Муниципальное общеобразовательное учреждение «Средняя
общеобразовательная школа № 7 г. Соль – Илецка» Оренбургской области
Муниципальное учреждение дополнительного образования «Центр детского творчества Соль – Илецкого района»
Реферат
по химии на тему:
«Первые женщины – химики»
Автор работы:
Карагулова Айнаш
Ученица 9 кл
Руководитель:
Сивожелезова Татьяна
Геннадьевна
учитель химии и биологии
высшей категории,
педагог дополнительного образования
Соль-Илецк-2010
Оглавление:
Лермонтова Ю.В.
Попова (Богдановская) В.Е.
Склодовская-Кюри Мария
Жолио-Кюри Ирен
Приложение
Использованная литература
«Перед большим разумом я склоняю голову,Перед большим сердцем – колени».
И.В.Гёте
Лермонтова Юлия Всеволодовна
(1847–1919)
Юлия Лермонтова родилась в Петербурге 2 января 1847 г. Ее отец (генерал, директор Московского кадетского корпуса) приходился троюродным братом великому русскому поэту М.Ю.Лермонтову. Начальное образование Юля получила дома, где была богатейшая библиотека. Училась она охотно. Прекрасно владела европейскими языками. Химией увлеклась рано, решив изучить эту науку основательно. Родители Юлии, люди просвещенные, хотя и удивились столь странному вкусу дочери, но пригласили для частных уроков лучших преподавателей кадетского корпуса.
В 1869 г. Юлия подает прошение о приеме в Петровскую земледельческую (ныне Тимирязевскую) академию. Но начальство не могло без ужаса представить себе «семинариста в желтой шали иль академика в чепце». Поэтому ни Лермонтову, ни ее подруг в академию не приняли.
К тому времени Юлия увлеклась химией настолько серьезно, что принимает решение ехать учиться за границу. Но как это сделать? На помощь приходит Софья Ковалевская. Она приезжает в Москву, чтобы познакомиться, понравиться и взять с родителей Юлии слово отпустить дочь за границу вместе с Ковалевскими.
Дерзкий по тем временам план был осуществлен: осенью того же года они были уже в Гейдельберге. Юлия поселилась у Ковалевских. Гейдельбергский университет был одним из крупных центров естественных наук в Германии. После длительных и энергичных хлопот Софьи Ковалевской Юлии разрешили слушать некоторые курсы в университете и работать в химической лаборатории Бунзена. Подруги посещали университет на правах вольнослушательниц и то в виде исключения. Гейдельбергские профессора были покорены необыкновенными способностями русских женщин, их трудолюбием и обаянием. В конце концов, им было разрешено посещать любые лекции. В дальнейшие планы Лермонтовой и Ковалевской входило устройство в Гейдельберге целой колонии учащихся женщин из России.
В Гейдельбергском университете Лермонтова по рекомендации Менделеева выполнила свое первое научное исследование – сложное разделение редких металлов, спутников платины.
С 1871 г. в жизни Юлии Всеволодовны начинается новый период: она и Ковалевская переезжают в Берлин. И здесь, несмотря на блестящие рекомендации гейдельбергских ученых, им не разрешили ни посещать лекции в Берлинском университете, ни работать в его лабораториях. Поэтому им приходится приобретать знания иным способом: Ковалевская занимается у Карла Вейерштрасса, а Лермонтова, тоже частным образом, работает в лаборатории Гофмана и слушает его лекции.
К берлинскому периоду относится одна из лучших работ Лермонтовой – «О составе дифенина». Она была доложена Гофманом на заседании Немецкого химического общества, а затем опубликована (1872). В научных кругах работа вызвала большой интерес. Ее оттиск Юлия Всеволодовна подарила Менделееву.
Летом 1874 г., закончив работу над докторской диссертацией, она начинает готовиться к сдаче экзаменов сразу по четырем предметам. В своих воспоминаниях Лермонтова писала: «Наконец, настал страшный день: экзаменовали меня все незнакомые профессора.
Экзаменовалась я одна; экзамен продолжался два часа; по главному предмету – химия – экзаменовали очень продолжительно и строго... Как я вышла живая после этого экзамена, я не помню. Недели 2–3 я не могла прийти в себя, потеряла сон и аппетит». Однако все «страдания» оказались ненапрасными: ей была присуждена «докторская степень с высшей похвалой» (1874).
28-летний доктор химии возвращается в Москву (степень вручалась в Гёттингене). В честь Лермонтовой сам глава «химической дружины» Дмитрий Иванович Менделеев устроил у себя дома торжественный ужин. Здесь Юлия Всеволодовна познакомилась с Бутлеровым, который пригласил ее работать в своей лаборатории (Петербургский университет). С 1875 г. имя Лермонтовой официально занесено в список членов Русского химического общества (РХО). Активный член РХО, молодой доктор химии участвует в работе съездов русских естествоиспытателей и врачей. В сентябре 1876 г. она принимала участие в работе химической секции V Варшавского съезда. Работая в течение года в лаборатории профессора Марковникова (Московский университет), Лермонтова не только выполнила и опубликовала исследование «О получении нормального бромистого пропилена», но и участвовала в других работах, в частности в работе по синтезу кислот.
Однако случилось непредвиденное: она заболела тифом, который дал осложнение на мозг. За больной подругой ухаживала Софья Ковалевская, специально для этого приехавшая из Петербурга в Москву.
После выздоровления (1877) Юлия Всеволодовна переезжает в Петербург и снова живет там вместе с Ковалевскими. Она с увлечением занимается исследованиями в университетской лаборатории Бутлерова, выполняет несколько ценнейших научных работ. Это был период ее творческого подъема.
А на пороге уже стояла новая беда: в 1877 г. умирает ее отец. Лермонтова едет в Москву и на некоторое время там задерживается... Бутлеров приглашает талантливую ученую вести занятия на Высших женских курсах (ВЖК)2, но Лермонтова отказывается. О причинах ее отказа Марковников писал Бутлерову: «Тут вся причина в Софочке Ковалевской». Марковников знал, что Лермонтова по доброй воле почти полностью подчинила себя интересам семьи Ковалевских, особенно после рождения у них дочери Софьи (1878). В детстве большую часть времени Фуфа (так называли девочку в семье) провела у своей крестной матери – Юлии Всеволодовны.
В 1880 г. Марковников начинает свои знаменитые исследования кавказской нефти. Ему удается привлечь к этой работе и Лермонтову. Окончательно обосновавшись в Москве, Юлия Всеволодовна вступает в Русское техническое общество, в химико-технической группе которого она активно работает до 1888 г. В 1880-е гг. Лермонтова достигла зенита своей славы: среди химиков и нефтяников ее имя называлось рядом с именами крупных ученых и инженеров.. Менделеев ратовал за внедрение в нефтеперерабатывающую отрасль промышленности аппарата непрерывного действия взамен куба периодического действия. Лермонтова разработала и сконструировала один из таких аппаратов (1882) Это был один из лучших аппаратов для непрерывного процесса перегонки нефти. О нем писали многие научные журналы и газеты. Лермонтова первая смогла доказать преимущество перегонки нефти с применением пара. Однако основной темой ее научной деятельности было глубокое разложение нефти.
К научным заслугам Лермонтовой относятся и ее работы, сыгравшие важную роль в технике катализа. Своими исследованиями она первой (!) из ученых-химиков определила наилучшие условия разложения нефти и нефтепродуктов для получения максимального выхода ароматических углеводородов.
Исследования, проведенные Лермонтовой, способствовали возникновению первых нефтегазовых заводов в России.
Каждый год несколько летних месяцев Юлия Всеволодовна проводила в фамильном имении Семенково, что в 3 км от платформы Жаворонки (Белорусская ж/д).
С 1886 г. она жила здесь постоянно. Оставив химию, Лермонтова энергично занялась сельским хозяйством. И на этом поприще она добилась удивительных результатов: с помощью новых агрономических приемов она интенсифицирует сельское хозяйство, не истощая (!) земли. Она увлеченно и результативно занималась семеноводством, удобрениями, сыроварением, используя новинки, о которых узнала на Всемирной выставке в Париже (1889).
С того времени, как Лермонтова переключила свое внимание на сельское хозяйство, ее имя как химика и нефтяника было предано забвению.
Более полувека ни о ней, ни о ее работах ничего не писалось. Однако в последние годы эта несправедливость начала исправляться.
Лермонтова прожила долгую жизнь, не создав собственной семьи. Нежно привязавшись к своей крестнице, она стала для нее не только воспитательницей, но и второй матерью. По рассказам Софьи Владимировны, ее крестная была маленькой, болезненной, но удивительно энергичной и жизнерадостной женщиной.
В сентябре 1919 г. у Юлии Всеволодовны произошло кровоизлияние в мозг. Три месяца продолжалась борьба за ее жизнь. В декабре того же года, не дожив несколько дней до 73 лет, Лермонтова скончалась.
Закончился жизненный путь замечательного человека, наделенного не только талантом ученого, но и талантом верного друга.
