Реферат на тему:
Теория симбиогене́за (симбиотическая теория, эндосимбиотическая теория, теория эндосимбиоза) объясняет механизм возникновения некоторых органоидов эукариотической клетки — митохондрий, гидрогеносом и фотосинтезирующих пластид.
Теория эндосимбиотического происхождения хлоропластов впервые была предложена в 1883 году Андреасом Шимпером[1], показавшим их саморепликацию внутри клетки. Её возникновению предшествовал вывод А. С. Фаминцина[2] и О. В. Баранецкого о двойственой природе лишайников — симбиотического комплекса гриба и водоросли (1867 год). К. С. Мережковский[3] в 1905 году предложил само название «симбиогенез», впервые детально сформулировал теорию и даже создал на её основе новую систему органического мира. Фаминцин в 1907 году, опираясь на работы Шимпера, также пришел к выводу, что хлоропласты являются симбионтами, как и в случае с водорослями лишайника.
В 1920-е годы теория была развита Б. М. Козо-Полянским, было высказано предположение, что симбионтами являются и митохондрии. Затем долгое время о симбиогенезе практически не упоминали в научной литературе. Второе рождение расширенная и конкретизированная теория получила уже в работах Линн Маргулис начиная с 1960-х годов.
В результате изучения последовательности оснований в митохондриальной ДНК были получены весьма убедительные доводы в пользу того, что прежде митохондрии были аэробными бактериями (прокариотами), родственными риккетсиям, поселившимися некогда в предковой эукариотической клетке и «научившимися» жить в ней в качестве симбионтов. Теперь митохондрии имеются почти во всех эукариотических клетках, размножаться вне клетки они уже не способны.
Существуют свидетельства того, что первоначально эндосимбиотические предки митохондрий не могли ни импортировать белки, ни экспортировать АТФ [4]. Вероятно, первоначально они получали от клетки-хозяина пируват, а выгода для хозяина состояла в обезвреживании аэробными симбионтами токсичного для нуклеоцитоплазмы кислорода.
Подобно митохондриям, пластиды также имеют свои собственные прокариотические ДНК и рибосомы. По-видимому, хлоропласты произошли от фотосинтезирующих бактерий, поселившихся в свое время в гетеротрофных клетках протистов, превратив их в автотрофные водоросли.
Митохондрии и пластиды:
В наши дни существует ряд организмов, содержащих внутри своих клеток другие клетки в качестве эндосимбионтов. Они, однако, не являются сохранившимися до наших дней первичными эукариотами, у которых симбионты еще не интегрировались в единое целое и не потеряли своей индивидуальности. Тем не менее, они являются наглядным и убедительным примером возможности симбиогенеза.
В то время как эндосимбиоз является наиболее принятой версией происхождения митохондрий и пластид, попытки применения теории симбиогенеза к другим органеллам и структурам клетки не находят достаточных доказательств и наталкиваются на обоснованную критику.
Смешение у эукариот многих свойств, характерных для архей и бактерий, позволило предпололожить симбиотическое происхождение ядра от метаногенной архебактерии, внедрившейся в клетку миксобактерии. Гистоны, к примеру, обнаружены у эукариот и некоторых архей, кодирующие их гены весьма схожи. Другая гипотеза, объясняющая сочетание у эукариот молекулярных признаков архей и эубактерий, состоит в том, что на некотором этапе эволюции похожие на архей предки нуклеоцитоплазматического компонента эукариот приобрели способность к усиленному обмену генами с эубактериями путём горизонтального переноса генов [5]
В последнее десятилетие сформировалась также гипотеза вирусного эукариогенеза (англ. viral eukaryogenesis). В ее основании лежит ряд сходств устройства генетического аппарата эукариот и вирусов: линейное строение ДНК, её тесное взаимодействие с белками и др. Было показано сходство ДНК-полимеразы эукариот и поксивирусов, что сделало именно их предков основными кандидатами на роль ядра[6][7].
