при приземлении из-за неисправности одного из датчиков ускорения и не раскрывшегося вследствие этого парашюта. Несмотря на сильные повреждения, возвращаемый модуль доставил на Землю несколько пригодных для изучения образцов солнечного ветра. 22 сентября 2006 года на орбиту Земли была выведена солнечная обсерватория Hinode (Solar-B). Обсерватория создана в японском институте ISAS, где разрабатывалась обсерватория Yohkoh (Solar-A) и оснащена тремя инструментами: SOT — солнечный оптический телескоп, XRT — рентгеновский телескоп и EIS — изображающий спектрометр ультрафиолетового диапазона. Основной задачей Hinode является исследование активных процессов в солнечной короне и установление их связи со структурой и динамикой магнитного поля Солнца[47]. В октябре 2006 года была запущена солнечная обсерватория STEREO. Она состоит из двух идентичных космических аппаратов на таких орбитах, что один из них постепенно отстанет от Земли, а другой обгонит её. Это позволит с их помощью получать стереоизображения Солнца и таких солнечных явлений, как корональные выбросы массы. В январе 2009 года состоялся запуск российского спутника «Коронас-Фотон» с комплексом космических телескопов «Тесис»[48]. В состав обсерватории входит несколько телескопов и спектрогелиографов крайнего ультрафиолетового диапазона, а также коронограф широкого поля зрения, работающий в линии ионизованного гелия HeII 304 A. Целью миссии «Тесис» является исследование наиболее динамичных солнечных процессов (вспышек и корональных выбросов массы), а также круглосуточный мониторинг солнечной активности с целью раннего прогнозирования геомагнитных возмущений. 11 февраля 2010 года в США с космодрома на мысе Канаверал стартовала ракета-носитель Atlas V. Задача запуска — вывести на геостационарную орбиту новую солнечную обсерваторию SDO (Solar Dynamic Observatory)[49]. 6.4. Наблюдения Солнца и опасность для зренияФотография Солнца цифровой камерой с поверхности Земли Сквозь пелену дыма Для эффективного наблюдения Солнца существуют специальные, так называемые солнечные телескопы, которые установлены во многих обсерваториях мира. Наблюдения Солнца имеют ту особенность, что яркость Солнца велика, а следовательно, светосила солнечных телескопов может быть небольшой. Гораздо важнее получить как можно больший масштаб изображения, и для достижения этой цели солнечные телескопы имеют очень большие фокусные расстояния (метры и десятки метров). Вращать такую конструкцию нелегко, однако этого и не требуется. Положение Солнца на небе ограничивается сравнительно узким поясом, его максимальная ширина — 46 градусов. Поэтому солнечный свет с помощью зеркал направляют в стационарно установленный телескоп, а затем проецируют на экран или рассматривают с помощью затемнённых фильтров. Солнце — далеко не самая мощная звезда из всех существующих, но оно находится относительно близко к Земле и поэтому светит очень ярко — в 400 000 раз ярче полной Луны. Поэтому невооружённым глазом, а тем более в бинокль или телескоп, смотреть на Солнце днём крайне опасно — это наносит необратимый вред зрению. Наблюдения Солнца невооружённым глазом без урона зрению возможны лишь на восходе или закате (тогда блеск Солнца ослабевает в несколько тысяч раз), или днём с применением светофильтров. При любительских наблюдениях в бинокль или телескоп также следует использовать затемняющий светофильтр, помещённый перед объективом. Однако лучше пользоваться другим способом — проецировать солнечное изображение через телескоп на белый экран. Даже с маленьким любительским телескопом можно таким образом изучать солнечные пятна, а в хорошую погоду увидеть грануляцию и факелы на поверхности Солнца. 7. Солнце и Земля. Даже вид Земли из космоса — во всём косвенный результат воздействия на планету солнечного излучения. Зелёный лист растения — источник жизни на Земле благодаря поступлению на Землю энергии Солнца Всем известно, что и животным, и растениям очень важен свет Солнца (в частности, это касается и людей). Некоторые люди просыпаются и бодрствуют только тогда, когда светит Солнце (это касается и большинства млекопитающих, земноводных и даже большинства рыб). Продолжительность солнечного дня оказывает значительное влияние на жизнедеятельность организмов на Земле. В частности, зимой и осенью, когда Солнце в Северном полушарии стоит низко над горизонтом, и продолжительность светового дня мала и мало поступление солнечного тепла, природа увядает и засыпает — деревья сбрасывают листья, многие животные впадают на длительный срок в спячку (медведи, барсуки) или же сильно снижают свою активность. Вблизи полюсов даже во время лета поступает мало солнечного тепла, из-за этого растительность там скудная — причина унылого тундрового пейзажа, и мало какие животные могут проживать в таких условиях. Весной же вся природа просыпается, трава распускается, деревья выпускают листья, появляются цветы, оживает животный мир. И всё это благодаря всего одному-единственному Солнцу. Его климатическое влияние на Землю бесспорно. Именно благодаря неравномерному поступлению солнечной энергии в разные районы Земли и в разные времена года на Земле сформировались климатические пояса. В зелёных листьях растений содержится зелёный пигмент хлорофилл — этот пигмент является важнейшим катализатором на Земле. С его помощью происходит реакция диоксида углерода и воды — фотосинтез, и одним из продуктов этой реакции является кислород — элемент, который необходим для жизни почти всему живому на Земле и глобально повлиял на эволюцию нашей планеты — в частности, радикально изменился состав минералов. Реакция воды и углекислого газа происходит с поглощением энергии, поэтому в темноте фотосинтез не происходит. Фотосинтез, преобразуя солнечную энергию и производя при этом кислород, дал начало всему живому на Земле. При этой реакции образуется глюкоза, которая является важнейшим сырьём для синтеза целлюлозы, из которой состоят все растения. Поедая растения, в которых за счёт солнца накоплена энергия, существуют и животные. Растения Земли поглощают и усваивают всего около 0,3 % энергии излучения Солнца, падающей на земную поверхность. Но и этого, на первый взгляд, мизерного количества энергии достаточно, чтобы обеспечить синтез огромного количества массы органического вещества биосферы. В частности, постепенно, переходя от звена к звену, солнечная энергия достаётся всем живым организмам в мире, включая и людей. Благодаря использованию минеральных солей почвы растениями в состав органических соединений включаются также следующие химические элементы: азот, фосфор, сера, железо, калий, натрий, а также многие другие элементы. Впоследствии из них строятся огромные молекулы белков, нуклеиновых кислот, углеводов, жиров, веществ, жизненно необходимых для клеток. Земная поверхность и нижние слои воздуха — тропосфера, где образуются облака и возникают другие метеорологические явления, непосредственно получают энергию от Солнца. Солнечная энергия постепенно поглощается земной атмосферой по мере приближения её к поверхности Земли — далеко не все виды излучения, испущенного Солнцем, попадают на Землю. На Землю доходит только 40 % солнечного излучения, 60 % излучения же отражается и уходит обратно в космос. В настоящее время наблюдается тенденция к увеличению поглощаемого Землёй количества солнечного тепла по причине увеличения количества в атмосфере Земли парниковых газов (см. Парниковый эффект). Под действием солнечного света на Земле происходят такие природные явления, как дождь, снег, град, ураган. Происходит перемещение огромного количества воды на Земле, действуют такие океанические течения как Гольфстрим, течение Западных Ветров и т. д. Происходит интенсивное испарение влаги, которая затем охлаждается и выпадает в виде дождя. Не будь всего этого — на Земле не было бы жизни. Под действием солнечного тепла образуются облака, бушуют ураганы, дует ветер, существуют волны на море, а также происходят медленные, но необратимые процессы выветривания, эрозии горных пород. Все эти явления и делают нашу планету настолько разнообразной, неповторимой и красивой. Все эти процессы на Земле происходят за счёт воздействия на Землю не всех видов солнечного излучения, а только некоторыми его видами — это, в основном, видимое и инфракрасное излучение. Именно воздействие последнего вида излучения нагревает Землю и создаёт погоду на ней, определяет тепловой режим планеты. Помимо этого в атмосферу земли проникает поток ионизированных частиц (в основном гелиево-водородной плазмы), истекающий из солнечной короны со скоростью 300—1200 км/с в окружающее космическое пространство (солнечный ветер). Множество природных явлений связано с солнечным ветром, в том числе магнитные бури, полярные сияния и различные формы кометных хвостов, всегда направленных от Солнца. Ультрафиолетовое излучение Солнца разрушает молекулу кислорода, которая распадается на два составляющих её атома (атомарный кислород), и возникшие таким путём свободные атомы кислорода соединяются с другими молекулами кислорода, которые ещё не успели разрушиться солнечным ультрафиолетовым излучением, и в результате получается его аллотропная модификация, состоящая из трёх атомов кислорода — озон. Озон жизненно важен для существования жизни на Земле. Образуется он за счёт солнечного излучения, а также благодаря атмосферным электрическим разрядам — молниям. Благодаря озоновому слою до поверхности Земли доходит лишь малая часть жёсткого ультрафиолетового излучения. Ультрафиолетовые лучи опасны для человека и животных, и поэтому образование озоновых дыр представляет серьёзную угрозу для человечества. Однако в небольшом количестве ультрафиолет необходим человеку. Так, под действием ультрафиолета образуется жизненно необходимый витамин D. При его недостатке возникает серьёзное заболевание — рахит, которое может возникнуть по оплошности родителей, которые прячут своих детей вдали от солнечного света. Недостаток витамина D опасен и для взрослых, при недостатке данного витамина наблюдается размягчение костей не только у детей, но и у взрослых (остеомаляция). Из-за недостатка поступления ультрафиолетовых лучей может нарушиться нормальное поступление кальция, вследствие чего усиливается хрупкость мелких кровеносных сосудов, увеличивается проницаемость тканей. Недостаточность солнечного света проявляется также в бессоннице, быстрой утомляемости и др. Поэтому человеку периодически необходимо бывать на солнце. Ультрафиолетовые лучи также в небольшом количестве (в большом количестве они могут вызвать рак кожи) усиливают работу кровеносных органов: повышается количество белых и красных кровяных телец (эритроцитов и тромбоцитов), гемоглобина, увеличивается щелочной резерв организма и повышается свёртывание крови. При этом дыхание клеток усиливается, процессы обмена веществ идут активнее. Ультрафиолетовые лучи позитивно воздействуют на организм и посредством других природных факторов — они способствуют ускорению самоочищения атмосферы от загрязнения, вызванного антропогенными факторами, способствуют устранению в атмосфере частичек пыли и дыма, устраняя смог. Солнечная активность вызывает возмущения в магнитосфере Земли, которые, в свою очередь, могут воздействовать на земные организмы. Раздел биофизики, изучающий подобные влияния, называется гелиобиологией. 8. Солнце в мировой культуре8.1. В религии и мифологииКак и многие другие природные явления, на протяжении всей истории человеческой цивилизации во многих культурах Солнце было объектом поклонения. Культ Солнца существовал в Древнем Египте, где солнечным божеством являлся Ра. У греков богом Солнца был Гелиос, который, по преданию, ежедневно проезжал по небу на своей колеснице. В древнерусском языческом пантеоне было два солнечных божества — Хорс (собственно олицетворённое солнце) и Дажьбог. Кроме того, годовой празднично-ритуальный цикл славян, как и других народов, был тесно связан с годовым солнечным циклом, и ключевые его моменты (солнцестояния) олицетворялись такими персонажами, как Коляда (Овсень) и Купала. У большинства народов солнечное божество было мужского пола (например, в английском языке применительно к Солнцу используется личное местоимение «he» — «он»), но в скандинавской мифологии Солнце (Суль) — женское божество. В Восточной Азии, в частности, во Вьетнаме Солнце обозначается символом 日 (китайский пиньинь rì), хотя есть также и другой символ — 太阳 (тай ян). В этих коренных вьетнамских словах, слова nhật и thái dương указывают на то, что в Восточной Азии Луна и Солнце считались двумя противоположностями — инь и ян. Как вьетнамцы, так и китайцы в древности считали их двумя первичными природными силами, причём Луна считалась связанной с инь, а Солнце — с ян. 8.2. В языках мираВо многих индоевропейских языках Солнце обозначается словом, имеющим корень sol. Так, слово sol означает «Солнце» на латыни и в современных португальском, испанском, исландском, датском, норвежском, шведском, каталанском и галисийском языках. В английском языке слово Sol также иногда (преимущественно в научном контексте) используется для обозначения Солнца. В персидском языке sol означает «солнечный год». От этого же корня происходят древнерусское слово сълньце, современное русское солнце, а также соответствующие слова во многих других славянских языках. В честь Солнца названа валюта государства Перу (новый соль), ранее называвшаяся инти (так назывался бог солнца у инков, занимавший ключевое место в их астрономии и мифологии), что в переводе с языка кечуа означает солнце. 8.3. Городские легенды о СолнцеВ 2002 и последующих годах в СМИ появилось сообщение, что через 6 лет Солнце взорвётся (то есть превратится в сверхновую звезду)[50]. Источником информации назывался «голландский астрофизик доктор Пирс ван дер Меер (Piers van der Meer), эксперт Европейского космического агентства». В действительности в ЕКА нет сотрудника с таким именем[51]. Более того, астрофизика с таким именем вообще не существует. Водородного топлива хватит Солнцу на несколько миллиардов лет. По истечении этого времени Солнце разогреется до высоких температур (хотя и не сразу — этот процесс займёт десятки или сотни миллионов лет), но не станет сверхновой звездой. Солнце в принципе не может превратиться в сверхновую звезду из-за недостаточной массы. Исходное сообщение опубликовано в «Weekly World News» — газете, известной своей склонностью к публикации сомнительной информации[52]. Гипотетический сценарий гибели Солнца рассматривается также в художественном фильме «Пекло», снятом в 2007 году. Действие фильма происходит в 2057 году, когда Солнце вот-вот потухнет; для спасения жизни на Земле к Солнцу отправляется космический корабль, задача которого — сбросить на Солнце ядерную бомбу, чтобы вновь зажечь его. 9. Двойники СолнцаВ настоящее время известны несколько «двойников» Солнца, которые являются практически полными аналогами нашей звезды по массе, светимости, температуре (±50 К), металличности (±12 %), возрасту (±1 млрд лет) и т. д.[53]