Попова Вера Евстафьевна
(урожденная Богдановская; 1867 — 25 апреля 1896 г. в Вятской губернии) — ученый-химик. 25-го апреля на Ижевском заводе Вятской губернии скончалась известная женщина-химик, Вера Евстафьевна Богдановская, по мужу Попова. Вера Евстафьевна была дочь известного хирурга Е. И. Богдановского и родилась в Петербурге в 1867 г. Окончив курс в Смольном институте в 1883 г., а затем на Высших женских курсах по естественному отделению, она потом работала по химии в течение двух с половиной лет в Женеве. Труды ее в этой области доставили ей известность в ученом мире и были увенчаны степенью доктора химии Женевским университетом. Возвратившись в Петербург, Вера Евстафьевна, желая посвятить свои силы делу женского образования, поступила на Высшие женские курсы. Она скоро выдвинулась вперед и заняла кафедру по одному из отделов химии, получившему в последнее время особенное развитие и интерес — стереохимии. Первая лекция ее по этому предмету, в январе 1895 г., собравшая в обширную химическую аудиторию курсов всех слушательниц и многих профессоров, выставила в самом блестящем виде ее научную подготовку и преподавательские способности. К сожалению, преподавательская деятельность Веры Евстафьевны длилась недолго; выйдя замуж и уехав из Петербурга, она по необходимости должна была прекратить ее. Но дух научного исследования никогда не оставлял ее. Посвящая все свое время научным работам в лаборатории, начиная с 1887 г. она, конечно, не могла отказаться от них и при перемене образа жизни. На Ижевских заводах, куда ее закинула судьба, возникла научно обставленная лаборатория. Несчастный случай в ней, столь нередкий спутник химических исследований, положил конец плодотворной и многообещающей жизни. По известностям, полученным в Петербурге 26-го апреля, Вера Евстафьевна погибла накануне вследствие взрыва и последовавшего затем отравления, как предполагают, фосфористым водородом. С Верой Евстафьевной женский ученый мир лишился одного из самых видных своих представителей, а наука потеряла одного из наиболее неутомимых и талантливых деятелей. ("Новое Время", 1896, № 7244). Библиография О ней: "Журнал Министерства Народного Просвещения", 1897, кн. 2, отд. IV, c. 75—77
Склодовская-Кюри Мария
Французский физик Мария Склодовская-Кюри (урожденная Мария Склодовская) родилась в Варшаве (Польша). Она была младшей из пяти детей в семье Владислава и Брониславы Склодовских. Мария воспитывалась в семье, где занятия наукой пользовались уважением. Ее отец преподавал физику в гимназии, а мать, пока не заболела туберкулезом, была директором гимназии. Мать Марии умерла, когда девочке было одиннадцать лет.
Мария Склодовская блестяще училась и в начальной, и в средней школе. Еще в юном возрасте она ощутила притягательную силу науки и работала лаборантом в химической лаборатории своего двоюродного брата. Великий русский химик Дмитрий Иванович Менделеев, создатель периодической таблицы химических элементов, был другом ее отца. Увидев девочку за работой в лаборатории, он предсказал ей великое будущее, если она продолжит свои занятия химией. Выросшая при русском правлении (Польша в то время была разделена между Россией, Германией и Австро-Венгрией), Склодовская-Кюри принимала активное участие в движении молодых интеллектуалов и антиклерикальных польских националистов. Хотя большую часть своей жизни Склодовская-Кюри провела во Франции, она навсегда сохранила преданность делу борьбы за польскую независимость.
На пути к осуществлению мечты Марии Склодовской о высшем образовании стояли два препятствия: бедность семьи и запрет на прием женщин в Варшавский университет. Мария и ее сестра Броня разработали план: Мария в течение пяти лет будет работать гувернанткой, чтобы дать возможность сестре окончить медицинский институт, после чего Броня должна взять на себя расходы на высшее образование сестры. Броня получила медицинское образование в Париже и, став врачом, пригласила к себе Марию. Покинув Польшу в 1891 г., Мария поступила на факультет естественных наук Парижского университета (Сорбонны). В 1893 г., закончив курс первой, Мария получила степень лиценциата по физике Сорбонны (эквивалентную степени магистра). Через год она стала лиценциатом и по математике.
В том же 1894 г. в доме одного польского физика-эмигранта Мария Склодовская встретила Пьера Кюри. Пьер был руководителем лаборатории при Муниципальной школе промышленной физики и химии. К тому времени он провел важные исследования по физике кристаллов и зависимости магнитных свойств веществ от температуры. Мария занималась исследованием намагниченности стали, и ее польский друг надеялся, что Пьер сможет предоставить Марии возможность поработать в своей лаборатории. Сблизившись сначала на почве увлечения физикой, Мария и Пьер через год вступили в брак. Это произошло вскоре после того, как Пьер защитил докторскую диссертацию. Их дочь Ирен (Ирен Жолио-Кюри) родилась в сентябре 1897 г. Через три месяца Мария Кюри завершила свое исследование по магнетизму и начала искать тему для диссертации.
В 1896 г. Анри Беккерель обнаружил, что урановые соединения испускают глубоко проникающее излучение. В отличие от рентгеновского, открытого в 1895 г. Вильгельмом Рёнтгеном, излучение Беккереля было не результатом возбуждения от внешнего источника энергии, например светом, а внутренним свойством самого урана. Очарованная этим загадочным явлением и привлекаемая перспективой положить начало новой области исследований, Кюри решила заняться изучением этого излучения, которое она впоследствии назвала радиоактивностью. Приступив к работе в начале 1898 г., она прежде всего попыталась установить, существуют ли другие вещества, кроме соединений урана, которые испускают открытые Беккерелем лучи. Поскольку Беккерель заметил, что в присутствии соединений урана воздух становится электропроводным, Кюри измеряла электропроводность вблизи образцов других веществ, используя несколько точных приборов, разработанных и построенных Пьером Кюри и его братом Жаком. Она пришла к выводу о том, что из известных элементов радиоактивны только уран, торий и их соединения. Однако вскоре Кюри совершила гораздо более важное открытие: урановая руда, известная под названием урановой смоляной обманки, испускает более сильное излучение Беккереля, чем соединения урана и тория, и по крайней мере в четыре раза более сильное, чем чистый уран. Кюри высказала предположение, что в урановой смоляной обманке содержится еще не открытый и сильно радиоактивный элемент. Весной 1898 г. она сообщила о своей гипотезе и о результатах экспериментов Французской академии наук.
Затем супруги Кюри попытались выделить новый элемент. Пьер отложил свои собственные исследования по физике кристаллов, чтобы помочь Марии. Обрабатывая урановую руду кислотами и сероводородом, они разделили ее на известные компоненты. Исследуя каждую из компонент, ими было установлено, что сильной радиоактивностью обладают только две из них, содержащие элементы висмут и барий. Поскольку открытое Беккерелем излучение не было характерным ни для висмута, ни для бария, они заключили, что эти порции вещества содержат один или несколько ранее неизвестных элементов. В июле и декабре 1898 г. Мария и Пьер Кюри объявили об открытии двух новых элементов, которые были названы ими полонием (в честь Польши – родины Марии) и радием.
Поскольку Кюри не выделили ни один из этих элементов, они не могли представить химикам решающего доказательства их существования. И супруги Кюри приступили к весьма нелегкой задаче – экстрагированию двух новых элементов из урановой смоляной обманки. Они установили, что вещества, которые им предстоит найти, составляют лишь одну миллионную часть урановой смоляной обманки. Чтобы экстрагировать их в измеримых количествах, исследователям необходимо было переработать огромные количества руды. В течение последующих четырех лет Кюри работали в примитивных и вредных для здоровья условиях. Они занимались химическим разделением в больших чанах, установленных в дырявом, продуваемом всеми ветрами сарае. Анализы веществ им приходилось производить в крохотной, плохо оборудованной лаборатории Муниципальной школы. В этот трудный, но увлекательный период жалованья Пьера не хватало, чтобы содержать семью. Несмотря на то, что интенсивные исследования и маленький ребенок занимали почти все ее время, Мария в 1900 г. начала преподавать физику в Севре, в Эколь нормаль сюперьёр, учебном заведении, готовившем учителей средней школы. Овдовевший отец Пьера переехал к Кюри и помогал присматривать за Ирен.
В сентябре 1902 г. Кюри объявили о том, что им удалось выделить одну десятую грамма хлорида радия из нескольких тонн урановой смоляной обманки. Выделить полоний им не удалось, так как тот оказался продуктом распада радия. Анализируя соединение, Мария установила, что атомная масса радия равна 225. Соль радия испускала голубоватое свечение и тепло. Это фантастическое вещество привлекло внимание всего мира. Признание и награды за его открытие пришли к супругам Кюри почти сразу.
Завершив исследования, Мария, наконец, написала свою докторскую диссертацию. Работа называлась «Исследования радиоактивных веществ» и была представлена Сорбонне в июне 1903 г. В нее вошло огромное количество наблюдений радиоактивности, сделанных Марией и Пьером Кюри во время поиска полония и радия. По мнению комитета, присудившего Кюри научную степень, ее работа явилась величайшим вкладом, когда-либо внесенным в науку докторской диссертацией.
В декабре 1903 г. Шведская королевская академия наук присудила Нобелевскую премию по физике Беккерелю и супругам Кюри. Мария и Пьер Кюри получили половину награды «в знак признания... их совместных исследований явлений радиации, открытых профессором Анри Беккерелем». Кюри стала первой женщиной, удостоенной Нобелевской премии. И Мария, и Пьер Кюри были больны и не могли ехать в Стокгольм на церемонию вручения премии. Они получили ее летом следующего года.
Еще до того, как супруги Кюри завершили свои исследования, их работы побудили других физиков также заняться изучением радиоактивности. В 1903 г. Эрнест Резерфорд и Фредерик Содди выдвинули теорию, согласно которой радиоактивные излучения возникают при распаде атомных ядер. При распаде радиоактивные элементы претерпевают трансмутацию – превращение в другие элементы. Кюри не без колебаний приняла эту теорию, так как распад урана, тория и радия происходит настолько медленно, что в своих экспериментах ей не приходилось его наблюдать. (Правда, имелись данные о распаде полония, но поведение этого элемента Кюри считала нетипичным). Все же в 1906 г. она согласилась принять теорию Резерфорда – Содди как наиболее правдоподобное объяснение радиоактивности. Именно Кюри ввела термины распад и трансмутация.