Линн Маргулис в книге Symbiosis in Cell Evolution (1981) предположила в том числе происхождение жгутиков и ресничек от симбиотических спирохет. Несмотря на сходство размеров и строения указанных органелл и бактерий и существование Mixotricha paradoxa, использующей спирохет для движения, в жгутиках не было найдено никаких специфически спирохетных белков. Однако известен общий для всех бактерий и архей белок FtsZ, гомологичный тубулину и, возможно, являющийся его предшественником. Жгутики и реснички не обладают такими признаками бактериальных клеток, как замкнутая наружная мембрана, собственный белоксинтезирующший аппарат и способность к делению. Данные о наличии ДНК в базальных тельцах, появившиеся в 1990-е годы, были впоследствии опровергнуты. Увеличение числа базальных телец и гомологичных им центриолей происходит не путем деления, а путем достраивания нового органоида рядом со старым.
Кристиан де Дюв обнаружил пероксисомы в 1965 году. Ему же принадлежит предположение, что пероксисомы были первыми эндосимбионтами эукариотической клетки, позволившими ей выживать при нарастающем количестве свободного молекулярного кислорода в земной атмосфере. Пероксисомы, однако, в отличие от митохондрий и пластид, не имеют ни генетического материала, ни аппарата для синтеза белка. Было показано, что эти органеллы формируются в клетке de novo в ЭПР и нет никаких оснований считать их эндосимбионтами[8].
Подборка статей по проблеме происхождения эукариот - macroevolution.narod.ru/eucaryots.htm
wreferat.baza-referat.ru
Реферат на тему:
Теория симбиогене́за (симбиотическая теория, эндосимбиотическая теория, теория эндосимбиоза) объясняет механизм возникновения некоторых органоидов эукариотической клетки — митохондрий, гидрогеносом и фотосинтезирующих пластид.
Теория эндосимбиотического происхождения хлоропластов впервые была предложена в 1883 году Андреасом Шимпером[1], показавшим их саморепликацию внутри клетки. Её возникновению предшествовал вывод А. С. Фаминцина[2] и О. В. Баранецкого о двойственой природе лишайников — симбиотического комплекса гриба и водоросли (1867 год). К. С. Мережковский[3] в 1905 году предложил само название «симбиогенез», впервые детально сформулировал теорию и даже создал на её основе новую систему органического мира. Фаминцин в 1907 году, опираясь на работы Шимпера, также пришел к выводу, что хлоропласты являются симбионтами, как и в случае с водорослями лишайника.
В 1920-е годы теория была развита Б. М. Козо-Полянским, было высказано предположение, что симбионтами являются и митохондрии. Затем долгое время о симбиогенезе практически не упоминали в научной литературе. Второе рождение расширенная и конкретизированная теория получила уже в работах Линн Маргулис начиная с 1960-х годов.
В результате изучения последовательности оснований в митохондриальной ДНК были получены весьма убедительные доводы в пользу того, что прежде митохондрии были аэробными бактериями (прокариотами), родственными риккетсиям, поселившимися некогда в предковой эукариотической клетке и «научившимися» жить в ней в качестве симбионтов. Теперь митохондрии имеются почти во всех эукариотических клетках, размножаться вне клетки они уже не способны.
Существуют свидетельства того, что первоначально эндосимбиотические предки митохондрий не могли ни импортировать белки, ни экспортировать АТФ [4]. Вероятно, первоначально они получали от клетки-хозяина пируват, а выгода для хозяина состояла в обезвреживании аэробными симбионтами токсичного для нуклеоцитоплазмы кислорода.
Подобно митохондриям, пластиды также имеют свои собственные прокариотические ДНК и рибосомы. По-видимому, хлоропласты произошли от фотосинтезирующих бактерий, поселившихся в свое время в гетеротрофных клетках протистов, превратив их в автотрофные водоросли.