10. Интересные факты
ПримечанияДанные для таблицы «Солнце» взяты из источников[1][3][4]
wreferat.baza-referat.ru Реферат на тему Солнце и солнечная системаРеферат по природоведению на тему «Солнце, Солнечная система» ученицы 5-А класса ОСШ №35 Лозановой Екатерины 1. Введение. С чего началась история Солнечной системы? Около 4,5 миллиардов лет назад не существовало ни каких планет. Вокруг только что родившегося Солнца бурлило темное облако раскалённых газа и пыли. Постепенно облако охладилось, и газ сгустился в миллионы капелек. Эти капли медленно притягивались друг к другу под действием собственной гравитации – так постепенно сформировались планеты Солнечной системы. В солнечную систему входит 9 планет: Плутон, Нептун, Уран, Сатурн, Юпитер, Марс, Земля, Венера и Меркурий. 2. Солнце Солнце - обыкновенная звезда, каких множество во Вселенной. Оно образовалось из газа, оставшегося после взрыва на этом месте более крупной звезды. Сейчас, в пору своей зрелости, Солнце излучает довольно ровный желтый свет и постоянно даёт Земле тепло. Но оно также испускает смертельно опасные гамма, рентгеновские, инфракрасные, ультрафиолетовые лучи, а также радиоволны. К счастью, атмосфера и магнитное поле Земли надёжно защищает людей от этих вредных излучений. Солнце – среднего размера звезда диаметром 1 392 000 км. Оно весит немного меньше 2000 триллионов триллионов тонн. На поверхности Солнца температура достигает немыслимой величины в 6000гр., при которой плавится любое вещество. Но ядро Солнца в тысячи раз горячее - более 16 млн. градусов. Солнечное тепло выделяется в результате ядерных реакций. Внутри Солнца огромное давление заставляет ядра атомов водорода соединяться, образуя атомы гелия. При этом высвобождаются гигантские количества ядерной энергии. Сейчас Солнце находится в середине своей жизни. Предположительно оно образовалось около 5 млрд. лед назад. Очевидно, оно будет светиться ещё 5 млрд. лет, а затем взорвется так ярко, что сожжет Землю дотла. Иногда в атмосфере Солнца возникают гигантские образования – эруптивные протуберанцы. Они похожи на арки, вздымающиеся из фотосферы на высоту до половины солнечного радиуса. Наблюдения ясно указывают, что форма протуберанцев определяется силовыми линиями магнитного поля. Еще одно интересное и чрезвычайно активное явление – это солнечные вспышки, мощные выбросы энергии и частиц продолжительностью до двух часов. Порожденный такой солнечной вспышкой поток фотонов достигает Земли со скоростью света за 8 мин, а поток электронов и протонов – за несколько суток. Солнечные вспышки происходят в местах резкого изменения направления магнитного поля, вызванного движением вещества в солнечных пятнах. Максимум вспышечной активности Солнца обычно наступает за год до максимума пятнообразовательного цикла. Такая предсказуемость очень важна, ибо шквал заряженных частиц, рожденных мощной солнечной вспышкой, может повредить даже наземные средства связи и энергетические сети, не говоря уже о космонавтах и космической технике. Из плазменной короны Солнца происходит постоянный отток заряженных частиц испускаемый Солнцем со скоростью сотни километров в секунду, называемый солнечным ветром. Магнитное поле Земли защищает людей от него, но у полюсов он взаимодействует с атмосферой, вызывая северное сияние и зарницы. 3. Меркурий С Земли наблюдать Меркурий в телескоп сложно: он не удаляется от Солнца на угол более 28°. Его изучали при помощи радиолокации с Земли, а межпланетный зонд «Маринер-10» сфотографировал половину его поверхности. Вокруг оси он вращается с периодом 58,6 сут., в точности равным 2/3 орбитального периода, поэтому каждая точка его поверхности поворачивается к Солнцу лишь один раз за 2 меркурианских года, т.е. солнечные сутки там длятся 2 года! Из больших планет меньше Меркурия лишь Плутон. Но по средней плотности Меркурий находится на втором месте после Земли. Вероятно, у него большое металлическое ядро, составляющее 75% радиуса планеты (у Земли оно занимает 50% радиуса). Поверхность Меркурия подобна лунной: темная, абсолютно сухая и покрытая кратерами. Средний коэффициент отражения света поверхности Меркурия около 10%, примерно как у Луны. Вероятно, его поверхность тоже покрыта реголитом – спекшимся раздробленным материалом. Крупнейшее ударное образование на Меркурии – бассейн Калорис размером 2000 км, напоминающий лунные моря. Однако в отличие от Луны на Меркурии есть своеобразные структуры – протянувшиеся на сотни километров уступы высотой в несколько километров. Возможно, они образовались в результате сжатия планеты при остывании ее большого металлического ядра или под действием мощных солнечных приливов. Температура поверхности планеты днем около 700 C, а ночью около 100 C. По данным радиолокации, на дне полярных кратеров в условиях вечной темноты и холода, возможно, лежит лед. У Меркурия практически нет атмосферы – лишь крайне разреженная гелиевая оболочка с плотностью земной атмосферы на высоте 200 км. Вероятно, гелий образуется при распаде радиоактивных элементов в недрах планеты. У Меркурия есть слабое магнитное поле и нет спутников. 4. Венера Это вторая от Солнца и ближайшая к Земле планета – самая яркая «звезда» на нашем небе; порой она видна даже днем. Венера во многом похожа на Землю: ее размер и плотность лишь на 5% меньше, чем у Земли; вероятно, и недра Венеры похожи на земные. Поверхность Венеры всегда закрыта толстым слоем желтовато-белых облаков, но с помощью радаров она исследована довольно подробно. Вокруг оси Венера вращается в обратном направлении (по часовой стрелке, если смотреть с северного полюса) с периодом 243 земных суток. Ее орбитальный период 225 сут; поэтому венерианские сутки (от восхода до следующего восхода Солнца) длятся 116 земных суток. Атмосфера Венеры состоит в основном из углекислого газа , а также небольшого количества азота и паров воды .В виде малых примесей обнаружены соляная кислота и плавиковая кислота. Температура на Венере около 750C по всей поверхности и днем, и ночью. Причина столь высокой температуры у поверхности Венеры в том, что не совсем точно называют «парниковым эффектом»: солнечные лучи сравнительно легко проходят сквозь облака ее атмосферы и нагревают поверхность планеты, но тепловое инфракрасное излучение самой поверхности выходит сквозь атмосферу обратно в космос с большим трудом. Облака Венеры состоят из микроскопических капелек концентрированной серной кислоты. Верхний слой облаков удален от поверхности на 90 км, температура там ок. 200C; нижний слой – на 30 км, температура ок. 430C. Еще ниже так жарко, что облаков нет. Разумеется, на поверхности Венеры нет жидкой воды. Атмосфера Венеры на уровне верхнего облачного слоя вращается в том же направлении, что и поверхность планеты, но значительно быстрее, совершая оборот за 4 сут; это явление называют суперротацией, и объяснения ему пока не найдено. Автоматические станции опускались на дневной и ночной сторонах Венеры. Днем поверхность планеты освещена рассеянным солнечным светом примерно с такой интенсивностью, как в пасмурный день на Земле. Ночью на Венере замечено много молний. Станции «Венера» передали изображения небольших участков в местах посадки, на которых виден скалистый грунт. В целом топография Венеры изучена по радиолокационным изображениям, переданным орбитальными аппаратами «Пионер-Венера» (1979), «Венера-15 и -16» (1983) и «Магеллан» (1990). Мельчайшие детали на лучших из них имеют размер около 100 м. В отличие от Земли на Венере нет четко выраженных континентальных плит, но отмечается несколько глобальных возвышенностей, например земля Иштар размером с Австралию. На поверхности Венеры множество метеоритных кратеров и вулканических куполов. Очевидно, кора Венеры тонка, так что расплавленная лава подходит близко к поверхности и легко изливается на нее после падения метеоритов. Поскольку дождей и сильных ветров у поверхности Венеры не бывает, эрозия поверхности происходит очень медленно, и геологические структуры остаются доступными для наблюдения из космоса сотни миллионов лет. О внутреннем строении Венеры известно мало. Вероятно, у нее есть металлическое ядро, занимающее 50% радиуса. Но магнитного поля у планеты нет вследствие ее очень медленного вращения. Нет у Венеры и спутников. 5. Земля Наша планета – единственная, у которой большая часть поверхности (75%) покрыта жидкой водой. Земля – активная планета и, возможно, единственная, у которой обновление поверхности обязано процессам тектоники плит, проявляющим себя срединно-океаническими хребтами, островными дугами и складчатыми горными поясами. Распределение высот твердой поверхности Земли бимодальное: средний уровень океанического дна на 3900 м ниже уровня моря, а континенты в среднем возвышаются над ним на 860 м . Сейсмические данные указывают на следующее строение земных недр: кора (30 км), мантия (до глубины 2900 км), металлическое ядро. Часть ядра расплавлена; там генерируется земное магнитное поле, которое улавливает заряженные частицы солнечного ветра (протоны и электроны) и формирует вокруг Земли две заполненные ими тороидальные области – радиационные пояса (пояса Ван-Аллена), локализованные на высотах 4000 и 17 000 км от поверхности Земли . Атмосфера Земли состоит на 78% из азота и на 21% из кислорода; это результат длительной эволюции под влиянием геологических, химических и биологических процессов. Возможно, первичная атмосфера Земли была богата водородом, который затем улетучился. Дегазация недр наполнила атмосферу углекислым газом и водяным паром. Но пар сконденсировался в океанах, а двуокись углерода оказалась связанной в карбонатных породах. . Таким образом, в атмосфере остался азот, а кислород появился постепенно в результате жизнедеятельности биосферы. Еще 600 млн. лет назад содержание кислорода в воздухе было раз в 100 ниже нынешнего. Существуют указания, что климат Земли изменяется в короткой (10 000 лет) и длинной (100 млн. лет) шкалах. Причиной этого могут быть изменения орбитального движения Земли, наклона оси вращения, частоты вулканических извержений. Не исключены и колебания интенсивности солнечного излучения. В нашу эпоху на климат влияет и деятельность человека: выбросы газов и пыли в атмосферу. У Земли есть спутник – Луна, происхождение которой до сих пор не разгадано. 