Супруги Кюри отметили действие радия на человеческий организм (как и Анри Беккерель, они получили ожоги, прежде чем поняли опасность обращения с радиоактивными веществами) и высказали предположение, что радий может быть использован для лечения опухолей. Терапевтическое значение радия было признано почти сразу, и цены на радиевые источники резко поднялись. Однако Кюри отказались патентовать экстракционный процесс и использовать результаты своих исследований в любых коммерческих целях. По их мнению, извлечение коммерческих выгод не соответствовало духу науки, идее свободного доступа к знанию. Несмотря на это, финансовое положение супругов Кюри улучшилось, так как Нобелевская премия и другие награды принесли им определенный достаток. В октябре 1904 г. Пьер был назначен профессором физики в Сорбонне, а месяц спустя Мария стала официально именоваться заведующей его лабораторией. В декабре у них родилась вторая дочь, Ева, которая впоследствии стала концертирующей пианисткой и биографом своей матери.
Мари черпала силы в признании ее научных достижений, любимой работе, любви и поддержке Пьера. Как она сама признавалась: «Я обрела в браке все, о чем могла мечтать в момент заключения нашего союза, и даже больше того». Но в апреле 1906 г. Пьер погиб в уличной катастрофе. Лишившись ближайшего друга и товарища по работе, Мари ушла в себя. Однако она нашла в себе силы продолжать работу. В мае, после того как Мари отказалась от пенсии, назначенной министерством общественного образования, факультетский совет Сорбонны назначил ее на кафедру физики, которую прежде возглавлял ее муж. Когда через шесть месяцев Кюри прочитала свою первую лекцию, она стала первой женщиной – преподавателем Сорбонны.
В лаборатории Кюри сосредоточила свои усилия на выделении чистого металлического радия, а не его соединений. В 1910 г. ей удалось в сотрудничестве с Андре Дебьерном получить это вещество и тем самым завершить цикл исследований, начатый 12 лет назад. Она убедительно доказала, что радий является химическим элементом. Кюри разработала метод измерения радиоактивных эманаций и приготовила для Международного бюро мер и весов первый международный эталон радия – чистый образец хлорида радия, с которым надлежало сравнивать все остальные источники.
В конце 1910 г. по настоянию многих ученых кандидатура Кюри была выдвинута на выборах в одно из наиболее престижных научных обществ – Французскую академию наук. Пьер Кюри был избран в нее лишь за год до своей смерти. За всю историю Французской академии наук ни одна женщина не была ее членом, поэтому выдвижение кандидатуры Кюри привело к жестокой схватке между сторонниками и противниками этого шага. После нескольких месяцев оскорбительной полемики в январе 1911 г. кандидатура Кюри была отвергнута на выборах большинством в один голос.
Через несколько месяцев Шведская королевская академия наук присудила Кюри Нобелевскую премию по химии «за выдающиеся заслуги в развитии химии: открытие элементов радия и полония, выделение радия и изучение природы и соединений этого замечательного элемента». Кюри стала первым дважды лауреатом Нобелевской премии. Представляя нового лауреата, Э.В. Дальгрен отметил, что «исследование радия привело в последние годы к рождению новой области науки – радиологии, уже завладевшей собственными институтами и журналами».
Незадолго до начала первой мировой войны Парижский университет и Пастеровский институт учредили Радиевый институт для исследований радиоактивности. Кюри была назначена директором отделения фундаментальных исследований и медицинского применения радиоактивности. Во время войны она обучала военных медиков применению радиологии, например, обнаружению с помощью рентгеновских лучей шрапнели в теле раненого. В прифронтовой зоне Кюри помогала создавать радиологические установки, снабжать пункты первой помощи переносными рентгеновскими аппаратами. Накопленный опыт она обобщила в монографии «Радиология и война» в 1920 г.
После войны Кюри возвратилась в Радиевый институт. В последние годы своей жизни она руководила работами студентов и активно способствовала применению радиологии в медицине. Она написала биографию Пьера Кюри, которая была опубликована в 1923 г. Периодически Кюри совершала поездки в Польшу, которая в конце войны обрела независимость. Там она консультировала польских исследователей. В 1921 г. вместе с дочерьми Кюри посетила Соединенные Штаты, чтобы принять в дар 1 г радия для продолжения опытов. Во время своего второго визита в США (1929) она получила пожертвование, на которое приобрела еще грамм радия для терапевтического использования в одном из варшавских госпиталей. Но вследствие многолетней работы с радием ее здоровье стало заметно ухудшаться.
Кюри скончалась 4 июля 1934 г. от лейкемии в небольшой больнице местечка Санселлемоз во французских Альпах.
Величайшим достоинством Кюри как ученого было ее несгибаемое упорство в преодолении трудностей: поставив перед собой проблему, она не успокаивалась до тех пор, пока ей не удавалось найти решение. Тихая, скромная женщина, которой досаждала ее слава, Кюри сохраняла непоколебимую верность идеалам, в которые она верила, и людям, о которых она заботилась. После смерти мужа она оставалась нежной и преданной матерью для двух своих дочерей.
Помимо двух Нобелевских премий, Кюри была удостоена медали Бертело Французской академии наук (1902), медали Дэви Лондонского королевского общества (1903) и медали Эллиота Крессона Франклиновского института (1909). Она была членом 85 научных обществ всего мира, в том числе Французской медицинской академии, получила 20 почетных степеней. С 1911 г. и до смерти Кюри принимала участие в престижных Сольвеевских конгрессах по физике, в течение 12 лет была сотрудником Международной комиссии по интеллектуальному сотрудничеству Лиги Наций.
Жолио-Кюри Ирен
Французский физик Ирен Жолио-Кюри родилась в Париже. Она была старшей из двух дочерей Пьера Кюри и Марии Склодовской-Кюри. Мари Кюри впервые получила радий, когда Ирен был всего год. Приблизительно в это же время дед Ирен по линии отца, Эжен Кюри, переехал жить в их семью. По профессии Эжен Кюри был врачом. Он добровольно предложил свои услуги восставшим в революцию 1848 г. и помогал Парижской коммуне в 1871 г. Теперь Эжен Кюри составлял компанию своей внучке, пока ее мать была занята в лаборатории. Его либеральные социалистические убеждения, так же как и присущий ему антиклерикализм, оказали глубокое влияние на формирование политических взглядов Ирен.
В возрасте 10 лет, за год до смерти отца, Ирен Кюри начала заниматься в кооперативной школе, организованной матерью и несколькими ее коллегами, в т.ч. физиками Полем Ланжевеном и Жаном Перреном, которые также преподавали в этой школе. Два года спустя она поступила в коллеж Севине, окончив его накануне первой мировой войны. Ирен продолжила свое образование в Парижском университете (Сорбонне). Однако она на несколько месяцев прервала свою учебу, т.к. работала медицинской сестрой в военном госпитале, помогая, матери делать рентгенограммы.
По окончании войны Ирен Кюри стала работать ассистентом-исследователем в Институте радия, который возглавляла ее мать, а с 1921 г. начала проводить самостоятельные исследования. Ее первые опыты были связаны с изучением радиоактивного полония – элемента, открытого ее родителями более чем 20 годами ранее. Поскольку явление радиации было связано с расщеплением атома, его изучение давало надежду пролить свет на структуру атома. Ирен Кюри изучала флуктуацию, наблюдаемую в ряде альфа-частиц, выбрасываемых, как правило, с чрезвычайно высокой скоростью во время распада атомов полония. На альфа-частицы, которые состоят из 2 протонов и 2 нейтронов и, следовательно, представляют собой ядра гелия, как на материал для изучения атомной структуры впервые указал английский физик Эрнест Резерфорд. В 1925 г. за исследование этих частиц Ирен Кюри была присуждена докторская степень.
Самое значительное из проведенных ею исследований началось несколькими годами позже, после того как в 1926 г. она вышла замуж за своего коллегу, ассистента Института радия Фредерика Жолио. В 1930 г. немецкий физик Вальтер Боте обнаружил, что некоторые легкие элементы (среди них бериллий и бор) испускают мощную радиацию при бомбардировке их альфа-частицами. Заинтересовавшись проблемами, которые возникли в результате этого открытия, супруги Жолио-Кюри (как они себя называли) приготовили особенно мощный источник полония для получения альфа-частиц и применили сконструированную Жолио чувствительную конденсационную камеру, с тем чтобы фиксировать проникающую радиацию, которая возникала таким образом.
Они обнаружили, что когда между бериллием или бором и детектором помещается пластинка водородсодержащего вещества, то наблюдаемый уровень радиации увеличивается почти вдвое. Супруги Жолио-Кюри объяснили возникновение этого эффекта тем, что проникающая радиация выбивает отдельные атомы водорода, придавая им огромную скорость. Несмотря на то ,что ни Ирен, ни Фредерик, не поняли сути этого процесса, проведенные ими тщательные измерения проложили путь для открытия в 1932 г. Джеймсом Чедвиком нейтрона – электрически нейтральной составной части большинства атомных ядер.