Митохондрии и пластиды:
В наши дни существует ряд организмов, содержащих внутри своих клеток другие клетки в качестве эндосимбионтов. Они, однако, не являются сохранившимися до наших дней первичными эукариотами, у которых симбионты еще не интегрировались в единое целое и не потеряли своей индивидуальности. Тем не менее, они являются наглядным и убедительным примером возможности симбиогенеза.
В то время как эндосимбиоз является наиболее принятой версией происхождения митохондрий и пластид, попытки применения теории симбиогенеза к другим органеллам и структурам клетки не находят достаточных доказательств и наталкиваются на обоснованную критику.
Смешение у эукариот многих свойств, характерных для архей и бактерий, позволило предпололожить симбиотическое происхождение ядра от метаногенной архебактерии, внедрившейся в клетку миксобактерии. Гистоны, к примеру, обнаружены у эукариот и некоторых архей, кодирующие их гены весьма схожи. Другая гипотеза, объясняющая сочетание у эукариот молекулярных признаков архей и эубактерий, состоит в том, что на некотором этапе эволюции похожие на архей предки нуклеоцитоплазматического компонента эукариот приобрели способность к усиленному обмену генами с эубактериями путём горизонтального переноса генов [5]
В последнее десятилетие сформировалась также гипотеза вирусного эукариогенеза (англ. viral eukaryogenesis). В ее основании лежит ряд сходств устройства генетического аппарата эукариот и вирусов: линейное строение ДНК, её тесное взаимодействие с белками и др. Было показано сходство ДНК-полимеразы эукариот и поксивирусов, что сделало именно их предков основными кандидатами на роль ядра[6][7].
Линн Маргулис в книге Symbiosis in Cell Evolution (1981) предположила в том числе происхождение жгутиков и ресничек от симбиотических спирохет. Несмотря на сходство размеров и строения указанных органелл и бактерий и существование Mixotricha paradoxa, использующей спирохет для движения, в жгутиках не было найдено никаких специфически спирохетных белков. Однако известен общий для всех бактерий и архей белок FtsZ, гомологичный тубулину и, возможно, являющийся его предшественником. Жгутики и реснички не обладают такими признаками бактериальных клеток, как замкнутая наружная мембрана, собственный белоксинтезирующший аппарат и способность к делению. Данные о наличии ДНК в базальных тельцах, появившиеся в 1990-е годы, были впоследствии опровергнуты. Увеличение числа базальных телец и гомологичных им центриолей происходит не путем деления, а путем достраивания нового органоида рядом со старым.
Кристиан де Дюв обнаружил пероксисомы в 1965 году. Ему же принадлежит предположение, что пероксисомы были первыми эндосимбионтами эукариотической клетки, позволившими ей выживать при нарастающем количестве свободного молекулярного кислорода в земной атмосфере. Пероксисомы, однако, в отличие от митохондрий и пластид, не имеют ни генетического материала, ни аппарата для синтеза белка. Было показано, что эти органеллы формируются в клетке de novo в ЭПР и нет никаких оснований считать их эндосимбионтами[8].
Подборка статей по проблеме происхождения эукариот - macroevolution.narod.ru/eucaryots.htm
wreferat.baza-referat.ru
Реферат на тему:
Теория симбиогене́за (симбиотическая теория, эндосимбиотическая теория, теория эндосимбиоза) объясняет механизм возникновения некоторых органоидов эукариотической клетки — митохондрий, гидрогеносом и фотосинтезирующих пластид.
Теория эндосимбиотического происхождения хлоропластов впервые была предложена в 1883 году Андреасом Шимпером[1], показавшим их саморепликацию внутри клетки. Её возникновению предшествовал вывод А. С. Фаминцина[2] и О. В. Баранецкого о двойственой природе лишайников — симбиотического комплекса гриба и водоросли (1867 год). К. С. Мережковский[3] в 1905 году предложил само название «симбиогенез», впервые детально сформулировал теорию и даже создал на её основе новую систему органического мира. Фаминцин в 1907 году, опираясь на работы Шимпера, также пришел к выводу, что хлоропласты являются симбионтами, как и в случае с водорослями лишайника.