6. Луна Один из крупнейших спутников, Луна находится на втором месте после Харона (спутника Плутона) по отношению масс спутника и планеты. Сила тяжести на лунной поверхности в 6 раз меньше земной. Луна обращается вокруг Земли. Суточное вращение и орбитальное обращение Луны синхронизованы, поэтому мы всегда видим только одно ее полушарие. Правда, небольшие покачивания Луны позволяют в течение месяца увидеть около 60% ее поверхности. Основная причина либраций в том, что суточное вращение Луны происходит с постоянной скоростью, а орбитальное обращение – с переменной (вследствие эксцентричности орбиты). Участки лунной поверхности издавна условно делят на «морские» и «материковые». Поверхность морей выглядит темнее, лежит ниже и значительно реже покрыта метеоритными кратерами, чем материковая поверхность. Моря залиты базальтовыми лавами, а материки сложены анортозитовыми породами, богатыми полевыми шпатами. Судя по большому количеству кратеров, материковые поверхности значительно старше морских. Интенсивная метеоритная бомбардировка сделала верхний слой лунной коры мелко раздробленным, а наружные несколько метров превратила в порошок, называемый реголитом. Астронавты и автоматические зонды доставили с Луны образцы скального грунта и реголита. Анализ показал, что возраст морской поверхности около 4 млрд. лет. Следовательно, период интенсивной метеоритной бомбардировки приходится на первые 0,5 млрд. лет после образования Луны 4,6 млрд. лет назад. Затем частота падения метеоритов и образования кратеров практически не изменялась и составляет до сих пор один кратер диаметром 1 км за 105 лет. Лунные породы бедны летучими элементами и железом, но богаты тугоплавкими элементами . Лишь на дне лунных полярных кратеров могут быть залежи льда, такие, как на Меркурии. Атмосферы у Луны практически нет и нет свидетельств, что лунный грунт когда-либо подвергался воздействию жидкой воды. Нет в нем и органических веществ – лишь следы углистых хондритов, попавшие с метеоритами. Отсутствие воды и воздуха, а также сильные колебания температуры поверхности (390C днем и 120 C ночью) делают Луну непригодной для жизни. Доставленные на Луну сейсмометры позволили узнать кое-что о лунных недрах. Там часто происходят слабые «лунотрясения», вероятно, связанные с приливным влиянием Земли. Луна довольно однородна, имеет маленькое плотное ядро и кору толщиной около 65 км из более легких материалов, причем верхние 10 км коры раздроблены метеоритами еще 4 млрд. лет назад. Крупные ударные бассейны распределены по лунной поверхности равномерно, но толщина коры на видимой стороне Луны меньше, поэтому именно на ней сосредоточено 70% морской поверхности. История лунной поверхности в целом известна: после окончания 4 млрд. лет назад этапа интенсивной метеоритной бомбардировки еще около 1 млрд. лет недра были достаточно горячими и базальтовая лава изливалась в моря. Затем лишь редкое падение метеоритов меняло лик нашего спутника. А вот о происхождении Луны до сих пор спорят. Она могла сформироваться самостоятельно и затем быть захваченной Землей; могла сформироваться вместе с Землей как ее спутник; наконец, могла отделиться от Земли в период формирования. Вторая возможность еще недавно была популярна, но в последние годы серьезно рассматривается гипотеза образования Луны из вещества, выброшенного прото-Землей при столкновении с крупным небесным телом. Несмотря на неясность происхождения системы Земля – Луна, дальнейшая их эволюция прослеживается довольно надежно. Приливное взаимодействие существенно влияет на движение небесных тел: суточное вращение Луны практически уже прекратилось (его период уравнялся с орбитальным), а вращение Земли замедляется, передавая свой момент импульса орбитальному движению Луны, которая в результате удаляется от Земли примерно на 3 см в год. Это прекратится, когда вращение Земли выровняется с движением Луны. Тогда Земля и Луна будут постоянно повернуты друг к другу одной стороной (как Плутон и Харон), а их сутки и месяц станут равны 47 нынешним суткам; при этом Луна удалится от нас в 1,4 раза. Правда, и эта ситуация не сохранится навсегда, ибо не прекратят действовать на вращение Земли солнечные приливы. 7. Марс Марс похож на Землю, но почти вдвое меньше ее и имеют несколько меньшую среднюю плотность. Период суточного вращения (24 ч 37 мин) и наклон оси (24°) почти не отличаются от земных. Земному наблюдателю Марс кажется красноватой звездочкой, блеск которой заметно меняется; он максимален в периоды противостояний, повторяющиеся через два с небольшим года (например, в апреле 1999 и в июне 2001). Особенно близок и ярок Марс в периоды великих противостояний, происходящих, если он в момент противостояния проходит вблизи перигелия; это случается через каждые 15–17 лет. В телескоп на Марсе видны яркие оранжевые области и более темные районы, тон которых меняется в зависимости от сезона. На полюсах лежат ярко-белые снежные шапки. Красноватый цвет планеты связан с большим количеством окислов железа (ржавчины) в ее грунте. Разреженная атмосфера Марса состоит на 95% из углекислого газа и на 3% из азота. В малом количестве присутствуют водяной пар, кислород и аргон. При таком низком давлении не может быть жидкой воды. Средняя дневная температура 240 C, а максимальная летом на экваторе достигает 290 C. Суточные колебания температуры около 100 C. Таким образом, климат Марса – это климат холодной, обезвоженной высокогорной пустыни. В высоких широтах Марса зимой температура опускается ниже 150 C и атмосферный углекислый газ замерзает и выпадает на поверхность белым снегом, образуя полярную шапку. Периодическая конденсация и сублимация полярных шапок вызывает сезонные колебания давления атмосферы на 30%. К концу зимы граница полярной шапки опускается до 45°–50° широты, а летом от нее остается небольшая область (300 км диаметром у южного полюса и 1000 км у северного), вероятно, состоящая из водяного льда, толщина которого может достигать 1–2 км. Иногда на Марсе дуют сильные ветры, поднимающие в воздух тучи мелкого песка. Особенно мощные пылевые бури бывают в конце весны в южном полушарии, когда Марс проходит через перигелий орбиты и солнечное тепло особенно велико. На недели и даже месяцы атмосфера становится непрозрачной от желтой пыли. Отложения пыли так сильно меняют вид марсианской поверхности от сезона к сезону, что это заметно даже с Земли при наблюдении в телескоп. В прошлом эти сезонные изменения цвета поверхности некоторые астрономы считали признаком растительности на Марсе. Геология Марса весьма разнообразна. Большие пространства южного полушария покрыты старыми кратерами, оставшимися от эпохи древней метеоритной бомбардировки (4 млрд. лет назад). Значительная часть северного полушария покрыта более молодыми лавовыми потоками. Особенно интересна возвышенность Фарсида, на которой расположены несколько гигантских вулканических гор. Высочайшая среди них – гора Олимп – имеет поперечник у основания 600 км и высоту 25 км. Хотя признаков вулканической активности сейчас нет, возраст лавовых потоков не превышает 100 млн. лет, что немного по сравнению с возрастом планеты 4,6 млрд. лет. Хотя древние вулканы указывают на некогда мощную активность марсианских недр, признаков тектоники плит нет: отсутствуют складчатые горные пояса и другие указатели сжатия коры. Однако есть мощные рифтовые разломы, крупнейший из которых – долины Маринера – тянется от Фарсиды к востоку на 4000 км при максимальной ширине 700 км и глубине 6 км. Одним из интереснейших геологических открытий, сделанных по снимкам с космических аппаратов, стали разветвленные извилистые долины длиной в сотни километров, напоминающие высохшие русла земных рек. Это наводит на мысль о более благоприятном климате в прошлом, когда температура и давление могли быть выше и по поверхности Марса текли реки. Правда, расположение долин в южных, сильно кратерированных районах Марса указывает на то, что реки на Марсе были очень давно, вероятно, в первые 0,5 млрд. лет его эволюции. Теперь вода лежит на поверхности в виде льда полярных шапок и, возможно, под поверхностью в виде слоя вечной мерзлоты. Внутреннее строение Марса изучено слабо. Его низкая средняя плотность свидетельствует об отсутствии значительного металлического ядра; во всяком случае оно не расплавлено, что следует из отсутствия у Марса магнитного поля. Сейсмометр на посадочном блоке аппарата «Викинг-2» не зафиксировал сейсмической активности планеты за 2 года работы (на «Викинге-1» сейсмометр не действовал). Марс имеет два маленьких спутника – Фобос и Деймос. Оба они неправильной формы, покрыты метеоритными кратерами и, вероятно, являются астероидами, захваченными планетой в далеком прошлом. Фобос обращается вокруг планеты по очень низкой орбите и продолжает приближаться к Марсу под действием приливов позже он будет разрушен притяжением планеты. 8. Юпитер Крупнейшая планета Солнечной системы, Юпитер, в 11 раз больше Земли и в 318 раз массивнее ее. Его низкая средняя плотность указывает на состав, близкий к солнечному: в основном это водород и гелий. Быстрое вращение Юпитера вокруг оси вызывает его полярное сжатие на 6,4%. В телескоп на Юпитере видны облачные полосы, параллельные экватору; светлые зоны в них перемежаются красноватыми поясами. Вероятно, светлые зоны – это области восходящих потоков, где видны верхушки аммиачных облаков; красноватые пояса связаны с нисходящими потоками, яркий цвет которых определяют гидросульфат аммония, а также соединения красного фосфора, серы и органические полимеры. Температура на уровне верхушек аммиачных облаков 125C, но с глубиной она увеличивается на 2,5 C/км. На глубине 60 км должен быть слой водяных облаков. Скорости движения облаков в зонах и соседних поясах существенно различаются: так, в экваториальном поясе облака движутся к востоку на 100 м/с быстрее, чем в соседних зонах. Разница скоростей вызывает сильную турбулентность на границах зон и поясов, что делает их форму весьма замысловатой. Одним из проявлений этого служат овальные вращающиеся пятна, крупнейшее из которых – Большое Красное Пятно – было открыто более 300 лет назад Кассини. Это пятно больше диска Земли, оно имеет спиральную циклоническую структуру и совершает один оборот вокруг оси за 6 сут. Остальные пятна меньшего размера и почему-то все белые. У Юпитера нет твердой поверхности. Верхний слой планеты протяженностью 25% радиуса состоит из жидкого водорода и гелия. Ниже, где давление превышает 3 млн. бар, а температура 10 000 C, водород переходит в металлическое состояние. Возможно, вблизи центра планеты есть жидкое ядро из более тяжелых элементов с общей массой порядка 10 масс Земли. В центре давление около 100 млн. бар и температура 20–30 тыс. C. Жидкие металлические недра и быстрое вращение планеты стали причиной ее мощного магнитного поля, которое в 15 раз сильнее земного. Огромная магнитосфера. Юпитера с мощными радиационными поясами простирается за орбиты его четырех крупных спутников. Температура в центре Юпитера всегда была ниже, чем необходимо для протекания термоядерных реакций. Но внутренние запасы тепла у Юпитера, оставшиеся с эпохи формирования, велики. Даже сейчас, спустя 4,6 млрд. лет, он выделяет примерно столько же тепла, сколько получает от Солнца; в первый миллион лет эволюции мощность излучения Юпитера была в 104 раз выше. Поскольку это была эпоха формирования крупных спутников планеты, не удивительно, что их состав зависит от расстояния до Юпитера: два ближайших к нему – Ио и Европа – имеют довольно высокую плотность (3,5 и 3,0 г/см3), а более далекие – Ганимед и Каллисто – содержат много водяного льда и поэтому менее плотны. У Юпитера не менее 16 спутников и слабое кольцо: оно удалено на 53 тыс. км от верхнего слоя облаков, имеет ширину 6000 км и состоит, по-видимому, из мелких и очень темных твердых частиц. Четыре крупнейших спутника Юпитера называют галилеевыми, поскольку их открыл Галилей в 1610; независимо от него в том же году их обнаружил немецкий астроном Марий, давший им нынешние имена – Ио, Европа, Ганимед и Каллисто. Наименьший из спутников – Европа – чуть меньше Луны, а Ганимед больше Меркурия. На поверхности Ио «Вояджеры» обнаружили несколько действующих вулканов, выбрасывающих вещество на сотни километров вверх. Поверхность Ио покрыта рыжеватыми отложениями серы и светлыми пятнами двуокиси серы – продуктами вулканических извержений. В виде газа двуокись серы образует крайне разреженную атмосферу Ио. Энергия вулканической деятельности черпается из приливного влияния планеты на спутник. Орбита Ио проходит в радиационных поясах Юпитера, и давно уже установлено, что спутник сильно взаимодействует с магнитосферой, вызывая в ней радиовсплески. В 1973 вдоль орбиты Ио обнаружен тор из светящихся атомов натрия; позже там были найдены ионы серы, калия и кислорода. Экати вещества выбиваются энергичными протонами радиационных поясов либо прямо из поверхности Ио, либо из газовых «плюмажей» вулканов. Хотя приливное влияние Юпитера на Европу слабее, чем на Ио, его недра тоже могут быть частично расплавлены. Спектральные исследования показывают, что на поверхности Европы лежит водяной лед, а его красноватый оттенок, вероятно, связан с загрязнением серой от Ио. Почти полное отсутствие ударных кратеров указывает на геологическую молодость поверхности. Складки и разломы ледяной поверхности Европы напоминают ледяные поля земных полярных морей; вероятно, на Европе под слоем льда находится жидкая вода. Ганимед – крупнейший спутник в Солнечной системе. Его плотность невелика; вероятно, он состоит наполовину из каменных пород и наполовину из льда. Его поверхность выглядит странно и хранит следы расширения коры, возможно, сопровождавшего процесс дифференциации недр. Участки древней кратерированной поверхности разделены более молодыми желобами, длиной в сотни километров и шириной 1–2 км, лежащими на расстоянии 10–20 км друг от друга. Вероятно, это более молодой лед, образовавшийся при излиянии воды сквозь трещины сразу после дифференциации около 4 млрд. лет назад. Каллисто похож на Ганимед, но на его поверхности нет следов разломов; вся она очень старая и сильно кратерированная. Поверхность обоих спутников покрыта льдом вперемежку с горными породами типа реголита. Но если на Ганимеде лед составляет около 50%, то на Каллисто – менее 20%. Состав горных пород Ганимеда и Каллисто, вероятно, похож на состав углеродистых метеоритов. Из дюжины малых спутников Юпитера четыре расположены ближе галилеевых к планете; крупнейший из них Амальтея – кратерированный объект неправильной формы. Его темная поверхность – очень красная – возможно, покрыта серой с Ио. Внешние малые спутники Юпитера делятся на две группы в соответствии с их орбитами: 4 более близких к планете обращаются в прямом (относительно вращения планеты) направлении, а 4 более далеких – в обратном. Все они маленькие и темные; вероятно, они захвачены Юпитером из числа астероидов группы Троянцев. 