Продолжая исследования, супруги Жолио-Кюри пришли к своему самому значительному открытию. Подвергая бомбардировке альфа-частицами бор и алюминий, они изучали выход позитронов (положительно заряженных частиц, которые во всех остальных отношениях напоминают отрицательно заряженные электроны), впервые открытых в 1932 г. американским физиком Карлом Д. Андерсоном. Закрыв отверстие детектора тонким слоем алюминиевой фольги, они облучили образцы алюминия и бора альфа-частицами. К их удивлению, выход позитронов продолжался в течение нескольких минут после того, как был удален полониевый источник альфа-частиц. Позднее Жолио-Кюри пришли к убеждению, что часть алюминия и бора в подвергнутых анализу образцах превратилась в новые химические элементы. Более того, эти новые элементы были радиоактивными: поглощая 2 протона и 2 нейтрона альфа-частиц, алюминий превратился в радиоактивный фосфор, а бор – в радиоактивный изотоп азота. В течение непродолжительного времени Жолио-Кюри получили много новых радиоактивных элементов. В 1935 г. Ирен Жолио-Кюри и Фредерику Жолио совместно была присуждена Нобелевская премия по химии «за выполненный синтез новых радиоактивных элементов». Во вступительной речи от имени Шведской королевской академии наук К.В. Пальмайер напомнил Жолио-Кюри о том, как 24 года назад она присутствовала на подобной церемонии, когда Нобелевскую премию по химии получала ее мать. «В сотрудничестве с вашим мужем,– сказал Пальмайер,– вы достойно продолжаете эту блестящую традицию».
Через год после получения Нобелевской премии Жолио-Кюри стала полным профессором Сорбонны, где читала лекции начиная с 1932 г. Она также сохранила за собой должность в Институте радия и продолжала заниматься исследованиями радиоактивности. В конце 30-х гг. Жолио-Кюри, работая с ураном, сделала несколько важных открытий и вплотную подошла к обнаружению того, что при бомбардировке нейтронами происходит распад (расщепление) атома урана. Повторив те же самые опыты, немецкий физик Отто Ган и его коллеги Фриц Штрасман и Лизе Майтнер в 1938 г. добились расщепления атома урана. Между тем Жолио-Кюри начала все большее внимание уделять политической деятельности и в 1936 г. в течение четырех месяцев работала помощником статс-секретаря по научно-исследовательским делам в правительстве Леона Блюма. Несмотря на германскую оккупацию Франции в 1940 г., Жолио-Кюри и ее муж остались в Париже, где Жолио участвовал в движении Сопротивления. В 1944 г. у гестапо появились подозрения в отношении его деятельности, и, когда он в том же году ушел в подполье, Жолио-Кюри с двумя детьми бежала в Швейцарию, где они оставались до освобождения Франции.
В 1946 г. Жолио-Кюри была назначена директором Института радия. Кроме того, с 1946 по 1950 г. она работала в Комиссариате по атомной энергии Франции. Всегда глубоко озабоченная проблемами социального и интеллектуального прогресса женщин, она входила в Национальный комитет Союза французских женщин и работала во Всемирном Совете Мира. К началу 50-х гг. ее здоровье стало ухудшаться, вероятно, в результате полученной ею дозы радиоактивности. Жолио-Кюри умерла в Париже 17 марта 1956 г. от острой лейкемии.
Высокая худенькая женщина, прославившаяся своим терпением и ровным характером, Жолио-Кюри очень любила плавать, ходить на лыжах и совершать прогулки в горы. Помимо Нобелевской премии, она была удостоена почетных степеней многих университетов и состояла во многих научных обществах. В 1940 г. ей была вручена золотая медаль Барнарда за выдающиеся научные заслуги, присужденная Колумбийским университетом. Жолио-Кюри была кавалером ордена Почетного легиона Франции.
Приложение
Юлия Лермонтова Мария Кюри
Жолио-Кюри Ирен
Использованная литература
1.Лауреаты Нобелевской премии: Энциклопедия. Пер. с англ.– М.: Прогресс, 1992.
2.Н.А. Фигуровский История химии М., Просвещение, 1979
3. Ахметшин Фарит Баишевич «Лермонтова Юлия Всеволодовна. К 160-ти летнему юбилею. Основоположник нефтепереработки, писательница и художник, агрономом, доктор химии, добрая и нежная мама» .
4. http://www.serednikovo.ru
nsportal.ru
Анна Федоровна Волкова, Юлия Всеволодовна Лермонтова, Вера Евстафьевна Богдановская… Кому известны теперь эти имена? А между тем их носили русские женщины, которые первыми в России начали заниматься химическими исследованиями и достигли здесь заметных успехов.
Анна Федоровна Волкова
Первая в мире женщина, получившая диплом химика (1870), Первая в мире женщина, опубликовавшая научную работу по химии, Первая женщина — член Русского Химического общества.
Точная дата рождения А.Ф. Волковой неизвестна, скудны сведения о её жизненном пути. Нет данных о том, каким образом ей удалось получить химическое образование. Нет ни одной фотографии. Но вклад её в химию был достаточно весом.
Пожалуй, в 1870-ых гг. Волкова была одним из крупнейших специалистов в области изучения толуол-сульфокислот. Она впервые синтезировала в чистом виде орто-толуолсульфокислоту, получила её хлорангидрид и амид. Впоследствии эти два соединения оказались основными продуктами производства сахарина. Исходя из сульфокислот, она приготовила пара-трикрезолфосфат, который потом стал употребляться как пластификатор в производстве пластмасс.
Известно, что Волкова некоторое время работала в химической лаборатории Лесного института в Петербурге у известного химика и агронома А.Н. Энгельгардта, а с 1870 г — в лаборатории председателя Русского технического общества П.А. Кочубея.
В этом же году она стала Первой женщиной, принятой в русское химическое общество. В журнале общества она опубликовала около 20 статей. А на III Съезде русских естествоиспытателей в 1871 г. она выступила с двумя докладами и даже была выбрана председателем одного из заседаний.
Всю жизнь Анна Фёдоровна была стеснена в средствах, хотя по мере возможности петербургские химики помогали ей. Умерла она в 1876 г., не дожив, видимо, и до сорока лет.
Юлия Всеволодовна Лермонтова
Гораздо более счастливо сложилась судьба Ю. В. Лермонтовой (1846-1919). Её отец (между прочим, троюродный брат М.Ю. Лермонтова) был генералом, директором Московского кадетского корпуса. Интерес к химии пробудился у неё с детских лет. Лучшие преподаватели кадетского корпуса давали ей частные уроки. Но когда она решила продолжить образование за границей, отец решительно воспротивился желанию дочери.
Скорее всего Юлии Всеволодовне не удалось бы переубедить отца, если бы не её дружба с Софьей Васильевной Ковалевской — знаменитым математиком конца прошлого столетия. Она сумела найти подход к несговорчивому родителю, и тот, в конце концов, согласился выполнить просьбу дочери.
Осенью 1869 г. Лермонтова приехала в Гейдельберг, где поселилась в семье Ковалевской. Там она начала работать в химической лаборатории Р. Бунзена и выполнила содержательное исследование по химии платиновых металлов. Однако её больше привлекала органическая химия. Её проблемами она и стала заниматься, переехав в 1871 г. в Берлин; здесь её наставником был А. Гофман.
К берлинскому периоду относится одна из лучших работ Лермонтовой — «О составе дифенина», которая была доложена Гофманом на заседании Немецкого химического общества, а затем опубликована (1872).
В 1878 одновременно с А. П. Эльтековым в лаборатории Бутлерова открыла реакцию алкилирования олефиновгалоидпроизводными жирного ряда; эта реакция легла в основу синтеза ряда видов современного моторного топлива.
С 1875 года Лермонтова — член Русского Химического общества (РХО).
В 1880 году В. В. Марковников начал свои знаменитые исследования кавказской нефти. Ему удалось привлечь к этой работе и Лермонтову. Окончательно обосновавшись в Москве, Юлия Всеволодовна Лермонтова вступила в Русское техническое общество, в химико-технической группе которого активно работала до 1888 года.
Лермонтова Первая смогла доказать преимущество перегонки нефти с применением пара. Однако, основной темой её научной деятельности было глубокое разложение нефти.
К научным заслугам Лермонтовой относятся и её работы, сыгравшие важную роль в технике катализа. Своими исследованиями она первой из учёных-химиков определила наилучшие условия разложения нефти и нефтепродуктов для получения максимального выхода ароматических углеводородов.
К сожалению, из-за сложных житейских обстоятельств, в 1881 г. ей пришлось оставить научную деятельность. Она уехала в своё имение Семенково и фактически оставалась там до конца жизни. Сложись её судьба по другому, она, несомненно, оказалась в первых рядах русских химиков. Её петербургские и московские коллеги сохранили о ней добрую память.
Вера Евстафьевна Богдановская
В.Е. Богдановская (1866-1896) была дочерью известного хирурга. Отец не возражал против её обучения за границей, но здесь были преграды иного толка. Всё же в октябре 1889 г. она сумела уехать в Женеву и работала там в лаборатории К. Гребе.
Она пришла к немецкому химику с оригинальной идеей: синтезировать фосфорный аналог синильной кислоты НСР. Гребе, однако, не пошёл навстречу и предложил другую тему: изучение реакции восстановления дибензилкетона. Богдановская успешно провела исследование. Оно легло в основу её докторской диссертации, защищённой в Женевском университете в 1892 г.
По возвращении в Россию она занималась также преподавательской деятельностью — в Ново-Александрийском институте сельского хозяйства и лесоводства и на Петербургских высших женских курсах.
Осенью 1895 вышла замуж за Я. К. Попова. Её муж, дворянин по происхождению, после окончания военной академии долгое время работал на Санкт-Петербургском патронном заводе, а за год до свадьбы был назначен начальником Ижевских оружейного и сталеделательного заводов. Той же осенью вместе с супругом оставила Санкт-Петербург и поселилась на Ижевских заводах, в Вятской губернии. Организовала там домашнюю химическую лабораторию, а кроме того — работала в заводской.
Была отпета в Александро-Невском соборе, а затем муж увёз тело жены в свое родовое имение в Черниговскую губернию (Сосницкий уезд, село Шабалинов). Склеп, в котором была похоронена В. Е. Богдановской-Поповой (тело было уничтожено в первые годы Советской власти), ныне находится в аварийном состоянии, а украшавший его памятник находится в Сосницком краеведческом музее.