В 1920-е годы теория была развита Б. М. Козо-Полянским, было высказано предположение, что симбионтами являются и митохондрии. Затем долгое время о симбиогенезе практически не упоминали в научной литературе. Второе рождение расширенная и конкретизированная теория получила уже в работах Линн Маргулис начиная с 1960-х годов.
В результате изучения последовательности оснований в митохондриальной ДНК были получены весьма убедительные доводы в пользу того, что прежде митохондрии были аэробными бактериями (прокариотами), родственными риккетсиям, поселившимися некогда в предковой эукариотической клетке и «научившимися» жить в ней в качестве симбионтов. Теперь митохондрии имеются почти во всех эукариотических клетках, размножаться вне клетки они уже не способны.
Существуют свидетельства того, что первоначально эндосимбиотические предки митохондрий не могли ни импортировать белки, ни экспортировать АТФ [4]. Вероятно, первоначально они получали от клетки-хозяина пируват, а выгода для хозяина состояла в обезвреживании аэробными симбионтами токсичного для нуклеоцитоплазмы кислорода.
Подобно митохондриям, пластиды также имеют свои собственные прокариотические ДНК и рибосомы. По-видимому, хлоропласты произошли от фотосинтезирующих бактерий, поселившихся в свое время в гетеротрофных клетках протистов, превратив их в автотрофные водоросли.
Митохондрии и пластиды:
В наши дни существует ряд организмов, содержащих внутри своих клеток другие клетки в качестве эндосимбионтов. Они, однако, не являются сохранившимися до наших дней первичными эукариотами, у которых симбионты еще не интегрировались в единое целое и не потеряли своей индивидуальности. Тем не менее, они являются наглядным и убедительным примером возможности симбиогенеза.
В то время как эндосимбиоз является наиболее принятой версией происхождения митохондрий и пластид, попытки применения теории симбиогенеза к другим органеллам и структурам клетки не находят достаточных доказательств и наталкиваются на обоснованную критику.
Смешение у эукариот многих свойств, характерных для архей и бактерий, позволило предпололожить симбиотическое происхождение ядра от метаногенной архебактерии, внедрившейся в клетку миксобактерии. Гистоны, к примеру, обнаружены у эукариот и некоторых архей, кодирующие их гены весьма схожи. Другая гипотеза, объясняющая сочетание у эукариот молекулярных признаков архей и эубактерий, состоит в том, что на некотором этапе эволюции похожие на архей предки нуклеоцитоплазматического компонента эукариот приобрели способность к усиленному обмену генами с эубактериями путём горизонтального переноса генов [5]
В последнее десятилетие сформировалась также гипотеза вирусного эукариогенеза (англ. viral eukaryogenesis). В ее основании лежит ряд сходств устройства генетического аппарата эукариот и вирусов: линейное строение ДНК, её тесное взаимодействие с белками и др. Было показано сходство ДНК-полимеразы эукариот и поксивирусов, что сделало именно их предков основными кандидатами на роль ядра[6][7].
Линн Маргулис в книге Symbiosis in Cell Evolution (1981) предположила в том числе происхождение жгутиков и ресничек от симбиотических спирохет. Несмотря на сходство размеров и строения указанных органелл и бактерий и существование Mixotricha paradoxa, использующей спирохет для движения, в жгутиках не было найдено никаких специфически спирохетных белков. Однако известен общий для всех бактерий и архей белок FtsZ, гомологичный тубулину и, возможно, являющийся его предшественником. Жгутики и реснички не обладают такими признаками бактериальных клеток, как замкнутая наружная мембрана, собственный белоксинтезирующший аппарат и способность к делению. Данные о наличии ДНК в базальных тельцах, появившиеся в 1990-е годы, были впоследствии опровергнуты. Увеличение числа базальных телец и гомологичных им центриолей происходит не путем деления, а путем достраивания нового органоида рядом со старым.