9. Cатурн Вторая по размеру планета-гигант. Это водородно-гелиевая планета, однако относительное содержание гелия у Сатурна меньше, чем у Юпитера; ниже и его средняя плотность. Быстрое вращение Сатурна приводит к его большой сплюснутости (11%). Верхние области его атмосферы заполнены рассеивающим свет аммиачным туманом. Сатурн дальше от Солнца, поэтому температура его верхней атмосферы на 35 C ниже, чем у Юпитера, и аммиак находится в сконденсированном состоянии. С глубиной температура атмосферы возрастает на 1,2 C/км, поэтому облачная структура напоминает юпитерианскую: под слоем облаков из гидросульфата аммония находится слой водяных облаков. По внутреннему строению Сатурн также напоминает Юпитер, хотя из-за меньшей массы имеет меньшее давление и температуру в центре Магнитное поле Сатурна сравнимо с земным. Как и Юпитер, Сатурн выделяет внутреннее тепло, причем вдвое больше, чем получает от Солнца. Правда, это отношение больше, чем у Юпитера, потому, что расположенный вдвое дальше Сатурн получает от Солнца вчетверо меньше тепла. Кольца Сатурна. Сатурн опоясан уникально мощной системой колец до расстояния 2,3 радиуса планеты. Они легко различимы при наблюдении в телескоп, а при изучении с близкого расстояния демонстрируют исключительное разнообразие: от массивного кольца B до узкого кольца F, от спиральных волн плотности до совершенно неожиданных радиально вытянутых «спиц», открытых «Вояджерами». Частицы, заполняющие кольца Сатурна, значительно лучше отражают свет, чем вещество темных колец Урана и Нептуна; их исследование в разных спектральных диапазонах показывает, что это «грязные снежки» с размерами порядка метра. Три классических кольца Сатурна по порядку от внешнего к внутреннему обозначают буквами A, B и C. Кольцо B довольно плотное: радиосигналы от «Вояджера» проходили через него с трудом. Промежуток в 4000 км между кольцами A и B, называемый делением (или щелью) Кассини, в действительности не пуст, а по плотности сравним с бледным кольцом C, которое раньше называли креповым кольцом. Вблизи внешнего края кольца A есть менее заметная щель Энке. В 1859 Максвелл заключил, что кольца Сатурна должны состоять из отдельных частиц, обращающихся по орбитам вокруг планеты. В конце 19 в. это было подтверждено спектральными наблюдениями, показавшими, что внутренние части колец обращаются быстрее внешних. Поскольку кольца лежат в плоскости экватора планеты, а значит, наклонены к орбитальной плоскости на 27°, Земля дважды за 29,5 лет попадает в плоскость колец, и мы наблюдаем их с ребра. В этот момент кольца «пропадают», что доказывает их очень малую толщину – не более нескольких километров. Детальные изображения колец, полученные «Пионером-11» (1979) и «Вояджерами» (1980 и 1981), показали значительно более сложную их структуру, чем ожидалось. Кольца разделены на сотни отдельных колечек с типичной шириной в несколько сотен километров. Даже в щели Кассини оказалось не менее пяти колечек. Детальный анализ показал, что кольца неоднородны как по размеру, так, возможно, и по составу частиц. Сложная структура колец, вероятно, обязана гравитационному влиянию маленьких близких к ним спутников, о которых прежде и не подозревали. Вероятно, самым необычным является тончайшее кольцо F, открытое в 1979 «Пионером» на расстоянии 4000 км от внешнего края кольца A. «Вояджер-1» обнаружил, что кольцо F перекручено и заплетено, как коса, но пролетавший 9 мес. спустя «Вояджер-2» нашел строение кольца F значительно более простым: «пряди» вещества уже не переплетались между собой. Такая структура и ее быстрая эволюция частично объясняются влиянием двух маленьких спутников (Прометей и Пандора), движущихся у внешнего и внутреннего краев этого кольца; их называют «сторожевыми псами». Не исключено, однако, присутствие еще более мелких тел или временных скоплений вещества внутри самого кольца F. Спутники. У Сатурна не менее 18 спутников. Большинство их них, вероятно, ледяные. У некоторых очень интересные орбиты. Например, у Януса и Эпиметея почти одинаковые радиусы орбит. По орбите Дионы на 60° впереди нее (это положение называют лидирующей точкой Лагранжа) движется меньший спутник Елена. Тефию сопровождают два маленьких спутника – Телесто и Калипсо – в лидирующей и отстающей точках Лагранжа ее орбиты. С хорошей точностью измерены радиусы и массы семи спутников Сатурна (Мимас, Энцелад, Тефия, Диона, Рея, Титан и Япет). Все они в основном ледяные. Те, что поменьше, имеют плотности 1–1,4 г/см3, что близко к плотности водяного льда с большей или меньшей примесью горных пород. Содержат ли они метановый и аммиачный лед, пока не ясно. Более высокая плотность Титана (1,9 г/см3) есть результат его большой массы, вызывающей сжатие недр. По диаметру и плотности Титан очень похож на Ганимеда; вероятно, и внутренняя структура у них схожая. Титан второй по размеру спутник в Солнечной системе, а уникален он тем, что имеет постоянную мощную атмосферу, состоящую в основном из азота и небольшого количества метана. Давление у его поверхности 1,6 бар, температура 90 К. При таких условиях на поверхности Титана может быть жидкий метан. Верхние слои атмосферы до высот 240 км заполнены оранжевыми облаками, вероятно, состоящими из частиц органических полимеров, синтезирующихся под влиянием ультрафиолетовых лучей Солнца. Остальные спутники Сатурна слишком малы, чтобы иметь атмосферу. Их поверхности покрыты льдом и сильно кратерированы. Лишь на поверхности Энцелада значительно меньше кратеров. Вероятно, приливное влияние Сатурна поддерживает его недра в расплавленном состоянии, а удары метеоритов приводят к излиянию воды и заполнению кратеров. Некоторые астрономы считают, что частицы с поверхности Энцелада образовали широкое кольцо E, протянувшееся вдоль его орбиты. Очень интересен спутник Япет, у которого заднее (относительно направления орбитального движения) полушарие покрыто льдом и отражает 50% падающего света, а переднее полушарие такое темное, что отражает только 5% света; оно покрыто чем-то вроде вещества углистых метеоритов. Возможно, на переднее полушарие Япета попадает вещество, выброшенное под действием метеоритных ударов с поверхности внешнего спутника Сатурна Фебы. В принципе это возможно, поскольку Феба движется по орбите в обратном направлении. К тому же поверхность Фебы довольно темная, но точных данных о ней пока нет. 10. Уран Уран имеет цвет морской волны и выглядит невыразительно, поскольку верхние слои его атмосферы заполнены туманом, сквозь который пролетавшему вблизи него в 1986 зонду «Вояджер-2» с трудом удалось увидеть несколько облаков. Ось планеты наклонена к орбитальной оси на 98,5°, т.е. лежит почти в плоскости орбиты. Поэтому каждый из полюсов некоторое время обращен прямо на Солнце, а затем на полгода (42 земных года) уходит в тень. Атмосфера Урана содержит в основном водород, 12–15% гелия и немного других газов. Температура атмосферы около 50 К, хотя в верхних разреженных слоях она поднимается до 750 К днем и 100 К ночью. Магнитное поле Урана по напряженности у поверхности немного слабее земного, а его ось наклонена к оси вращения планеты на 55°. О внутренней структуре планеты известно мало. Вероятно, облачный слой простирается до глубины 11 000 км, затем следует горячий водяной океан глубиной 8000 км, а под ним расплавленное каменное ядро радиусом 7000 км. Кольца. В 1976 были открыты уникальные кольца Урана, состоящие из отдельных тонких колечек, самая широкая из которых имеет толщину 100 км. Кольца расположены в диапазоне расстояний от 1,5 до 2,0 радиусов планеты от ее центра. В отличие от колец Сатурна кольца Урана состоят из крупных темных камней. Полагают, что в каждом кольце движется маленький спутник или даже два спутника, как в кольце F Сатурна. Спутники. Открыто 20 спутников Урана. Крупнейшие – Титания и Оберон – диаметром по 1500 км. Есть еще 3 крупных, размером более 500 км, остальные очень маленькие. Спектры поверхности пяти крупных спутников указывают на большое количество водяного льда. Поверхности всех спутников покрыты метеоритными кратерами. 11. Нептун Внешне Нептун похож на Уран; в его спектре также доминируют полосы метана и водорода. Поток тепла от Нептуна заметно превышает мощность падающего на него солнечного тепла, что указывает на существование внутреннего источника энергии. Возможно, значительная часть внутреннего тепла выделяется в результате приливов, вызванных массивным спутником Тритоном, который обращается в обратном направлении на расстоянии 14,5 радиуса планеты. «Вояджер-2», пролетев в 1989 на расстоянии 5000 км от облачного слоя, обнаружил у Нептуна еще 6 спутников и 5 колец. В атмосфере были открыты Большое Темное Пятно и сложная система вихревых потоков. На розоватой поверхности Тритона обнаружились удивительные геологические детали, включая мощные гейзеры. Открытый «Вояджером» спутник Протей оказался больше Нереиды, обнаруженной с Земли еще в 1949. 12. Плутон У Плутона сильно вытянутая и наклоненная орбита; в перигелии он приближается к Солнцу на 29,6 а.е. и удаляется в афелии на 49,3 а.е. В 1989 Плутон прошел перигелий; с 1979 по 1999 он был ближе к Солнцу, чем Нептун. Однако из-за большого наклона орбиты Плутона его путь никогда не пересекается с Нептуном. Средняя температура поверхности Плутона 50 К, она изменяется от афелия к перигелию на 15 К, что весьма заметно при таких низких температурах. В частности, это приводит к появлению разреженной метановой атмосферы в период прохождения планетой перигелия, но ее давление в 100 000 раз меньше давления земной атмосферы. Плутон не может долго удерживать атмосферу – ведь он меньше Луны. Спутник Плутона Харон обращается за 6,4 сут близко от планеты. Его орбита очень сильно наклонена к эклиптике, так что затмения происходят лишь в редкие эпохи прохождения Земли через плоскость орбиты Харона. Яркость Плутона регулярно меняется с периодом 6,4 сут. Следовательно, Плутон вращается синхронно с Хароном и на поверхности у него есть крупные пятна. По отношению к размеру планеты Харон очень велик. Часто пару Плутон – Харон называют «двойной планетой». Одно время Плутон считали «сбежавшим» спутником Нептуна, но после открытия Харона это выглядит маловероятным. 13. И так, что же такое Солнечная система Солнечная система, система небесных тел (Солнце, планеты, спутники планет, кометы, метеорные тела, космическая пыль), двигающихся в области преобладающего гравитационного влияния Солнца. Наблюдаемые размеры Солнечная система определяются орбитой Плутона. Однако сфера, в пределах которой возможно устойчивое движение небесных тел вокруг Солнца, простирается почти до ближайших звёзд. Информацию о далёкой внешней области Солнечная система получают при наблюдениях приближающихся к Солнцу долгопериодических комет и при изучении космической пыли, заполняющей всю Солнечная система Общая структура Солнечная система была раскрыта Н. Коперником (середина 16 в.), который обосновал представление о движении Земли и др. планет вокруг Солнца. Гелиоцентрическая система Коперника впервые дала возможность определить относительные расстояния планет от Солнца, а следовательно, и от Земли. И. Кеплер открыл (начало 17 в.) законы движения планет, а И. Ньютон сформулировал (конец 17 в.) закон всемирного тяготения. Эти законы легли в основу небесной механики, исследующей движение тел Солнечная система Изучение физических характеристик космических тел, входящих в Солнечная система, стало возможным только после изобретения Г. Галилеем телескопа: в 1609 Галилей впервые направил изготовленный им маленький телескоп на Луну, Венеру, Юпитер и Сатурн и сделал ряд поразительных для его эпохи открытий. Наблюдая солнечные пятна, Галилей обнаружил вращение Солнца вокруг своей оси. По физическим характеристикам большие планеты разделяются на внутренние (Меркурий, Венера, Земля, Марс) и внешние планеты-гиганты (Юпитер, Сатурн, Уран, Нептун). Физические характеристики Плутона качественно отличны от характеристик планет-гигантов, и потому он не может быть отнесён к их числу. Обширная программа наблюдений, выполненная в 1963 американским астрономом К. Томбо для поиска планет, находящихся за пределами орбиты Плутона, не дала положительных результатов. В табл. приведены оскулирующие элементы больших планет (по Остервинтеру и Когену, США, 1972). Орбиты больших планет мало наклонены друг к другу и к фундаментальной плоскости Солнечная система (т. н. Лапласа неизменяемой плоскости). На данный момент изучение Солнечной системы продолжается и неизвестно какие сюрпризы оно нам принесет в дальнейшем. bukvasha.ru всё связано со всем ( 3 класс)Внеурочная деятельность 3 класс. Учитель: Горбунова Т.Н. факультатив «Экология учебной деятельности» Раздел: « Учусь экологическому мышлению» Тема: Роль Солнца на Земле: всё связано со всем. Учебная задача: дети должны узнать о роли Солнца на Земле для этого дети должны научиться: целенаправленно находить информацию, выделять главную мысль. Самостоятельно заполнять таблицу. Формирование УУД: Личностные:Ценить и принимать базовые ценности «природа», «наука». Развитие познавательных интересов, учебных мотивов. Метапредметные: Уметь определять и формулировать цель на уроке с помощью учителя; проговаривать последовательность действий на уроке; работать по плану; планировать своё действие в соответствии с поставленной задачей; высказывать своё предположение (Регулятивные УУД). Уметь оформлять свои мысли в устной форме; слушать и понимать речь других; договариваться и распределять обязанности (Коммуникативные УУД). Уметь находить информацию, проверять её, представлять в виде таблицы, образа. (Познавательные УУД Ход занятия .