Видный химик Г.Г. Густавсон писал о ней в некрологе: «Не лишённая иронии, она доставляла своими беседами глубокое наслаждение. Удовольствие общения с ней увеличивалось тем, что эта женщина была основательно и всесторонне образована и что она обладала замечательной ясностью ума…»
В первую годовщину её смерти в химической лаборатории Высших женских курсов был устроен вечер её памяти. В этом же году вышло первое издание её «Начального учебника химии».
Эти три яркие фигуры женщин-химиков составляют неотъемлемую часть истории химии в нашей стране, и их имена не могут быть преданы забвению. Их пионерская деятельность немало способствовала популяризации профессии химика среди русских женщин.
Ещё 20 сентября 1878 г. в Петербурге открылись Высшие женские курсы. За тридцать лет своего существования они дали образование двум с половиной тысячам женщин, среди которых многие посвятили себя деятельности в области химии. На курсах читали лекции такие видные химики, как Д.И. Менделеев, А.М. Бутлеров, Н.Н. Бекетов, М.Д. Львов и другие.
Автор: Д. Н. Трифонов
Читайте также:
ПЕРВЫЕ ЖЕНЩИНЫ РОССИИ, Ч. 1 — «АВИАТРИССЫ»
ЖЕНЩИНЫ В РОССИЙСКОЙ НАУКЕ
СОВЕТСКИЕ ЖЕНЩИНЫ — МИНУТКА ОТКРОВЕНИЯ
Нашли ошибку? Выделите ее и нажмите левый Ctrl+Enter.
moiarussia.ru
Как-то учащимся начальной школы предложили изобразить человека, проводящего научные исследования. Абсолютное большинство школьников — 86% девочек и 99% мальчиков — нарисовали мужчину. В представлении старшеклассников современный учёный — это бородатый научный сотрудник средних лет в очках, облачённый в халат и работающий в лаборатории, оснащённой различными приборами. Время от времени он что-то читает, делает заметки в журнале и иногда, стукнув себя по лбу, восклицает: «Эврика!»*. Однако не только дети полагают, что занятие наукой является уделом исключительно мужчин.
Химия традиционно считалась сугубо мужской вотчиной. Так, вышедший в 1991 году биографический справочник «Выдающиеся химики мира» содержит имена 1220 учёных, и лишь 20 из них — женские. Среди 160 лауреатов Нобелевской премии по химии, названных с 1901 по 2011 год, всего четыре «лауреатки». Первая из них — женщина-легенда Мария Склодовская-Кюри. Выступая на церемонии открытия Международного года химии в 2011 году (в год столетия присуждения премии Марии Склодовской-Кюри), её внучка — физик-ядерщик Элен Ланжевен Жолио особо подчеркнула роль женщины в развитии современной химической науки.
Действительно, заглянув сегодня в любую научную или заводскую лабораторию, можно увидеть, что химия в значительной мере делается женскими руками (особенно в России). Тысячи и тысячи женщин изучали и изучают химию, проводят эксперименты, предлагают оригинальные научные идеи. Почему же тогда так мало женских имён встречается в анналах химической науки? Почему даже обременённым учёными степенями и званиями непросто с ходу вспомнить, например, реакцию, названную женским именем? Разве представительницы прекрасного пола не стремятся достичь вершин в познании химических основ мироздания?
Известный немецкий химик и философ Вильгельм Оствальд в своём труде «Великие люди» категорично утверждал, что «женщины нашего времени, независимо от расы и национальности, не годятся для выдающихся научных работ» и что их «самостоятельной научной деятельности в новых, совершенно ещё не разработанных областях знания … до сих пор ещё не было и, насколько можно теперь судить о будущем, не будет»**. К счастью, жизнь не подтвердила эти мрачные прогнозы.
Доступ к полноценному университетскому образованию женщины получили сравнительно недавно. Знаменитый Оксфордский университет, парижская Сорбонна, университеты Берлина и Вены открыли свои двери женщинам в конце XIX — начале XX века. В США, правда, это произошло на несколько десятилетий раньше. Однако в те годы в учебных заведениях женщин готовили вовсе не к работе в науке, а скорее к роли заботливой матери, выполняющей святой долг служения семье.
В историю даже вошёл курьёзный случай, связанный с именем Лизе Мейтнер — первой в Германии женщины-физика и радиохимика, которую Альберт Эйнштейн называл «наша мадам Кюри». В начале 1920-х она защитила диссертацию «Проблемы космической физики». Однако корреспонденту одной из берлинских газет показалось немыслимым, чтобы женщина принялась решать столь серьёзные задачи. В результате в заметке было напечатано: «Проблемы косметической физики». По мнению журналистов, эта тема ближе к тому, чем в действительности должна заниматься настоящая дама. (Почти восемь десятилетий спустя, отдавая дань таланту Лизе Мейтнер, в её честь назвали искусственно полученный 109-й элемент периодической системы — мейтнерий, Mt.)
Как бы то ни было, к 1900 году только в США учёная степень доктора химии была присуждена 13 женщинам. В России первой женщиной, получившей учёную степень по химии, стала Юлия Всеволодовна Лермонтова (1846—1919). Двадцатидвухлетней барышней она приехала в Гейдельберг, где в местном университете ей позволили на правах вольнослушательницы посещать лекции знаменитого Роберта Бунзена. Перебравшись в Берлин, она училась у химика-органика Августа Гофмана и работала в его лаборатории. К началу 1874 года Юлия завершила самостоятельное исследование в области органической химии и осенью того же года блестяще защитила диссертацию в Гёттингенском университете, получив диплом доктора химии «с великой похвалой». Вернувшись в Россию, молодой доктор наук сначала работала в Московском университете в лаборатории Владимира Васильевича Марковникова, а позже по приглашению Александра Михайловича Бутлерова переехала в Петербург. Здесь, увлёкшись каталитическим алкилированием низших олефинов галогеналканами, она синтезировала новые разветвлённые углеводороды. В январе 1878 года на заседании Русского химического общества профессор Харьковского университета Александр Павлович Эльтеков сообщил о предварительных результатах, полученных им при изучении нового метода синтеза углеводородов ряда Cnh3n. Присутствовавший при этом Бутлеров заметил, что ряд опытов ещё годом ранее был проведён Юлией Лермонтовой. Чуть позже в статье «О действии третичного йодистого бутила на изобутилен в присутствии металлических окислов» сама Юлия Всеволодовна признавалась: «Разыскивая условия для осуществления возможно более чистых реакций, я не спешила с сообщением полученных мною уже тогда результатов потому, что возможность синтеза, осуществлённого г-ном Эльтековым, так непосредственно вытекала из предложений и рассуждений, выраженных А. М. Бутлеровым в его статье об изобутилене, в особенности во французском мемуаре, касающемся того же предмета, что трудно было предположить, чтобы подобного рода реакции сделались так скоро предметом исследований других химиков. Ввиду опубликованной Эльтековым заметки, я хотя и отказалась от намерения ныне же продолжать все начатые и задуманные мною опыты, но сочла однако же нужным закончить и описать те из них, которые уже привели меня к определённым результатам…» И каким! Их ценность стала понятна позже, когда на основе открытой реакции был разработан промышленный синтез некоторых видов моторного топлива. А сама реакция стала называться реакцией Бутлерова — Эльтекова — Лермонтовой. Правда, имя первой русской женщины-химика указывается, к сожалению, не всегда.
Несмотря на примитивные по нынешним меркам условия, женщины-химики работали настолько увлечённо, что нередко забывали об опасности. Недаром кто-то и сегодня всерьёз полагает, что на двери химической лаборатории следует начертать ту же надпись, что Данте ставил над вратами ада: «Оставь надежду всяк сюда входящий». Приводя в одной из публикаций подробности эксперимента, Юлия Лермонтова сетовала, например, что единственным препятствием для приготовления «в сравнительно короткое время значительного количества триметиленбромида по предлагаемому [ею] способу является то, что стеклянные сосуды, с которыми приходилось работать, не всегда выдерживали нагревание даже до 170°, поэтому работа … сопряжена со значительными потерями от взрывов».
Взрыв оборвал жизнь другой русской женщины-химика — Веры Евстафьевны Поповой, до замужества Богдановской (1867—1896). В одном из писем к подруге она писала: «И отделил Бог землю от воды и сказал: да будет твердь… Моя ″твердь″ это химия, а всё остальное — как сложится». Она получила образование на Высших женских (Бестужевских) курсах, а затем в университете Женевы, где работала в лаборатории известного немецкого химика-органика Карла Гребе. За границу ехала, желая осуществить заветную мечту — синтезировать аналог синильной кислоты, в котором атом азота заменён атомом фосфора. Если бы она знала, насколько обогнала с этой идеей своё время! Сегодня известно, что первые сообщения о возможности синтеза метилиденфосфана (HC≡P), само существование которого ставилось под сомнение, появились лишь в 1950 году. Однако потребовалось ещё десятилетие, чтобы манящее химиков соединение было получено и его строение однозначно установлено. Примечательно, что опубликованное в журнале Американского химического общества краткое сообщение называлось очень лаконично: «HCP, A Unique Phosphorus Compound». Это «уникальное соединение фосфора» чрезвычайно легко самовоспламенялось и взрывалось на воздухе даже при низких температурах. К счастью, Гребе отговорил начинающего химика от работы над этой проблемой и предложил свою тему — восстановление ароматических кетонов.