Кристиан де Дюв обнаружил пероксисомы в 1965 году. Ему же принадлежит предположение, что пероксисомы были первыми эндосимбионтами эукариотической клетки, позволившими ей выживать при нарастающем количестве свободного молекулярного кислорода в земной атмосфере. Пероксисомы, однако, в отличие от митохондрий и пластид, не имеют ни генетического материала, ни аппарата для синтеза белка. Было показано, что эти органеллы формируются в клетке de novo в ЭПР и нет никаких оснований считать их эндосимбионтами[8].
Подборка статей по проблеме происхождения эукариот - macroevolution.narod.ru/eucaryots.htm
wreferat.baza-referat.ru
История 3-4
4.1 Клеточное ядро, нуклеоцитоплазма 10
4.2 Жгутики и реснички 11
4.3Пероксисомы 12
Заключение 13 Список использованной литературы 14
Классическая эволюционная теория Ч. Дарвина представляет происхождение таксонов разного ранга в виде дерева, берущего начало от единого корня и увенчанного кроной дихотомически расходящихся ветвей и веточек. Представление о такой дивергентной эволюции (кладогенезе), монофилетическом происхождении всех форм жизни было существенно дополнено идеей симбиогенеза – утверждением К.С. Мережковского о том, что две главные эволюционные ветви многоклеточных, животные и растения, имеют не монофилетическое происхождение, а возникли в результате симбиоза двух или трех совершенно разных форм организмов.
Наблюдения над поведением хлоропластов в клетке привели К.С. Мережковского к предположению о симбиотическом происхождении хлоропластов, предками которых он считал цианофицеи (цианобактерии). Впервые это предположение было высказано и обосновано в 1905 г. в статье «Uber Natur und Ursprung der Chromatophoren im Pfl anzen reiche» (О природе и происхождении хроматофоров в царстве растений) (Mereschkovsky, 1905). Через 4 года предположение было развито, а происхождение растительной клетки в результате соединения двух ранее самостоятельных организмов получило название симбиогенеза. Речь идет о работе «Теория двух плазм как основа симбиогенезиса, нового учения о происхождении организмов» (1909), которая на следующий год вышла на немецком языке в журнале «Biologisches Zentralblatt»
Подобно митохондриям, пластиды также имеют свои собственные прокариотические ДНК и рибосомы. По-видимому, хлоропласты произошли от фотосинтезирующих бактерий, поселившихся в свое время в гетеротрофных клетках протистов, превратив их в автотрофные водоросли.
3. Примеры эндосимбиозов
myunivercity.ru
Количество просмотров публикации Эволюция пробионтов. Теория симбиогенеза - 396
Первые организмы, появившиеся 3,0 — 3,5 млрд. лет назад, жили в бескислородных условиях, были анаэробными гетеротрофами. Οʜᴎ использовали органические вещества абиогенного происхождения в качестве питательных веществ, энергию получали за счёт бескислородного окисления и брожения. До настоящего времени сохранился анаэробный путь использования глюкозы — гликолиз, завершающийся образованием молочной кислоты и образованием на моль глюкозы двух моль АТФ.
Замечательным событием в эволюции живого стало появление процесса фотосинтеза, когда для синтеза органических веществ стала использоваться энергия солнечной света. Бактериальный фотосинтез на первых этапах сопровождался расщеплением органических веществ (фотогетеротрофы, используют в качестве источника углерода органические вещества) или сероводорода (первые фотоавтотрофы, используют углекислый газ как источник углерода и Н2S — как источник водорода).
6СО2 + 6Н2S + Q света = С6Н12О6 + 6S2
Появление автотрофного питания (фотоавтотрофного и хемоавтотрофного) привело к образованию органического вещества из неорганического. Исчезает зависимость от органического вещества абиогенного происхождения.