(Вхождение в занятие по методу озвученного выдоха. Звук с.) «С маленькой удачи начинаются большие успехи» -Как вы понимаете эти слова? -Надеюсь, что и наши маленькие удачи приведут нас к новым знаниям и большому успеху. Что пожелаете своим товарищам и себе перед началом урока? (Успеха, удачи)
Ребята, сегодня мы продолжим работу с одним из богатств, которое нам дарит природа. Отгадайте загадку Всем оно нам нравится, Без него мы плачемся А едва появится – взгляд отводим, прячемся: Уж больно оно яркое И жаркое-прежаркое. - Что это? (Солнце) - Сформулируйте тему нашего занятия, вспомнив предыдущие занятия из раздела "Учусь экологическому мышлению".
- А чтобы вы хотели узнать из нашего занятия? Сегодня мы будем работать в трёх лабораториях. Первая занимается вопросами роли солнца для природы, вторая работает над проблемой роли солнца для хозяйственной деятельности человека, третья исследует роль солнца для здоровья человека. Вами изучено много литературы, проведены исследования (опыты). Подумайте, какая проблема вас больше заинтересовала, знаниями по какому вопросу вы хотели бы поделиться и выберите лабораторию в которой вы будете работать. Определились, можете занять свои места. А я сегодня буду в роли астронома. Под каким девизом мы работаем? «Кто ищет, тот всегда найдёт».
4.1 Информация учителя Роль Солнца была замечена еще в древности. Древние люди поклонялись Солнцу, как богу. Они благодарили его за тепло и приветствовали его восход по утрам. В мифах и сказках всех народов мира Солнце занимало всегда главное место. У всех народов Солнце – главное божество, например Ра у древних египтян, лучезарный бог Гелиос у древних греков, Дажьбог и Ярило у древних славян. Загадочное и далёкое, окутанное покровами тайн, наше дневное светило привлекало внимание и учёных. Вот лишь некоторые факты открытий ученых - «Солнце в цифрах». Итак, СОЛНЦЕ – это….. звезда, громаднейший раскалённый газовый шар. Самый огромный при всей Солнечной системе. Радиус - 696 000 км. Радиус Солнца в 109 раз больше радиуса Земли. Если представить, что солнце величиной с арбуз, то рядом с ним самая большая планета Юпитер будет выглядеть как небольшое яблоко, а наша Земля как ягода смородины Солнце самая тяжёлая звезда, тяжелее всех планет. Масса – в 330 000 раз больше массы Земли. В центре Солнца температура составляет 15 млн. градусов, температура поверхности – 6000С Температура в центре Солнца достигает 15 млн. градусов и под воздействием этой невообразимой высокой температуры в солнечном веществе происходят изменения в результате этого получается свет и тепло. Солнечный свет и тепло обеспечивают существование жизни на Земле. Среднее расстояние от Земли - 150 млн. км Мы говорим, что Солнце самая близкая к нам звезда. Но это не означает , что расстояние от Земли до Солнца маленькое. Вам, наверное , сложно представить насколько велико это расстояние. И чтобы вам в этом помочь послушайте такую историю. Сказка про Солнце Жил да был Звездочёт. Каждую ночь он наблюдал за далёкими звёздами, а днём изучал самую близкую к нам звезду - Солнце, пытаясь разгадать тайну её рождения. Но время шло, Звездочёт старел. А тайна оставалась неразгаданной. И тогда Звездочёт решил полететь к Солнцу, чтобы всё увидеть самому. Возьму свою карету, запрягу в неё пару сильных лошадей, да и помчусь!- решил он. Что ты! Что ты! заскрипела карета, - мне не выдержать такого длинного путешествия я развалюсь на дороге! Ведь оно продлится не меньше 500 лет! Возьми уж лучше автомобиль! Послушался Звездочёт, выбрал самую быструю и красивую машину. Но едва взялся за руль, как зафырчал мотор. Фр- р! Не буду включаться! 100 лет работать без отдыха ! Не желаю! Не соглашайся, - прошуршала шина, - В космосе для машин нет дорог Пусть возьмёт самолёт, он по крайней мере умеет летать. Отправился Звездочёт к Самолёту: Отнеси меня, пожалуйста, на Солнце. Я очень тороплюсь. Сколько времени понадобится тебе для этого? 10 лет! Но я не могу выполнить твою просьбу. В космосе нет воздуха, и моим крыльям не на что опираться. Иди к моей сестре, Красавице-ракете. Только она может летать в безвоздушном пространстве. Ты правильно поступил, что обратился ко мне, человек! - серебристым голосом пропела Ракета,- Не пройдёт и года, как мы будем у цели. Я самая выносливая, самая быстрая, только я одна знаю туда дорогу. Садись! Только было Звездочёт собрался, занять место в кабине корабля, как из-за туч выглянуло Солнце и его золотистые лучи брызнули во все стороны. Один солнечный луч коснулся щеки Звездочёта и шепнул: Ракете нужен год, а мне только 8 минут. Полетели? Обрадовался Звездочёт, потянулся за солнечным лучом - и пропал из глаз Возраст - около 5 млрд. лет Это лишь некоторые факты открытий ученых. А мы сегодня попытаемся тоже пойти по стопам учёных и ответить на некоторые вопросы, связанные с этим загадочным небесным телом. Каждая группа, работая в своем направлении, оценив, переработав свои знания о солнце, найденные факты, результаты исследований, проведенных опытов, должна составить «научный доклад» в соответствии с предложенным алгоритмом.
1.Организация работы групп по предложенным планам. 2. Защита докладов. - Первыми выступают исследователи природы, а остальные начнут работать с таблицей Заполнение таблицы по группам. Роль солнца. Для природы Для хозяйственной деятельности людей Для здоровья человека а) Роль солнца для природы. (Выступает первая группа). Приложение 1. Люди с давних пор относятся к Солнцу с любовью и особым уважением. Ведь они поняли, что без Солнца не прожить ни человеку, ни зверю, ни растению. Солнце - это мощный источник энергии, а энергия - источник жизни. Земля получает лишь малую часть излучаемого солнечного тепла. Но и этого тепла хватает для всего живого на Земле. -Что дает Солнце? Солнце дает Земле свет и тепло. Без этого на Земле постоянно царили бы темнота и такой холод, что все живое не могло бы существовать. План. 1)Объясните в данной последовательности роль солнца:
2) Подберите необходимое оборудование и проиллюстрируйте роль солнца в смене времени суток. Вывод. Заполнение таблицы. б) Роль Солнца для хозяйственной деятельности человека. (Выступает вторая группа). Приложение 2. План. 1) Объясните в данной последовательности роль солнца: 1.Для выращивания урожая 2.Как источника энергии для работы приборов. 3.Как показателя времени 4. Как прибора для ориентирования на местности –компаса. 2) Подберите необходимое карточки и покажите наглядно работу солнечной батареи. Вывод. Заполнение таблицы. Физминутка “Солнышко” Закройте глаза, расслабьтесь, вытяните руки. Представьте, что на ладошках у вас лежит маленькое солнышко. Через пальчики, как лучики солнышка, идет тепло по рукам. Руки успокоились, отдыхают. Переключаем внимание на ноги. Солнечные лучики согревают стопы, пальцы ног. Усталость проходит, мышцы отдыхают. Обратите внимание на дыхание, мы дышим легко, равномерно. Откройте глаза. Улыбнитесь друг другу. в) Роль солнца для здоровья человека. (Выступает третья группа). План. 1)Распределить сведения по группам и выступить: 1) Польза солнца для здоровья человека 2) Вред солнца для здоровья человека 2) Составить памятку «Безопасное Солнце» Давайте разрешим их спор. Чьё мнение верно, солнце приносит абсолютную пользу или вред. Солнце полезно , но если им злоупотреблять, то оно вредно. А теперь давайте перенесёмся в лето. (Просмотр мультфильма “Ну, погоди!” (16-й выпуск) Этим примером показано, что солнце хорошо в меру. Чтобы такого не произошло ребята третьей группы составили для вас памятку безопасного солнца. Чтение памятки. -Очень ценные правила, пригодятся особенно в летние каникулы. Мы её размножим, чтобы она была у каждого, а ещё выступим перед ребятами других классов. Выполняя эти правила для вас Солнце всегда будет другом. Какая главная мысль этой таблицы? Какое огромное значение имеет солнца для всего для всего живого. Роль солнца. Для природы Для хозяйственной деятельности людей Для здоровья человека Главный источник света и тепла Для выращивания урожая Под воздействием солнца в организме вырабатывается витамин Д, Образование ветра Как источника энергии для работы приборов. . Воздействие солнечного света помогает избежать плохого настроения и депрессии Круговорот воды в природе Как показателя времени Смена времён года Как прибора для ориентирования на местности –компаса. Смена времени суток Для жизни организмов В создании определённых климатических условий г) Экологическая проблема. -Ходит очень много мифов о глобальном похолодании, о конце света, но я хочу вас успокоить Придёт время когда Солнце умрёт, израсходовав весь свой запас топлива Однако это случится не скоро. Ты до этого точно не доживёшь, не доживут и твои дети и даже твои прапрапрапраправнуки! Астрономы подсчитали, что Солнцу хватит топлива ещё как минимум на 5 миллиардов лет. 5. Рефлексия. - Если что-то осталось не понятным, то выберите короткий лучик. - Если урок для вас прошёл не зря, и вы узнали новое, интересное, то выберите средний лучик. - Если вы узнали много нового, интересного и ещё хотите ещё узнать , то выберите длинный лучик. 6. Итог - Велико значение Солнца для жизни на Земле. И пусть всегда ваш путь освещается солнцем, пусть будет больше ясных, теплых, солнечных дней в вашей жизни. Приложение 1. Примерное содержание выступления первой группы по теме: "Роль Солнца для природы" 1) Солнце - главный источник энергии на Земле Солнце дает Земле свет и тепло. свет - светит, видим окружающий мир тепло- греет, лучи нагревают Землю, от Земли нагревается воздух 2)Энергия Солнца приводит в движение огромные массы воздуха (образование ветра) 3)Энергия Солнца вызывает круговорот воды в природе дождь испаряет воду, пар поднимается вверх, собирается в тучи 4). Смена времен года (Вокруг Солнца Земля обращается против часовой стрелки и полный оборот совершает за 365 суток и 6 часов. 5) смена времени суток ( вращаясь вокруг себя наша Земля то поворачивается одним боком, то другим) По ночам становится темно, потому что Земля вертится вокруг своей оси и Солнце освещает то одну, то другую её половину. На той стороне Земли, которая поворачивается к Солнцу, наступает день, а на противоположной ночь. Полный оборот вокруг своей оси Земля делает за 24 часа (сутки). 6). Благодаря Солнцу развиваются и живут организмы
Опыт: Завернули лист зелёного растения в чёрную бумагу, После нескольких дней под бумагой зелёный листок стал бесцветным. Мы доказали, что растениям нужен свет, чтобы производить хлорофилл. В темноте растения погибают. 7) Климат обусловлен распределением солнечной энергии на земном шаре (опыт) Попробуй посветить фонариком на землю, держа его прямо. Свет будет ярким: так Солнце светит летом. А теперь посвети под углом :свет станет бледнее. Так Солнце светит зимой. Свет более рассеянный, поэтому зимой холодно. Это самое доказывает и другой опыт. Поставил плоские чаши на чёрный платок и наполнил их водой. Направил одну из настольных ламп на чашу таким образом, чтобы свет падал вертикально на воду. На вторую чашу свет должен падать под углом. При этом расстояние от ламп до центра чаш должно быть одинаковым..