Защитив в 1892 году диссертацию и получив учёную степень доктора химии, Вера вернулась в Петербург, где на Высших женских курсах читала лекции по химии. Преподававший там же член-корреспондент Петербургской академии наук Г. Г. Густавсон вспоминал, что на дополнительных занятиях «Вера Евстафьевна, без всякого вознаграждения, разъясняла и помогала усвоению начал химии. Эти беседы имели совершенно откровенный, интимный характер. Слушательницы, поддавшись открытому, вполне товарищескому к ним отношению со стороны Веры Евстафьевны, не стеснялись вопросами и прямо заявляли о своих сомнениях, выводах и предложениях, находя должное разъяснение всему этому». Осенью 1895 года В. Е. Попова вместе с мужем переехала в Вятскую губернию: там, на Ижевских заводах, она вновь вернулась к проблеме существования фосфорного аналога синильной кислоты и продолжила свои исследования в заводской лаборатории. В конце апреля 1896 года во время эксперимента взорвалась ампула, содержащая белый фосфор и синильную кислоту. Спасти молодую талантливую женщину не удалось…
Возможно, среди слушательниц Веры Евстафьевны была её тёзка — Вера Арсентьевна Баландина, в девичестве Емельянова (1871—1943). Приехав в Петербург из далёкой Сибири, она поступила на физико-математическое отделение (со специализацией по химии) Высших женских курсов. Завораживающие лекции лучших профессоров университета по математике, физике, химии, биологии, минералогии и другим естественным наукам, практические занятия в химической лаборатории, богатая библиотека — всё увлекало, всё вызывало восторг. Весна 1893 года: курсы успешно окончены, но жажда знаний у Веры настолько велика, что молодая выпускница уезжает за границу. Её ждут Сорбонна и Институт Пастера в Париже, а затем — знаменитая Химическая школа при старейшем университете Швейцарии в Женеве.
Вернувшись из-за границы в родной Енисейск, Вера Арсентьевна продолжила научные изыскания. Она состояла действительным членом нескольких научных обществ — Русского физико-химического, Немецкого химического, Санкт-Петербургского минералогического. Её сын — известный учёный, основатель первой в мире кафедры органического катализа в МГУ академик Алексей Баландин — на вопрос, кто оказал наибольшее влияние на его решение посвятить жизнь химической науке, неизменно отвечал: «Мама».
История химии хранит имя ещё одной сибирячки, Марии Бакуниной (1873—1960), дочери русского революционера-анархиста М. А. Бакунина. Совсем ещё ребёнком она вместе с семьёй оказалась в Неаполе. Там в 1895 году Мария окончила университет и защитила диссертацию о пространственной изомерии производных коричной кислоты. На её исследования обратил внимание знаменитый итальянский химик Станислао Канниццаро, отметивший, что «синьора Бакунина тщательно выполнила непростую экспериментальную работу и получила новые данные по стереохимии, которые внесли существенный вклад в развитие этого раздела химической науки». Его высокая оценка побудила Национальную академию наук присудить в 1900 году Марии Бакуниной премию в тысячу лир.
Друзья звали её ласково Маруся (даже среди соавторов научных статей встречалось Marussia Bakunin), она же была очень требовательна к себе и к коллегам. По воспоминаниям студентов, сданные профессору Бакуниной экзамены нередко были самыми трудными в их жизни. В 1912 году она начала читать лекции по химии в Политехнической школе, нарушив традицию, согласно которой преподавание химических наук было прерогативой исключительно мужчин. Мария Бакунина скоро стала центральной фигурой в интеллектуальной жизни Неаполя, а в 1921 году заняла пост президента неаполитанского отделения Итальянского химического общества. По воспоминаниям современников, это была нежная и мужественная женщина: в годы Второй мировой войны, когда её дом был сожжён дотла фашистами, Мария Михайловна Бакунина защитила родной Институт химии от разорения.
Открытия XVIII века повлияли на химию сильнее, чем на какую-либо другую область науки. Это был конец эпохи алхимии и зарождение современной химии. Имена многих европейских химиков того времени увековечены в её истории. Однако жёны учёных, нередко принимавшие непосредственное участие в исследованиях, должны были мириться с тем, что им отведена второстепенная роль. Часто о них и вовсе забывали.
В самом деле, со школьной скамьи нам известно имя великого французского химика Антуана Лорана Лавуазье. А часто ли приходилось слышать имя его жены — Марии-Анны? Мало кто знает, что, выйдя замуж тринадцатилетней девушкой, она быстро стала верным ассистентом создателя современной химии, как и сегодня называют Лавуазье. Была ли она химиком? Нет ни одной опубликованной научной работы, в которой Мария-Анна Лавуазье была бы соавтором. В первом издании переведённого ею с английского «Эссе о флогистоне» её имя как переводчика не указано — оно появилось лишь в последующих изданиях. Вовлечённая благодаря мужу в мир науки (ещё до свадьбы двадцативосьмилетний Антуан часто беседовал с юной Марией-Анной о химии и астрономии), она помогала ему разрабатывать основные положения новой теории горения, подробно описывала в лабораторном журнале проводимые им эксперименты, рисовала и гравировала чертежи для его учебника «Traité élémentaire de chimie». Кроме того, Мария-Анна вела всю научную переписку мужа, пропагандируя тем самым новые идеи в химии. После казни Лавуазье она подготовила к печати и опубликовала многие его работы.
Перед любым человеком, а женщиной особенно, неизбежно встаёт непростая дилемма: либо семья, либо карьера. «У женщины-учёного должно хватить сил на то, чтобы быть готовой к одиночеству и преодолеть сарказм и насмешки мужчин, которые ревниво относятся к посягательству на то, что они считают своей прерогативой (занятие наукой)», — писала в конце XIX века Генриетта Болтон, жена известного американского химика и историка химии Генри Болтона. Многие женщины, добившиеся впечатляющих успехов на профессиональном поприще, в личной жизни оказывались несчастными или одинокими.
Биохимик Лина Соломоновна Штерн (1878—1968) вписала яркую главу в историю науки, оставив незаполненной семейную страницу своей биографии. Первую научную работу она опубликовала в двадцать три года, последнюю — в восемьдесят пять лет, будучи маститым учёным. В 1917 году Лина Соломоновна стала первой женщиной-профессором Женевского университета. В 1934 году ей присудили почётное звание заслуженного деятеля науки (первой из женщин), а спустя пять лет она, так же первой из женщин, была избрана действительным членом Академии наук СССР. Наука поглотила её полностью, не оставив места для семьи. Правда, однажды она чуть было не вышла замуж. Но, получив от жениха вместе с предложением руки и сердца ещё и предложение оставить работу, отказала ему, не раздумывая.
Сегодня трудно поверить, что в начале XX века в некоторых европейских странах женщины-профессора не имели права выйти замуж. Одно из первых исключений было сделано для немецкого химика баронессы Маргариты фон Врангель (1876—1932).
Она родилась в Москве. Её отец был полковником российской императорской армии, а потому семье приходилось часто переезжать. Из-за слабого здоровья Риты врачи не советовали её родителям чересчур загружать девочку учёбой. И поначалу она вместе с братом и сестрой занималась дома. Повзрослев, Маргарита приняла решение изучать науки, чего бы ей это ни стоило. И весной 1904 года в числе первых студенток поступила в Университет Эберхарда-Карла в Тюбингене (Германия). «Я нахожу что-то очень классическое в химии… Химические формулы чисты и красивы, они лишены математической строгости, но наполнены пульсирующей в них жизнью», — говорила она. Пять лет пролетели, наполненные радостью от познания нового. В 1909 году Маргарита фон Врангель блестяще защитила диссертацию и уехала в Англию, где в лаборатории сэра Уильяма Рамзая исследовала радиоактивный торий. Лауреат Нобелевской премии по химии был восхищён упорством и скрупулёзностью работы молодого химика. Его высокая оценка позволила Маргарите фон Врангель открыть дверь лаборатории и другого нобелевского лауреата — Марии Кюри. Спустя два года М. фон Врангель вернулась в Россию учёным, имя которого уже хорошо известно в научном мире. Однако после прихода к власти большевиков она вновь оказалась в Германии, где вскоре впервые в истории страны получила звание профессора и возглавила институт растениеводства.
В 1928 году, когда Маргарите было уже за пятьдесят, она вышла замуж за Владимира Андроникова, друга детства, которого считала погибшим после революции 1917 года. Тот факт, что она получила разрешение продолжать работать преподавателем и возглавлять институт, говорит, насколько высоко ценили в правительственных кругах её профессионализм. Однако счастье было недолгим: сказалось слабое здоровье, и через четыре года Маргариты фон Врангель не стало…
Непростая судьба выпала и на долю жены известного немецкого химика-неорганика и технолога Фрица Габера. Он впервые решил давнюю проблему фиксации азота, осуществив каталитический синтез аммиака из азота и водорода, за что впоследствии был удостоен Нобелевской премии. В этой работе ему активно помогала жена, талантливый химик Клара Габер (до замужества Иммервар), одной из первых в Германии женщин ставшая доктором химии. Без участия Клары не проходили ни институтские семинары, ни какие-либо мероприятия Химического общества. К тому же она читала лекции «Химия и физика в домашнем хозяйстве». Клара проявляла живой интерес к работе мужа, когда тот писал учебник «Термодинамика газовых реакций» («Thermodynamik technischer Gasreaktionen»). Она проводила расчёты, проверяла данные и даже перевела книгу на английский. Этот труд, изданный в 1905 году, Габер сопроводил следующим посвящением: «Моей любимой жене Кларе Иммервар, доктору философии, с благодарностью за негласное сотрудничество».