Позже, у синезеленых, появляется фотосистема, способная расщеплять воду и использовать ее молекулы в качестве доноров водорода. Начинается фотолиз воды, при котором происходит выделение кислорода. Фотосинтез синезеленых сопровождается накоплением кислорода в атмосфере и образованием озонового экрана. Кислород в атмосфере остановил процесс абиогенного синтеза органических соединений, но привел к появлению энергетически более выгодного процесса — дыхания. Появляются аэробные бактерии, у которых продукты гликолиза подвергаются дальнейшему окислению с помощью кислорода до углекислого газа и воды. И если при гликолизе образуется 2 моль АТФ на моль глюкозы, то при дальнейшем окислении продуктов гликолиза образуется еще 36 моль АТФ.
Симбиоз большой анаэробной клетки (вероятно, относящейся к архебактериям и сохранившей ферменты гликолитического окисления) с аэробными бактериями оказался взаимовыгодным, причем бактерии со временем утратили самостоятельность и превратились в митохондрии (рис. 359).
|
Потеря самостоятельности связана с утратой части генов, которые перешли в хромосомный аппарат клетки-хозяина. Но все же митохондрии сохранили собственный белоксинтезирующий аппарат и способность к размножению.
Важным этапом в эволюции клетки стало обособление ядра, отделение генетического аппарата клетки от реакций обмена веществ.
Различные способы гетеротрофного питания привели к формированию царства Грибов и царства Животных.
Симбиоз с цианобактериями привел к появлению хлоропластов. Хлоропласты так же утратили часть генов и являются полуавтономными органоидами, способными к самовоспроизведению. Их появление привело к развитию по пути с автотрофным типом обмена веществ и обособлению части организмов в царство Растений.
|
В пользу симбиотического происхождения митохондрий и хлоропластов говорят многие факты. В первую очередь, их генетический материал представлен одной кольцевой молекулой ДНК (как и у прокариот), во-вторых, их рибосомы по массе, по строению рРНК и рибосомальных белков близки к таковым у аэробных бактерий и синезеленых. В-третьих, они размножаются как прокариоты и наконец, механизмы белкового синтеза в митохондриях и бактериях чувствительны к одним антибиотикам (стрептомицину), а циклогексимид блокирует синтез белка в цитоплазме. Вместе с тем, известен один вид амеб, которые не имеют митохондрий и живут в симбиозе с аэробными бактериями, а в клетках некоторых растений обнаружены цианобактерии (синезеленые), сходные по строению с хлоропластами.
Дальнейшая эволюция привела к обособлению и сохранению трех надцарств: архебактерий, эубактерий и эукариот (рис. 360).
referatwork.ru
Теория симбиогенеза.
Новые теории никогда не побеждали;
Просто вымирали сторонники старых.
М. Планк.
Если предки эвгленовых питались цианобактериями, или похожими прокариотами – фотосинтетиками, то из проглоченных, но не переваренных бактерий могли со сременем образоваться симбионты – хлоропласты. Эта идея возникла в 19-ом веке и получила название теория симбиогенеза.
В 1867 году русские ученые Андрей Сергеевич Фаминцын и Осип Васильевич Баранецкий доказали, что «гонидии» - зеленые клетки лишайников - могут самостоятельно (при отсутствии гриба) размножаться. при этом образуются жгутиковые клетки, похожие на водоросли. Ученые показали, что гонидии могут жить и размножаться на искусственной питательной среде, а значит они – самостоятельные организмы.
Было замечено учеными также, что хлоропласты также делятся, и не всегда одновременно с клеткой. Удалось вырастить хлоропласты на искусственной питательной среды, правда, без размножения.
Эти факты легли в основу теории симбиоза. Автор – К.С. Мережковский, опубликовавший свои идеи в 1905 году. Изучая хлоропласты водорослей, он писал: «Хлорофилловые зерна зерна растут, питаются, размножаются, производят синтез белков и углеводов, передают в наследство свои признаки, и все это независимо от ядра. Одним словом, они ведут себя как самостоятельные организмы и поэтому как таковые должны быть рассматриваемы. Это симбионты, а не органы».