Температура в чаше, куда свет падает строго вертикально, значительно выше, чем у той, на которую лучи падают под углом. Приложение 2. Примерное содержание выступления второй группы по теме: "Роль Солнца для хозяйственной деятельности людей " Для выращивания урожая очень важно количество тепла, которое получает растение. Чем меньше солнечного света, тем меньше урожая можно получить. Все живое на земле возникло, благодаря энергии солнца. Ежесекундно на поверхность планеты поступает огромное количество энергии в виде солнечного излучения. Человек давно задумался как пустить энергию солнца на свои нужды. Учеными была изобретена конструкция прямого преобразователя солнечного света в электрическую энергию - солнечного элемента – солнечная батарея. Которую можно использовать для обогрева жилища, для зарядки сотовых телефонов, для нагрева воды. Вы наверняка обращали внимание, что обычный калькулятор работает при минимальной освещённости любой лампой. В нем так же был применен принцип солнечной батареи. Cолнечные батареи прекрасно зарекомендовали себя в космосе как достаточно надежный и стабильный источник энергии, способный работать очень длительное время. Понятно, что у нас не Турция, в которой сложно найти крышу без солнечной панели. Тем не менее, использовать энергию солнца можно и в наших широтах. Иркутские ученые установили в городе ветро-солнечную энергетическую установку » в одном из кварталов Иркутска. Горожане смогут при необходимости зарядить от установки свои сотовые телефоны. Благодаря солнечному свету днём появляются тени от предметов. Наблюдения за тенью позволило человеку создать солнечные часы. Некоторые из подобных часов шли достаточно точно. У них вместо циферблата – расчётная площадка под открытым небом. Вместо стерженька для стрелок посреди площадки колышек. Взамен самих стрелок – тень от колышка. Ходит солнце по небу – ходит по площадке тень и точь-в-точь как часовая стрелка, показывает время. Опыт: Мы тоже провели такой опыт. Поместил палку в цветочный горшок ,закрепив его в земле строго вертикально. Поставил его так чтобы он целый день находился на солнце. Отмечал тень каждый истёкший час, ставя фломастером чёрточки по краю цветочного горшка, куда падает тень от палки, в результате этого у меня получился циферблат. Так как земля вращается, нам видно, как Солнце движется с востока на запад. Тень от палки движется вдоль внутренней стороны горшка., тем самым показывая время. Я наблюдал несколько дней, мои часы шли практически точно. Первые мореходы ночью ориентировались по расположению звёзд на небе, а днём по высоте солнца над горизонтом. Приложение 3. Примерное содержание выступления второй группы по теме: "Роль Солнца для здоровья " При обсуждении проблемы о роли солнца для здоровья человека в нашей группе возникли разногласия. У нас 2 точки зрения: солнце полезно – солнце вредно! Рассудите нас! Солнечный свет и тепло очень полезны организму человека. Это – условие благополучного роста и развития ребёнка. Под воздействием солнца в организме вырабатывается витамин Д, который активизирует процесс поглощения кальция из пищи и незаменим для формирования костей и зубов. При его недостатке развивается заболевание – рахит. Значит, чем больше ты находишься на солнце, тем - здоровее. Нет, солнце может быть вредным для здоровья. Если долго загорать на ярком солнце – можно получить солнечный ожог. Признаками солнечного ожога являются покраснение кожи, озноб, головная боль, рвота. Если находится долго под прямыми лучами солнца, то есть опасность перегреть голову и получить солнечный удар, который сопровождается головной болью, головокружением, слабостью. Правы оба, но солнечные ванны можно применять только утром или вечером, между 11 и 15 часами лучше находиться в тени. Загорать в это время также нельзя. Непродолжительное воздействие прямых солнечных лучей на незащищенную кожу полезно для здоровья. в солнечную погоду необходимо гулять только в головном уборе. Если вы хотите уберечь себя от солнечного ожога, то используйте специальный крем для защиты от солнца. Если кожа покраснела, обязательно скажите об ожоге взрослым. Погрузите обожженный участок в холодную воду или прикладывайте к обожженному участку кожи пропитанное водой полотенце по 15 мин 4 раза в день. Оставьте кожу влажной, чтобы вода, испаряясь, охлаждала ее. Если кожа покрылась волдырями – это ожог II степени, следуйте обратиться к врачу. Солнце полезно. Воздействие солнечного света помогает избежать плохого настроения и депрессии, особенно если долго им любоваться Солнечная активность приводит к ухудшению самочувствия людей Солнце светит очень ярко. И поэтому злоупотреблять солнечным светом нельзя – можно испортить зрение. Категорически запрещается смотреть на него в бинокль, подзорную трубу, школьный телескоп и просто невооруженным глазом. Смотреть на Солнце можно только через темные защитные очки, да и то недолго —1-2 минуты. infourok.ru Реферат - Солнечная система (Солнце, Земля, Марс)Таллиннская Тынисмяэвская Реальная Школа Реферат. По теме: Солнечная система. Уч-ца: Анна Еремеева 9 «Б» класс Учитель: О.К Круглов Таллинн 2003 Земля. Земля — это третья от Солнца планета Солнечной системы. Она обращается вокруг звезды по эллиптической орбите (очень близкой к круговой) со средней скоростью 29.765 км/с на среднем расстоянии 149.6 млн. км за период равный 365.24 суток. Земля имеет спутник — Луну, обращающуюся вокруг Солнца на среднем расстоянии 384400 км. Наклон земной оси к плоскости эклиптике составляет 66033`22``. Период вращения планеты вокруг своей оси 23 ч 56 мин 4.1 сек. Вращение вокруг своей оси вызывает смену дня и ночи, а наклон оси и обращение вокруг Солнца — смену времен года. Форма Земли — геоид, приближенно — трехосный эллипсоид, сфероид. Средний радиус Земли составляет 6371.032 км, экваториальный — 6378.16 км, полярный — 6356.777 км. Площадь поверхности земного шара 510 млн. км2, объем — 1.083 * 1012 км2, средняя плотность 5518 кг/м3 . Масса Земли составляет 5976 * 1021 кг. Земля обладает магнитным и тесно связанным с ним электрическим полями. Гравитационное поле Земли обуславливает её сферическую форму и существование атмосферы. По современным космогоническим представлениям, Земля образовалась примерно 4.7 млрд. лет назад из рассеянного в протосолнечной системе газового вещества. В результате дифференциации вещества, Земля, под действием своего гравитационного поля, в условиях разогрева земных недр возникли и развились различные по химическому составу, агрегатному состоянию и физическим свойствам оболочки — геосферы: ядро (в центре), мантия, земная кора, гидросфера, атмосфера, магнитосфера. В составе Земли преобладает железо (34.6%), кислород (29.5%), кремний (15.2%), магний (12.7%). Земная кора, мантия и внутренняя чаять ядра твердые (внешняя часть ядра считается жидкой). От поверхности Земли к центру возрастают давление, плотность и температура. Давление в центре планеты 3.6 * 1011 Па, плотность около 12.5 * 103 кг/м3, температура колеблется от 50000 до 60000С. Основные типы земной коры — материковый и океанический, в переходной зоне от материка к океану развита кора промежуточного строения. Большая часть Земли занята Мировым океаном (361.1 млн. км2 ;70.8% ), суша составляет 149.1 млн. км2 (29.2% ), и образует шесть материков и острова. Она поднимается над уровнем мирового океана в среднем на 875 м (наибольшая высота 8848 м — гора Джомолунгма), горы занимают свыше 1/3 поверхности суши. Пустыни покрывают примерно 20% поверхности суши, леса — около 30%, ледники — свыше 10%. Средняя глубина мирового океана около 3800 м (наибольшая глубина 11020 м — Марианский желоб (впадина) в Тихом океане). Объем воды на планете составляет 1370 млн. км3, средняя соленость 35 г/л . Атмосфера Земли, общая масса которой 5.15 * 1015 т, состоит из воздуха — смеси в основном азота (78.08% ) и кислорода (20.95% ), остальное — это водяные пары углекислый газ, а также инертный и другие газы. Максимальная температура поверхности суши 570-580C (в тропических пустынях Африки и Северной Америки), минимальная — около -900 C (в центральных районах Антарктиды). Образование Земли и начальный этап ее развития относятся к догеологической истории. Абсолютный возраст наиболее древних горных пород составляет свыше 3.5 млрд. лет. Геологическая история Земли делится на два неравных этапа: докембрий, занимающий примерно 5/6 всего геологического летоисчисления (около 3 млрд. лет ), и фанерозой, охватывающей последние 570 млн. лет. Около 3-3.5 млрд. лет назад в результате закономерной эволюции материи на Земле возникла жизнь, началось развитие биосферы. Совокупность всех населяющих ее живых организмов, так называемое живое вещество Земли, оказала значительное влияние на развитие атмосферы, гидросферы и осадочной оболочки. Новый фактор, оказывающий мощное влияние на биосферу — производственная деятельность человека, который появился на Земле менее 3 млн. лет назад. Высокий темп роста населения Земли (275 млн. чел в 1000 году, 1.6 млрд. чел в 1900 году и примерно 6.3 млрд. чел в 1995 году) и усиление влияния человеческого общества на природную среду выдвинули. проблемы рационального использования всех природных ресурсов и охраны природыЕдинственный спутник Земли – Луна. Давно минули те времена, когда люди считали, что таинственные силы Луны оказывают влияние на их повседневную жизнь. Никто больше не пытается приписать Луне свои успехи или обвинить её в своих неудачах. Но Луна действительно оказывает разнообразное влияние на Землю, которое обусловлено простыми законами физики и, прежде всего динамики. Самая удивительная особенность движения Луны состоит в том, что скорость её вращения вокруг оси совпадает со средней угловой скоростью обращения вокруг Земли. Поэтому Луна всегда обращена к Земле одним и тем же полушарием. Поскольку Луна — ближайшее небесное тело её расстояние от Земли известно с наибольшей точностью, до нескольких сантиметров по измерениям при помощи лазеров и лазерных дальномеров. Наименьшее расстояние между центрами Земли и Луны равно 356 410 км. Наибольшее расстояние Луны от Земли достигает 406 700 км, а среднее расстояние составляет 384 401 км. Земная атмосфера искривляет лучи света до такой степени, что всю Луну (или Солнце) можно видеть ещё до восхода или после заката. Дело в том, что преломление лучей света, входящих в атмосферу из безвоздушного пространства, составляет около 0.5º, т.е. равно видимому угловому диаметру луны. Таким образом, когда верхний край истинной Луны находится чуть ниже горизонта, вся Луна видна над горизонтом. Из приливных экспериментов был получен другой удивительный результат. Оказывается Земля – упругий шар. До проведения этих экспериментов обычно считали, что Земля вязкая, подобно патоке или расплавленному стеклу; при небольших искажениях она должна была бы, вероятно, сохранять их или же медленно возвращаться к своей исходной форме под действием слабых восстанавливающих сил. Эксперименты показали, что Земля в целом придаётся приливообразующим силам и сразу же возвращается к первоначальной форме после прекращения их действия. Таким образом, Земля не только твёрже стали, но и более упругая. Звезда по имени Солнце. Что видно на Солнце. При помощи даже маленького любительского телескопа можно получить увеличенное изображение солнечного диска. Что же видно на этом изображении? Прежде всего обращает на себя внимание резкость солнечного края. Солнце – газовый шар, не имеющий чёткой границы, плотность его убывает постепенно. Почему же в таком случае мы видим его резко очерченным? Дело в том, что практически всё видимое излучение Солнца исходит из очень тонкого слоя – фотосферы. Именно этот тонкий светящийся слой и создаёт у наблюдателя иллюзию того, что Солнце имеет поверхность. Грануляция. На первый взгляд диск Солнца кажется однородным. Однако, если приглядеться, на нём обнаруживается много крупных и мелких деталей. Даже при не очень хорошем качестве изображения видно, что вся фотосфера состоит из светлых зёрнышек (называемых гранулами) и тёмных промежутков между ними. Размеры гранул невелики по солнечным масштабам – до 1000-2000 км. в поперечнике; межгранульные дорожки более узкие, примерно 300-600 км. в ширину. Картина грануляции не является застывшей: одни гранулы исчезают, другие появляются. Каждая из них живёт не более 10 мин. Грануляция создаёт общий фон, на котором можно наблюдать гораздо более контрастные и крупные объекты – солнечные пятна и факелы. Пятна. Солнечные пятна – это тёмные образования на диске Солнца. По величине пятна бывают очень разными – от малых, диаметром примерно 1000-2000 км., до гигантских, значительно превосходящих размеры нашей планеты. Установлено, что пятна – это места выхода в солнечную атмосферу сильных магнитных полей. Магнитные поля уменьшают поток энергии, идущий от недр светила к фотосфере, поэтому в месте их выхода на поверхность температура падает. Пятна холоднее окружающего их вещества примерно на 1500 К, а следовательно, и менее ярки. Вот почему на общем фоне они выглядят тёмными. Солнечные пятна часто образуют группы из нескольких больших и малых пятен. Живут группы пятен долго, иногда на протяжении двух или трёх оборотов Солнца (период вращения Солнца составляет 27 суток). Факелы. Практически все пятна окружены яркими полями, которые называют факелами. Факелы горячее окружающей атмосферы на 2000 К и имеют сложную ячеистую структуру. Величина каждой ячейки -около 30 тыс. км. Факелы живут ещё дольше, чем пятна, иногда 3-4 месяца. По-видимому, факелы тоже являются местами выхода магнитных полей в наружные слои Солнца, но эти поля слабее, чем в пятнах. Количество пятен и факелов характеризует солнечную активность, максимумы которой повторяются через каждые 11 лет. Внутреннее строение Солнца. Наше Солнце – это огромный светящийся газовый шар, внутри которого протекают сложные процессы и в результате непрерывно выделяется энергия. Внутренний объём Солнца можно разделить на несколько областей. Познакомимся