Однако, несмотря на то что Клара была талантливым химиком, Фриц считал, что, как обычная немецкая жена, она должна бросить научную карьеру и заниматься исключительно семьёй. «Для меня женщины похожи на прекрасных бабочек: я восхищаюсь их расцветкой и блеском, но не более того», — говорил он. Клара чувствовала, что муж стремится превратить её в домохозяйку. В 1909 году в одном из писем она признавалась: «Я всегда полагала, что жить стоит только тогда, когда развиваешь все свои способности, когда стремишься достичь максимальных высот, какие только может предложить человеческая жизнь. Именно по этой причине, полюбив Фрица, я в конечном счете решилась выйти за него замуж, ибо иначе новая страница моей Книги жизни осталась бы пустой. Но счастливый период был недолгим, частично, возможно, и из-за моего характера, но главным образом из-за деспотических требований, предъявляемых Фрицем ко мне как жене, которые могли бы разрушить любой союз. Это и произошло с нашим браком. Я спрашиваю себя, может ли только исключительный интеллект одного человека сделать его более значимым по сравнению с другим, и разве моя жизнь является менее ценной, чем самая важная электронная теория? Каждый вправе выбрать свой жизненный путь, но, по моему мнению, даже гений может позволить себе различные ″причуды″ и презрительное отношение к правилам поведения в обществе лишь тогда, когда он находится на необитаемом острове».
В начале мая 1915 года Клара покончила с собой. Последней каплей стало активное участие её мужа в разработке химического оружия, против чего она категорически выступала.
В истории науки известны случаи, когда за открытие, совершённое женщиной вместе с мужчинами, лавры первооткрывателей доставались только последним. Так случилось, например, при построении молекулярной модели ДНК, когда, «воспользовавшись исключительно чёткими дифракционными картинами ДНК, полученными М. Х. Ф. Уилкинсом, американский биолог Дж. Д. Уотсон и английский биофизик Ф. Х. К. Крик предположили, что молекулы ДНК состоят из двух цепей, закрученных относительно друг друга в виде спирали…». Но в этих исследованиях участвовала ещё и женщина, без которой, по мнению многих, открытие могло и не состояться. Её звали Розалинд Франклин. В знаменитой статье 1953 года Джеймс Уотсон и Фрэнсис Крик писали, что их исследования были «стимулированы неопубликованными экспериментальными результатами и идеями докторов М. Уилкинса и Р. Франклин и их сотрудников». В 1962 году это великое открытие было отмечено Нобелевской премией по физиологии и медицине, которую разделили трое мужчин. Справедливости ради следует заметить, что Розалинд Франклин и не смогла бы стать нобелевским лауреатом, поскольку по правилам премия присуждается учёному, здравствующему во время объявления о присуждении ему этой награды (Розалинд Франклин умерла 16 апреля 1958 года; ей было всего 37 лет). В нобелевской лекции лишь Морис Уилкинс отметил неоценимый вклад Розалинд Франклин в исследования структуры ДНК. В лекциях двух других лауреатов её имя даже не упоминалось.
Некоторым именным реакциям, открытым и изученным женщинами-химиками, не присвоили их имена. Яркий пример такой дискриминации — история французского химика-органика украинского происхождения Бьянки Чубар (1910—1990). Получив в Париже степень бакалавра, а затем и магистра по химии, она влилась в исследовательскую группу Марка Тиффено, работавшего на медицинском факультете.
Очень скоро Бьянка возглавила лабораторию органической химии и вместе с Тиффено занялась изучением перегруппировок циклических 1,2-диолов и карбоциклических первичных аминов (последняя была открыта Николаем Яковлевичем Демьяновым в 1903 году). Исследования этих реакций составили предмет диссертации Бьянки Чубар, но получили название перегруппировки Демьянова — Тиффено. Несмотря на неожиданную смерть Марка Тиффено в 1945 году, Чубар продолжала самостоятельно успешно изучать эти необычные превращения. Вскоре появились статьи, в которых она, будучи единственным автором, смело излагала свои взгляды на механизм протекающих реакций. Тщательно проведённые ею эксперименты позволили верно интерпретировать полученные результаты. Сегодня эта реакция, которой справедливее было бы дать имя Бьянки Чубар, широко используется в органическом синтезе.
Несмотря на то что вклад женщин в развитие химической науки значительно вырос, о феминизации химии речь не идёт. Об этом говорят и сухие цифры статистики. Так, например, по данным Немецкого химического общества, в 2010 году лишь каждый десятый пост профессора в университетах Германии занимала женщина. В то же время среди ассистентов их насчитывалось около 30%, а среди студентов-первокурсников барышни составляли 45%. Об этом же красноречиво свидетельствует и количество публикаций с участием женщин. Так, представители прекрасного пола являются ответственными авторами лишь 16% статей, опубликованных в 2010 году в журнале «European Journal of Organic Chemistry». Правда, встречаются редкие приятные исключения. Так, по индексу цитирования, опубликованному в сентябре 2012 года (http://www.expertcorps.ru/science/whoiswho/), профессор Московского государственного университета имени М. В. Ломоносова академик Ирина Петровна Белецкая обогнала всех своих коллег-мужчин, кроме одного.
Судьба женщины, посвятившей себя химической науке, зачастую непроста. Даже если некоторая дискриминация женщин в науке сегодня и проявляется, они всё равно остаются верными однажды избранному пути.
Комментарии к статье
* По данным статьи: H. Türkmen. Eurasia Journal of Mathematics, Science & Technology Education 2008, 4(1), 55—61.
** В. Оствальд. Великие люди. (Пер. с немецкого Г. Кваша.) — С.-Петербург, 1910, с. 383—394.
www.nkj.ru
gymnaz.ru
тема: Рождение современной химии
выполнил: NAAALEX
выполнен в апреле-2004
...нет науки, которая была бы замечательнее и
поучительнее истории химии.
Юстус фон Либих
Введение
Представления древнегреческих натурфилософов оставались ос-новными идейными истоками естествознания вплоть до XVIII в. До начала эпохи Возрождения в науке господствовали представления Аристотеля. В дальнейшем стало расти влияние атомистических взглядов, впервые высказанных Левкиппом и Демокритом. Алхимические работы опирались преимущественно на натурфилософские взгляды Платона и Аристотеля. Большинство экс-периментаторов того периода были откровенными шарлатанами, кото-рые пытались с помощью примитивных химических реакций полу-чить или золото, или философский камень - вещество дающее бес-смертие. Однако были и настоящие ученые, которые пытались систе-матизировать знания. Среди них Авиценна, Парацельс, Роджер Бэкон др. Некоторые химики считают, что алхимия - это зря потерянное время. Однако это не так: в процессе поиска золота было открыто множество химических соединений и изучены их свойства. Благодаря этим знаниям в конце XVII века была создана первая серьезная химическая теория - теория флогистона.
Теория флогистона и система Лавуазье
Творец теории флогистона - Георг Шталь. Он считал, что фло-гистон содержится во всех горючих и способных к окислению вещест-вах. Горение или окисление рассматривалось им как процесс, при котором тело теряет флогистон. Воздух играет при этом особо важ-ную роль. Он необходим для окисления, чтобы “вбирать” в себя фло-гистон. Из воздуха флогистон попадает в листья растений и в их древесину, из которых при восстановлении он вновь освобожда-ется и возвращается телу. Так впервые была сформулирована теория, описывающая процессы горения. Ее особенности и новизна состояли в том, что одновременно рассматривались во взаимосвязи процессы окисле-ния и восстановления. Теория флогистона развивала идеи Бехера и атомистические представления. Она позволяла объяснить протека-ние различных процессов в ремесленной химии и, в первую очередь, в металлургии и оказала громадное влияние на развитие химических ремесел и совершенствование методов "экспериментального искус-ства" в химии. Теория флогистона способствовала и развитию учения об эле-ментах. Приверженцы теории флогистона называли элементами ок-сиды металлов, рассматривая их как металлы, лишенные флогистона. Металлы же, напротив, считали соединениями элементов (оксидов металлов) с флогистоном. Потребовалось лишь поставить все положения этой теории “с головы на ноги”. Что и было сделано в дальнейшем. Для объяснения того, что масса оксидов больше чем масса металлов, Шталь предположил (а, вернее утвер-ждал), что флогистон имеет отрицательный вес, т.е. флогистон соеди-нившись с элементом “тянет” его вверх. Несмотря на одностороннюю, лишь качественную характеристику процессов, происходящих при горении, теория фло-гистона имела громадное значение для объяснения и систематизации именно этих превращений. На неверность флоги-стонной теории указывал Михаил Иванович Ломоносов. Однако экспериментально доказать это смог Антуан Лоран Лавуазье. Лаву-азье заметил, что при горении фосфора и серы же, как и при прокаливании металлов, происходит увеличение веса вещества. Казалось бы естественным сделать: увеличение веса сжигаемого вещества происходит при всех процессах горения. Однако этот вывод настолько противоречил поло-жениям теории флогистона, что нужна была недюжинная смелость, чтобы высказать его хотя бы в виде гипотезы. Лавуазье ре-шил проверить высказанные ранее Бойлем, Реем, Мэйоу и Ломоносовым гипотезы о роли воздуха в процессах горе-ния. Он интересовался тем, увеличивается ли количество воздуха, если в нем происходит восстановление окисленного тела и выделе-ние благодаря этому дополнительного воздуха. Лавуазье удалось доказать, что действительно количество воздуха при этом возрастает. Это открытие Лавуазье назвал самым интересным со времени работ Шталя. Поэтому в ноябре 1772 г. Он направил в Парижскую Академию наук специальное сообщение о по-лученных им результатах. На следующем этапе исследований Лавуазье полагал выяс-нить, какова природа “воздуха”, соединяющегося с горючими телами при их окислении. Однако все попытки установить природу этого “воздуха” в 1772-1773 гг. Окончились безрезультатно. Дело в том, что Лавуазье, так же как и Шталь, восста-навливал “металлические извести” путем непосредственного контакта с “углеобразной материей” и тоже полу-чал при этом диоксид углерода, состав которого он не мог тогда уста-новить. Как считал Лавуазье, “уголь сыграл с ним злую шутку”. Од-нако Лавуазье, как и многим другим химикам, не приходила мысль, что восстановление оксидов металлов можно осуществить нагрева-нием с помощью зажигательного стекла. Но вот осенью 1774 г. Джозеф Пристли сообщил, что при восстановлении окиси ртути с помощью зажигательного стекла образуется новый вид воздуха - “дефлогистированный воздух”. Незадолго до этого кислород был открыт Шееле, но сообщение об этом было опубликовано с большим запозданием. Шееле и Пристли объясняли наблюдаемое ими явление выделения кислорода с позиций флогистонной теории. Только Лаву-азье смог использовать открытие кислорода в качестве главного ар-гумента против теории флогистона. Весной 1775 г. Лавуазье воспроизвел опыт Пристли. Он хотел получить кислород и проверить, был ли кислород тем компонентом воздуха, благодаря которому происходило горение или окисление металлов. Лавуазье удалось не только выделить кислород, но и вновь получить оксид ртути. Одновременно Лавуазье опреде-лял весовые отношения вступающих в эту реакцию веществ. Ученому удалось доказать, что отношения количества веществ, участвующих в реакциях окисления и восстановления, остаются неизменными. Работы Лавуазье произвели в химии, пожалуй, такую же революцию, как два с половиной века до открытия Коперника в астрономии. Вещества, которые раньше считались элементами, как показал Лавуазье, оказались соединениями, состоящими в свою оче-редь из сложных “элементов”. Открытия и воззрения Лавуазье ока-зали громадное влияние не только на развитие химической теории, но и на всю систему химических знаний. Они так преобразовали саму основу химических знаний и языка, что следую-щие поколения химиков, по существу, не могли понять даже терми-нологию, которой пользовались до Лавуазье. На этом основании впо-следствии стали считать, что о “подлинной” химии нельзя говорить до открытий Лавуазье. Преемственность химических исследований при этом была забыта. Только историки химии начали вновь воссозда-вать действительно существовавшие закономерности развития химии. При этом было выяснено, что “химическая революция” Лавуазье была бы невозможна без существования до него определенного уровня химических знаний.