Взгляд на происхождение клетки растений путем симбиоза привел Мережковского еще к одной догадке: он первым предложил делить органический мир на прокариоты и эукариоты.
Подтверждение симбиогенеза: хлоропласты размножаются только делением; у них есть своя ДНК, сходная с ДНК бактерий; есть собственные рибосомы бактериального типа; часть белков хлоропласты синтезируют сами, а большинство белков поступает из цитоплазмы клетки – хозяина; двойная мембрана. Внутренняя – мембрана клетки - прокариота, наружная – мембрана пищеварительной вакуоли клетки-«хозяина».
Такое же происхождение имеют и митохондрии.
Клетки, похожие на современные одноклеточные водоросли – эукариоты, известны из горных пород возрастом более миллиарда лет. К тому времени в атмосфере начал накапливаться кислород. Кислород обладал разрушающим действием для многих процессов, протекающих в клетках. Но сами клетки научились защищаться от ядовитого действия кислорода (кроме строгих анаэробов). Учась защищаться от кислорода, какие-то бактерии стали использовать его для получения энергии. (за счет митохондрий).
Предки эукариотов приобрели фагоцитоз. И одноклеточные эукариоты стали первыми настоящими хищниками. Хищный образ жизни привел к более крупным размерам, быстрому передвижению и изменению формы клеток (для заглатывания добычи). В их клетках появились лизосомы, обеспечивающие переваривание жертв. Эукариотам повезло, что аэробные бактерии – предки митохондрий – научились защищаться от переваривания и поселились в их цитоплазме. Симбиогенез состоялся. И примерно 700 – 650 млн лет назад эукариоты «вышли из подполья» - в геологической летописи появились многоклеточные.
Теория симбиогенеза утверждает, что хлоропласты и митохондрии – это утратившие самостоятельность бактерии – симбионты, которые в древности поселились внутри клеток – эукариотов.
Хотя митохондрии хлоропласты не могут размножаться вне клетки, они сохранили многие признаки самостоятельности и сходства с бактериями. Митохондрии и хлоропласты размножаются только делением; они передаются от поколения к поколению и никогда не возникают заново. У них есть свой наследственный материал – молекулы, сходные с молекулами наследственности бактерий, и свой аппарат синтеза белка – рибосомы, также сходные с бактериальными.
Предками хлоропластов могли быть прокариоты, похожие на цианобактерии, а предками митохондрий – аэробные бактерии, научившиеся использовать химические реакции с участием кислорода для получения энергии. Симбиоз эукариотов с митохондриями и хлоропластами возник не меньше 1 млрд лет назад. Вероятно, разные «растительные» протисты могли независимо произойти от разных «животных» протистов.
studfiles.net
Теория симбиогене́за (симбиотическая теория, эндосимбиотическая теория, теория эндосимбиоза) объясняет механизм возникновения некоторых органоидов эукариотической клетки — митохондрий, гидрогеносом и пластид.
Теорию эндосимбиотического происхождения хлоропластов впервые предложил в 1883 году Андреас Шимпер[1], показавший их саморепликацию внутри клетки. Её возникновению предшествовал вывод А. С. Фаминцина[2] и О. В. Баранецкого о двойственой природе лишайников — симбиотического комплекса гриба и водоросли (1867 год). К. С. Мережковский[3] в 1905 году предложил само название «симбиогенез», впервые детально сформулировал теорию и даже создал на её основе новую систему органического мира. Фаминцин в 1907 году, опираясь на работы Шимпера, также пришел к выводу, что хлоропласты являются симбионтами, как и водоросли в составе лишайников.
В 1920-е годы теория была развита Б. М. Козо-Полянским, было высказано предположение, что симбионтами являются и митохондрии. Затем долгое время о симбиогенезе практически не упоминали в научной литературе. Второе рождение расширенная и конкретизированная теория получила уже в работах Линн Маргулис начиная с 1960-х годов.