с ними, начиная с самого центра. В центральной части Солнца находится источник его энергии. Эта область называется ядром. Под тяжестью внешних слоёв вещество внутри Солнца сжато, причём чем глубже, тем сильнее. Плотность его увеличивается к центру вместе с ростом давления и температуры. В ядре, где температура достигает 15 млн. К, происходит выделение энергии. Эта энергия выделяется в результате слияния атомов лёгких химических элементов в атомы более тяжёлых. В недрах Солнца из четырёх атомов водорода образуется один атом гелия. Ядро имеет радиус не более четверти общего радиуса Солнца. Однако в его объёме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца. Но энергия горячего ядра должна как-то выходить наружу, к поверхности Солнца. Существуют различные способы передачи энергии в зависимости от физических условий среды, а именно: лучистый перенос, конвекция и теплопроводность. Сразу вокруг ядра начинается зона лучистой передачи энергии, где она распространяется через поглощение и излучение веществом порций света – квантов. Плотность, температура и давление уменьшаются по мере удаления от ядра, и в этом же направлении идёт поток энергии. В целом процесс этот крайне медленный. Чтобы квантам добраться от центра Солнца до фотосферы, необходимы многие тысячи лет: ведь, переизлучаясь, кванты всё время меняют направление, почти столь же часто двигаясь назад, как и вперёд. Так что если бы «печка» внутри Солнца вдруг погасла, то мы узнали бы об этом только миллионы лет спустя. На своём пути через внутренние солнечные слои поток энергии встречает такую область, где непрозрачность газа сильно возрастает. Это конвективная зона Солнца. Здесь энергия передаётся уже не излучением, а конвекцией. Что такое конвекция? Когда жидкость кипит, она перемешивается. Так же может вести себя и газ. То же самое происходит и на Солнце в области конвекции. Огромные потоки горячего газа поднимаются вверх, где отдают своё тепло окружающей среде, а охлаждённый солнечный газ опускается вниз. Конвективная зона начинается примерно на расстоянии 0.7 радиуса от центра и простирается практически до самой видимой поверхности Солнца (фотосферы), где перенос основного потока энергии вновь становится лучистым. Однако по инерции сюда всё же проникают горячие потоки из более глубоких, конвективных слоёв. Хорошо известная наблюдателям картина грануляции на поверхности Солнца является видимым проявлением конвекции. Солнечная атмосфера. Звёзды целиком состоят из газа. Но их внешние слои тоже именуют атмосферой. Фотосфера. Атмосфера Солнца начинается на 200-300 км. глубже видимого края солнечного диска. Эти самые глубокие слои атмосферы называют фотосферой. Поскольку их толщина составляет не более одной трёхтысячной доли солнечного радиуса, фотосферу иногда условно называют поверхностью Солнца. Плотность газа в фотосфере примерно такая же, как в земной стратосфере, и в сотни раз меньше, чем у поверхности Земли. Температура фотосферы уменьшается то 8000 К на глубине 300 км. до 4000 К в самых верхних слоях. В телескоп с большим увеличением можно наблюдать тонкие детали фотосферы: вся она кажется усыпанной мелкими яркими зёрнышками – гранулами, разделёнными сетью узких тёмных дорожек. Грануляция является результатом перемешивания всплывающих более тёплых потоков газа и опускающихся более холодных. Разность температур между ними в наружных слоях сравнительно невелика, но глубже, в конвективной зоне, она больше, и перемешивание происходит значительно интенсивнее. Конвекция во внешних слоях Солнца играет огромную роль, определяя общую структуру атмосферы. В конечном счёте именно конвекция в результате сложного взаимодействия с солнечными магнитными полями является причиной всех многообразных проявлений солнечной активности. Фотосфера постепенно переходит в более разреженные внешние слои солнечной атмосферы – хромосферу и корону. Хромосфера. Хромосфера (греч. «сфера света») названа так за свою красновато-фиолетовую окраску. Она видна вовремя полных солнечных затмений как клочковатое яркое кольцо вокруг чёрного диска Луны, только что затмившего Солнце. Хромосфера весьма неоднородна и состоит в основном из продолговатых вытянутых язычков (спикул), придающих ей вид горящей травы. Температура этих хромосферных струй в 2-3 раза выше, чем в фотосфере, а плотность в сотни тысяч раз меньше. Общая протяжённость хромосферы – 10-15 тыс. км. Рост температуры в хромосфере объясняется распространением волн и магнитных полей, проникающих в неё из конвективной зоны. Вещество нагревается примерно так же, как если бы это происходило в гигантской микроволновой печи. Скорости тепловых движений частиц возрастают, учащаются столкновения между ними, и атомы теряют свои внешние электроны: вещество становится горячей ионизованной плазмой. Эти же физические процессы поддерживают и необычайно высокую температуру самых внешних слоёв солнечной атмосферы, которые расположены выше хромосферы. Часто во время затмений над поверхностью солнца можно наблюдать причудливой формы «фонтаны», «облака», «воронки», «кусты», «арки» и прочие ярко светящиеся образования из хромосферного вещества. Это самые грандиозные образования солнечной атмосферы – протуберанцы. Они имеют примерно ту же плотность и температуру, что и хромосфера. Но они находятся над ней и окружены более высокими, сильно разреженными верхними слоями солнечной атмосферы. Протуберанцы не падают в хромосферу потому, что их вещество поддерживается магнитными полями активных областей Солнца. Некоторые протуберанцы, пробыв долгое время без заметных изменений, внезапно как бы взрываются, и вещество их со скоростью в сотни километров в секунду выбрасывается в межпланетное пространство. Корона. В отличие от хромосферы и фотосферы самая внешняя часть атмосферы Солнца – корона – обладает огромной протяжённостью: она простирается на миллионы километров, что соответствует нескольким солнечным радиусам. Плотность вещества в солнечной короне убывает с высотой значительно медленнее, чем плотность воздуха в земной атмосфере. Корону лучше всего наблюдать во время полной фазы солнечного затмения. Главной особенностью короны является лучистая структура. Корональные лучи имеют самую разнообразную форму: иногда они короткие, иногда длинные, бывают лучи прямые, а иногда они сильно изогнуты. Общий вид солнечной короны периодически меняется. Это связано с одиннадцатилетнем циклом солнечной активности. Меняется как общая яркость, так и форма солнечной короны. В эпоху максимума солнечных пятен он имеет сравнительно округлую форму. Когда же пятен мало, форма короны становится вытянутой, при этом общая яркость короны уменьшается. Итак, корона Солнца – самая внешняя часть его атмосферы, самая разреженная и самая горячая. Добавим, что она и самая близкая к нам: оказывается, она простирается далеко от Солнца в виде постоянно движущегося от него потока плазмы – солнечного ветра. Фактически мы живём окружённые солнечной короной, хотя и защищённые от её проникающей радиации надёжным барьером в виде земного магнитного поля. Марс. В его честь кого-то из этих богов названа планета, цвет которой напоминает цвет крови. Символ планеты копье Марса. Когда у Марса обнаружили два спутника их назвали именами сыновей греческого бога Марса: Фобос и Деймос. Марс назвали в честь бога войны за свой кроваво-красный цвет, который сразу же бросается в глаза и еще более интенсивен при наблюдениях в телескоп. К сожалению, это название оказалось весьма символическим, когда на рубеже нашего столетия, именно из-за этой планеты среди астрономов разгорелись настоящие баталии. На одной из сражающихся сторон был Персиваль Ловелл, несший знамя, впервые поднятое Скипарелли, и его сторонники, на другой — значительная часть астрономического мира. Поводом для баталий послужили марсианские «каналы», которые наблюдал Скипарелли и Ловелл. Основная часть Факты и цифры Марс (Mars) — четвёртая по удалённости от Солнца планета Солнечной системы (большая полуось орбиты a=1.524 а. е.), ближайшая к Земле внешняя планета (минимальное удаление от Земли 0.37 а. е., максимальное — 2.67 а. е.). Физические характеристики: масса М=0.107 массы Земли, радиус R=3400 км (0.533 R Земли), средняя плотность = 3.94 г/куб. см, наклон оси вращения = 24°48', период вращения P=24ч37м, продолжительность солнечных суток 24ч39м. Параметры орбиты Марса: сидерический период обращения вокруг Солнца Т=1.880089 года, эксцентриситет e=0.093, наклонение i=1°51', средняя линейная скорость движения Марса по орбите Va=24.1 км/с, средний синодический период обращения S=779.94 сут. Долгота восходящего узла на 1975.0 г. — 49.365°, годичное изменение долготы узла +0.46'. Долгота перигелия на 1975.0 г. — 335.599°, годичное изменение перигелия +1.10'. Средняя скорость движения по эклиптике — 31'27" за сутки; максимальная скорость — 48.6' за сутки. 1. Фобос и Деймос — естественные спутники Марса. Спутники Марса были открыты в 1877г. во время великого противостояния американским астрономом Асафом Холлом. Их назвали Фобос (в переводе с греческого Страх) и Деймос (Ужас), поскольку в античных мифах бог войны всегда сопровождался своими детьми страхом и ужасом. Спутники очень маленькие по размерам и имеют неправильную форму. Размеры Фобоса 28х20х18 км, а Деймоса 16х12х10 км. КА «Маринер 7» случайно сфотографировал Фобос на фоне Марса в 1969г., а КА «Маринер 9» передал множество снимков обоих спутников, на которых видно, что поверхности спутников неровные, обильно покрытые кратерами. Несколько близких подлетов к спутникам совершили КА «Викинг» и «Фобос 2». На самых лучших фотографиях Фобоса видны детали рельефа размером в 5 метров. Орбиты спутников — круговые: Фобос обращается вокруг Марса на расстоянии от центра планеты 9400 км с периодом 7 час. 39 мин. Деймос находится на расстоянии 23500 км, а период его обращения составляет 30 час. 18 мин. Период вращения вокруг оси каждого из спутников совпадает с периодом обращения вокруг Марса. Большие оси спутников всегда направлены к центру планеты. Фобос восходит на западе и заходит на востоке по 3 раза за марсианские сутки. Средняя плотность Фобоса — менее 2 г/см3, а ускорение свободного падения составляет 0,5 см/с2. Человек весил бы на Фобосе несколько десятков грамм, поэтому с Фобоса, подпрыгнув, легко улететь в космос. Самый крупный кратер на Фобосе имеет диаметр 8 км, сопоставимый с наименьшим поперечником спутника. На Деймосе наибольшая впадина имеет диаметр 2 км. Небольшими кратерами поверхности спутников усеяны примерно также как и Луна. При общем сходстве, обилии мелко раздробленного материала, покрывающего поверхности спутников Фобос выглядит более «ободранным», а Деймос имеет более сглаженную, засыпанную пылью поверхность. На Фобосе обнаружены загадочные борозды, пересекающие почти весь спутник. Борозды имеют ширину 100-200 м и тянутся на десятки километров. Глубина их от 20 до 90 метров. Есть несколько гипотез, объясняющих происхождение этих борозд, но пока нет достаточно убедительного объяснения, как впрочем, и объяснения происхождения самих спутников. Скорее всего это захваченные астероиды. В 1945 г. американский астроном Б. Шарплесс обнаружил вековое ускорение в движении Фобоса по орбите. Это означало, что Фобос, строго говоря, движется по очень пологой спирали, постепенно приближаясь к поверхности Марса. Если так будет продолжаться и дальше, то через 15 млн. лет-срок с космогонической точки зрения весьма небольшой (1/300 возраста Марса) -Фобос упадет на Марс. Однако только через 14 лет на это обратили внимание. К тому времени появились небесные тела, двигавшиеся точно таким же образом. Это были искусственные спутники Земли. Торможение в земной атмосфере заставляло их снижаться, а приближение к центру Земли вызывало ускорение их движения. В 1959 г. советский астрофизик И. С. Шкловский подсчитал, что воздействие атмосферного трения на Фобос может вызвать наблюдаемый эффект только в том случае, если Фобос полый. Вторая гипотеза, объясняющая ускорение Фобоса приливным взаимодействием была выдвинута геофизиком Н.Н. Парийским. Наличие векового ускорения Фобоса не раз оспаривалось из-за низкой точности первых наблюдений, и окончательный ответ на этот вопрос даст только время. Однако интересно, что у Деймоса никакого векового ускорения обнаружено не было. 2. Атмосфера Сильно разочаровывает атмосфера Марса. Среднее давление составляет 0.6% от земного. Она, подобно венерианской состоит из углекислого газа (0.95 по объему), азота, аргона и кислорода (0.02% по объему). Большой интерес представляет содержание водяного пара, особенно в связи с вопросами о природе облаков и возможности и существования жизни на Марсе. Если осадить всю воду (пар) Марса, то получится слой в 0.1 мм. Количество водяного пара на Марсе, по-видимому, оставалось постоянным и равным 1.3 км воды в течение трех марсианских месяцев наблюдений. 