В результате изучения последовательности оснований в митохондриальной ДНК были получены весьма убедительные доводы в пользу того, что митохондрии — это потомки аэробных бактерий (прокариот), родственных риккетсиям, поселившихся некогда в предковой эукариотической клетке и «научившимися» жить в ней в качестве симбионтов. Теперь митохондрии есть почти во всех эукариотических клетках, размножаться вне клетки они уже не способны.
Существуют свидетельства того, что первоначально эндосимбиотические предки митохондрий не могли ни импортировать белки, ни экспортировать АТФ[4]. Вероятно, первоначально они получали от клетки-хозяина пируват, а выгода для хозяина состояла в обезвреживании аэробными симбионтами токсичного для нуклеоцитоплазмы кислорода.
Пластиды, подобно митохондриям, имеют свои собственные прокариотические ДНК и рибосомы. По-видимому, хлоропласты произошли от фотосинтезирующих бактерий, поселившихся в свое время в гетеротрофных клетках протистов, превратив их в автотрофные водоросли.
Митохондрии и пластиды:
В наши дни существует ряд организмов, содержащих внутри своих клеток другие клетки в качестве эндосимбионтов. Они, однако, не являются сохранившимися до наших дней первичными эукариотами, у которых симбионты еще не интегрировались в единое целое и не потеряли своей индивидуальности. Тем не менее, они наглядно и убедительно показывают возможность симбиогенеза.
Эндосимбиоз — наиболее широко признанная версия происхождения митохондрий и пластид. Но попытки объяснить подобным образом происхождение других органелл и структур клетки не находят достаточных доказательств и наталкиваются на обоснованную критику.
Смешение у эукариот многих свойств, характерных для архей и бактерий, позволило предпололожить симбиотическое происхождение ядра от метаногенной архебактерии, внедрившейся в клетку миксобактерии. Гистоны, к примеру, обнаружены у эукариот и некоторых архей, кодирующие их гены весьма схожи. Другая гипотеза, объясняющая сочетание у эукариот молекулярных признаков архей и эубактерий, состоит в том, что на некотором этапе эволюции похожие на архей предки нуклеоцитоплазматического компонента эукариот приобрели способность к усиленному обмену генами с эубактериями путём горизонтального переноса генов[5]
В последнее десятилетие сформировалась также гипотеза вирусного эукариогенеза (англ. viral eukaryogenesis). В ее основании лежит ряд сходств устройства генетического аппарата эукариот и вирусов: линейное строение ДНК, её тесное взаимодействие с белками и др. Было показано сходство ДНК-полимеразы эукариот и поксивирусов, что сделало именно их предков основными кандидатами на роль ядра[6][7].
Линн Маргулис в книге Symbiosis in Cell Evolution (1981) предположила в том числе происхождение жгутиков и ресничек от симбиотических спирохет. Несмотря на сходство размеров и строения указанных органелл и бактерий и существование Mixotricha paradoxa, использующей спирохет для движения, в жгутиках не было найдено никаких специфически спирохетных белков. Однако известен общий для всех бактерий и архей белок FtsZ, гомологичный тубулину и, возможно, являющийся его предшественником. Жгутики и реснички не обладают такими признаками бактериальных клеток, как замкнутая наружная мембрана, собственный белоксинтезирующий аппарат и способность к делению. Данные о наличии ДНК в базальных тельцах, появившиеся в 1990-е годы, были впоследствии опровергнуты. Увеличение числа базальных телец и гомологичных им центриолей происходит не путем деления, а путем достраивания нового органоида рядом со старым.
Кристиан де Дюв обнаружил пероксисомы в 1965 году. Ему же принадлежит предположение, что пероксисомы были первыми эндосимбионтами эукариотической клетки, позволившими ей выживать при нарастающем количестве свободного молекулярного кислорода в земной атмосфере. Пероксисомы, однако, в отличие от митохондрий и пластид, не имеют ни генетического материала, ни аппарата для синтеза белка. Было показано, что эти органеллы формируются в клетке de novo в ЭПР и нет никаких оснований считать их эндосимбионтами[8].
dic.academic.ru