3. Температура на Марсе Температура поверхности Марса была довольно хорошо изучена по наземным наблюдениям в инфракрасных лучах. Максимальная температура -33 град. по Цельсию достигает вблизи подсолнечной точки. Самая низкая температура -139 град. по Цельсию наблюдается вблизи южного полюса, где может конденсироваться углекислый газ. Для марса характерен резкий перепад температур. В так называемых оазисах, в районах озера Феникс (плато Солнца) и земли Ноя перепад температур составляет от -53 до +22 град. по Цельсию летом и от -103 до -43 градусов зимой. Итак, Марс — весьма холодный мир. 4. Вода Многие очень извилистые русла, разветвленная система притоков свидетельствует о том, что в прошлом поверхность планеты бороздили мощные потоки воды. Были ли на Марсе когда-нибудь океаны или озера воды? Вероятно, нет, потому что тогда должна была бы существовать плотная атмосфера, от которой остались бы тяжелые инертные газы, а они не наблюдаются. Приходится расстаться с иллюзиями, что Марс когда-то был раем. 5. Рельеф Поверхность Марса изобилует кратерами. Особенно много их в южном полушарии планеты. Темные области, занимающие значительную часть поверхности планеты, получили название морей (Эллада, Аргир и др.). Диаметры некоторых морей превышают 2000 км. Возвышенности, напоминающие земные континенты, представляющие собой светлые поля оранжево-красного цвета, названы материками (Фарсида, Элисиум). Как и на Венере, здесь есть огромные вулканические конусы . Высота наибольшего из них — Олимпуса — превышает 25 км, диаметр кратера 90 км. Диаметр основания этой гигантской конусообразной горы более 500 км. О том, что миллионы лет назад на Марсе происходили мощные вулканические извержения и смещались поверхностные пласты, свидетельствуют остатки лавовых потоков, огромные разломы поверхности (один из них — Маринер — тянется на 4000 км), многочисленные ущелья и каньоны. Повторяющийся характер изменений в полярных шапках прямо указывает на то, что эти белые области состоят из обычного водяного снега, который тает при возрастании температуры. Не исключено, что они состоят из замершего углекислого газа, или «сухого льда». Кроме полярных шапок на Марсе отмечаются такие образования, как вулканы, горы. Например, кратер горы Арсия — в поперечнике около 125 км. С вулканами и поднятиями Фарсида связаны огромные системы трещин и гряд, некоторые из них тянутся на 1000 км и в целом имеют радиальное направление из центральной области больших вулканов. Эти трещины и гряды, свидетельствующих о напряжениях, возникших при поднятии всей области Фарсида. Помимо этих гор, вулканов и потоков лавы конвекция в некогда расплавленных недрах Марса породила величественные рифтовые долины, вероятно, родственные большим океаническим рифтам на Земле, которые выходят на сушу в Эфиопии. Очень загадочным представляется еще одно образование — лицо. Некоторые считают, что это следы цивилизации. Однако скорее всего это следы различных процессов, протекающих на Марсе. По мнению А. Портнова, атмосфера и вода была потеряна в результате мощной и единовременной бомбардировке крупными метеоритами, которые могли появиться после гравитационного разрыва третьего (пока гипотетического) спутника Марса — Танатос («Смерть»)… Кстати, достаточно скоро, подобная бомбардировка марсианской поверхности повторится: Фобос, следующий за Танатосом спутник, вплотную подошел к так называемому пределу Роша — орбита, на которой гравитационные силы разорвут огромную (26х21 км) глыбу Фобоса и вновь щедро посыпят планету огненным дождем... 6. Сезонные явления Марс совершает оборот вокруг своей оси за 24 часа 37,4 мин., т.е. на 40 минут больше чем Земля. Обычно самыми заметными деталями на фотоснимках Марса и при визуальном наблюдении являются его полярные шапки. Сезонные явления, открытые сэром Уильямом Гершелем, весьма регулярны и даже предсказуемы. Когда на одном полушарии Марса на смену осени приходит зима, соответствующая шапка начинает расти. Дело в том, что в южном полушарии зимой холоднее, но зато летом теплее, чем в северном. С приходом весны полярная шапка начинает уменьшаться и к концу марсианского июля она исчезает на южном полюсе, северная же шапка никогда не исчезает. Такая картина повторяется из года в год. 7. Почему Марс красный Раньше на Марсе была вода, текли полноводные реки (высохшие русла которых сфотографировали с орбиты наши корабли). Можно считать доказанным, что на Марсе был в больших количествах кислород. Марс красный потому, что его поверхность покрыта толстым слоем ржавчины (правы были древние, считавшие Марс «кровавой планетой» и считавшие его символом железа — его почва богата железом, а кровь человека действительно красна по той же самой причине). По подсчетам Портнова, в марсианской атмосфере должно было быть никак не меньше 1000 триллионов тонн кислорода, что вполне соизмеримо с 3200 триллионами тонн земного кислорода, мало того, можно сказать, что при меньших размерах (28 % от площади поверхности Земли) Марс обладал практически земной кислородной атмосферой и запасами воды в виде морей и рек! 8. Лицо и другие образования Тем не менее, здесь открылось большое поле деятельности для «творчества» уфологов — область действительно оказалась уникальной по количеству обнаруженных в ней специфических деталей рельефа. Правда, эта специфичность вскоре была признана в высокой степени детерминированной одной-единственной деталью — «Лицом». По соседству с ним оказались «Город», «Крепость», «Бездна», «Купол», «Пирамида», «Городской квартал». Не обошлось и без традиционной для уфологов «игры в цифры». Некое образование по соседству с «Лицом» — окрестили «D&M Pyramid» (в честь астронома Merton Davies). На гербе СССР изображен Марс?! Красная Звезда на советском гербе является символическим изображением Марса. Просто шутки ради я взял и померил расстояние от центра солнца на гербе (это то место где перекрещиваются колосья) до центра Земли, а затем расстояние от центра солнца до центра Красной Звезды на гербе. Если принять расстояние от центра солнца до Земли за единицу (астрономы называют это расстояние астрономической единицей, или сокращенно а.е.), то расстояние от центра солнца до центра Красной Звезды на гербе составило 1,5 а.е… Те, кто хоть немного изучал астрономию должны помнить, что планета Марс расположена на расстоянии 1,5 а.е. от солнца. Внутренняя часть солнечной системы оказалась нарисованной на советском гербе с неплохим соблюдением масштаба (это в том что касается орбит планет; нарисовать сами планеты в масштабе на таком рисунке невозможно — их просто не было бы видно)! (см. приведенный ниже рисунок)
Если первым, чисто качественным наблюдением, еще можно было пренебречь, то от количественных измерений, подтверждавших что Красная Звезда на гербе — это планета Марс уже нельзя было так легко отмахнуться. Требовалось настоящее материалистическое объяснение этого факта (то есть не такое как в повести — поэтическо-мистическое). И когда мне наконец удалось найти объяснение, выяснилось, что правда горазда удивительнее вымысла. Сначала напомню несколько широко известных исторических фактов. Во время великого противостояния Марса 1877 года итальянскому астроному Джиованни Скиапарелли удалось с большим трудом разглядеть на поверхности Марса какие-то тончайшие прямые линии, названные им итальянским словом canali, которое не обязательно означает искусственные каналы — вполне возможно, что Скиапарелли подразумевал под этим естественные проливы. Однако при переводе трудов Скиапарелли на английский язык это слово оказалось переведено как canals, что означает каналы искусственного происхождения. В 1892 году английский перевод сочинений Скиапарелли попадает в руки одного богатого американца по имени Персиваль Лоуэлл, который бросает дипломатическую карьеру, строит на свои деньги астрономическую обсерваторию в Аризоне и посвящает себя наблюдениям Марса. В 1895 году он публикует свою первую книгу под названием «Марс» в которой заявляет, что на Марсе существует разумная жизнь, и что каналы являются плодом инженерного искусства марсиан, живущих на высыхающей и умирающей планете, и вынужденных строить гигантские каналы, чтобы доставлять воду из полярных шапок в экваториальные районы. Логические следствия из этого заявления потрясли весь просвещенный мир конца 19 века. Масштаб инженерных сооружений на Марсе указывал на то, что марсиане владеют технологиями недоступными Землянам. Это хорошо увязывалось с тогдашним представлением о том, что Марс в некотором смысле старше Земли. Дело в том, что в то время, задолго до открытия термоядерной реакции, никто толком не знал, почему светит солнце. Предполагалось, что солнце получило когда-то в древности первоначальный запас тепловой энергии (например, от гравитационного сжатия) и теперь постепенно остывает. То есть в древности, когда солнце было горячее, условия на более отдаленной планете Марс были такими же как сейчас на Земле, а Земля была слишком горяча для жизни. Предполагалось, что Земля повторяет эволюцию Марса с некотором запаздыванием, и марсианская цивилизация является гораздо более древней и развитой. До первых фотографий с межпланетных космических станций, доказавших, что каналы — это всего лишь оптическая иллюзия, и Марс представляет из себя безжизненную пустыню, оставалось 70 лет. В конце 19 века в просвещенных кругах планеты Земля стала нарастать паника. Масла в огонь подлил англичанин Герберт Уэллс, опубликовавший в 1898 году свой роман «Война миров», в котором описывал военное вторжение марсиан на Землю. И опять же марсиане в этом романе были технически оснащены гораздо лучше землян — у них было все, вплоть до боевых лазеров. Однако тут следует сразу заметить, что российские социал-демократы восприняли известие об открытии цивилизации на Марсе весьма своеобразно. Они решили, что раз цивилизация на Марсе гораздо древнее и прогрессивнее земной, то это означает, что на Марсе давно уже установлен коммунизм. В 1908 году (за девять лет до Октябрьской революции) в России выходит в свет научно-фантастический роман А.Богданова (философа социал-демократической ориентации), в котором он описал коммунистическое общество на Марсе. Роман этот, в то время весьма популярный, назывался «Красная звезда». Из вышеупомянутого письма Ленина явным образом следует, что Ленин этот роман читал (в письме он называет Богданова «наш автор»). Если теперь снова вернуться к известному историческому факту, что Ленин лично утверждал герб СССР (помните эту хрестоматийную историю о том, как он потребовал убрать с герба изображение меча?), то становится ясно, что он сознательно ввел в герб изображение Марса как символ технологически развитой коммунистической цивилизации. Тогда, в 1922 году, с момента выхода романа Богданова прошло всего лишь 14 лет и Красная Звезда была абсолютно прозрачным и всем понятным символом коммунизма. (Между прочим, сразу становится понятно, почему из всей коммунистической символики в качестве символа Красной Армии была выбрана именно Красная Звезда — ведь Марс помимо всего прочего еще и бог войны). В последующие годы кое-кто пытался «объяснить» красный цвет звезды цветом крови павших борцов за дело рабочего класса, а пять лучей звезды при этом объяснялись как символ единения пролетариата пяти континентов Земли. Объяснение совершенно нелепое, в особенности если учесть, что пятиконечные звезды (правда белые) присутствуют на флагах многих стран мира, включая США и мусульманские страны, где звезда соседствует с полумесяцем. Просто пятиконечная звезда вообще является самым распространенным способом символического изображения звезд. Дело в том, что пятиконечная звезда с древнейших времен считалась в астрологии символом планеты Венера, то есть «утренней звезды». Отсюда и традиционно белый цвет пятиконечной звезды у большинства народов. Когда средневековые люди рисовали черта, они почти всегда поверх картинки рисовали еще и пятиконечную звезду, которая по их замыслу должна была защищать зрителя от исходившей от изображения черта отрицательной энергии. Некоторые наши современники, видя на старинных рисунках пятиконечную звезду на лбу у черта, не разобравшись стали считать ее символом зла. www.ronl.ru |
|
||||||||||||||||||||||||||||||||||||||
|
|