Развитие химических знаний Лавуазье увенчал созданием новой системы, в которую вошли важнейшие достижения химии прошлых веков. Эта система, правда, в значительно расширенном и ис-правленном виде, стала основой научной химии. В 80-х гг. XVIII в. Новая система Лавуазье получила признание у ведущих естествоиспытателей Франции - К.Бертолле, А. Де Фур-круа и Л.Гитона де Морво. Они поддержали новаторские идеи Лавуа-зье и совместно с ним разработали новую химическую номенклатуру и терминологию. В 1789 г. Лавуазье изложил основы разработанной им системы знаний в учебнике “Начальный курс химии, представлен-ный в новом виде на основе новейших открытий”. Лавуазье разделял элементы на металлы и неметаллы, а соеди-нения на двойные и тройные. Двойные соединения, образуемые металлами с кислородом, он относил к основаниям, а соеди-нения неметаллов с кислородом - к кислотам. Тройные соединения, получающиеся при взаимодействии кислот и оснований, он называл солями. Система Лавуазье основывалась на точных качественных и ко-личественных исследованиях. Этот довольно новый вид аргумен-тации он использовал, изучая многие спорные проблемы химии - вопросы теории горения, проблемы взаимного превращения эле-ментов, которые были весьма актуальны в период становления научной химии. Так, для проверки представления о возможности взаимного превращения элементов Лавуазье в течение нескольких дней нагревал воду в запаянной сосуде. В итоге он обнаружил в воде незначительное количество “земли”, установив при этом, что изменение общего веса сосуда вместе с водой не проис-ходит. Образование “земель” Лавуазье объяснил не как результат их выделения из воды, а за счет разрушения стенок реакционного сосуда. Для ответа на этот вопрос шведский химик аптекарь К.Шееле в то же время использовал качественные методы доказательства, установив идентичность выделяющихся “земель” и материала сосуда. Лавуазье, как и Ломоносов, учитывал существовавшие с древ-ности наблюдения о сохранении веса веществ и систематически изучал весовые соотношения веществ, участвующих в химической реакции. Он обратил внимание на то, что, например, при горении серы или при образовании ржавчины на железе происходит увеличение веса исходных веществ. Это противоречило теории флогистона, согласно которой при горении должен был выде-ляться гипотетический флогистон. Лавуазье счел ошибочным объяс-нение, согласно которому флогистон обладал отрицательным весом, и окончательно отказался от этой идеи. Другие химики, например М.В.Ломоносов или Дж.Мэйоу, пытались объяснить окисление элементов и образование оксидов ме-таллов (или, как тогда говорили, “известей”) как процесс, при кото-ром частицы воздуха соединяются с каким-либо веществом. Этот воздух может быть “оттянут обратно” путем восстановления. В 1772 г. Лавуазье собрал этот воздух, но не смог установить его природу. Первым об открытии кислорода сообщил Пристли. В 1775 г. Ему удалось доказать, что именно кислород соединяется с металлом и вновь выделяется из него при его восстановлении, как, например, при образовании “извести” ртути и ее восстановлении. Систематическим взвешиванием было установлено, что вес металла, участвующего в этих превращениях, не изменяется. Сегодня этот факт, казалось бы, убедительно доказывает спра-ведливость предположений Лавуазье, а тогда большинство химиков отнеслись к нему скептически. Одной из причин такого отношения было то, что Лавуазье не мог объяснить процесс горения водорода. В 1783 г. он узнал, что, используя электрическую дугу, Кавендиш доказал образование воды при сжигании смеси водорода и кислорода в закрытом сосуде. Повторив этот опыт, Лавуазье нашел, что вес воды соответствует весу исходных веществ. Затем он провел эксперимент, в котором пропускал водяной пар через железные стружки, помещенные в сильно нагреваемую медную трубку. Кислород соединялся с железными стружками, а водород собирался на конце трубки. Таким образом, воспользовавшись пре-вращениями веществ, Лавуазье сумел объяснить процесс горения и качественно, и количественно, и для этого ему уже не нужна была теория флогистона. Пристли же и Шееле, которые, открыв кислород, фактически создали основные предпосылки для по-явления кислородной теории Лавуазье, сами твердо придерживались позиций теории флогистона. Кавендиш, Пристли, Шееле и некоторые другие химики полагали, что расхождения ме-жду результатами опытов и положениями теории флогистона удастся устранить путем создания дополнительных гипотез. Надежность и полнота опытных данных, ясность аргументации и простота изложения способствовали быстрому распространению системы Лавуазье в Англии, Голландии, Германии, Швеции, Италии. В Германии представления Лавуазье были изложены в двух работах д-ра Гиртаннера “Новая химическая номенклатура на немецком языке” (1791 г.) и “Основы антифлогистонной химии” (1792 г.). Благодаря Гиртаннеру впервые появились немецкие обозначения веществ, соответствующие новой номенклатуре, например кислорода, водорода, азота. Работавший в Берлине Гермбштедт опубликовал в 1792 г. учебник Лавуазье в переводе на немецкий язык, а М.Клапрот после того, как он повторил опыты Лавуазье, признал, новое учение; взгляды Лавуазье разделял и знаменитый естествоиспытатель А.Гумбольдт.
В 1790-х годах в Германии не раз публиковались работы Лавуазье. Большинство известных химиков Англии, Голландии, Швеции, талии разделяли взгляды Лавуазье. Нередко в историко-научной ли-тературе можно прочесть, что для признания теории Лавуазье химикам понадобилось достаточно много времени. Однако по срав-нению с 200 годами непризнания астрономами взглядов Коперника 10-15-летний период дискуссий в химии не так уж велик. В последней трети XVIII в. одной из важнейших была про-блема, которая многие века интересовала ученых: химики хотели понять, почему и в каких соотношениях соединяются веще-ства друг с другом. К этой проблеме проявляли интерес еще греческие философы, а во времена Возрождения ученые выдвигали идею о сродстве веществ и даже строили ряды веществ по сродству. Парацельс писал, что ртуть образует с металлами амальгамы, причем для разных металлов с различной скоростью ив такой последовательности: быстрее всего с золотом, затем ссеребром, свинцом, оловом, медью и, наконец, медленнее всего с железом. Парацельс считал, что причиной этого ряда химического сродства является не только “ненависть” и “любовь” веществ друг к другу. В соответствии с его представлениями металлы содержат серу, и, чем меньше ее содер-жание, тем чище металлы, ачистотавеществ в значительной мере определяет их сродство друг к другу. Г.Шталь объяснял ряд осаждения металлов как результат различного содержания в них флогистона. До последней трети XVIII в. многочисленные исследования были направлены на то, чтобы рас-положить вещества по величине их “сродства”, и многие химики составляли соответствующие таблицы. Для объяснения различного химического сродства веществ выдвигались и атомистические представления, а после того, как в конце XVIII - начале XIX вв. Ученые стали понимать влияние элек-тричества на протекание некоторых химических процессов, для этой же цели пытались использовать и представления об электричестве. Основываясь на них, Берцелиус создал дуалистическую теорию состава веществ, в соответствии с, например, соли состоят из положительно и отрицательно заряженных “оснований” и “кислот”: при электро-лизе они притягиваются к противоположно заряженным электродам и могут распадаться при этом на элементы вследствие нейтрализа-ции зарядов. Со второй половины XVIII в. особенно много внимания уче-ные стали уделять вопросу: в каких количественных соотношениях взаимодействуют друг с другом вещества в химических реакциях? Уже давно было известно, что кислоты и осно-вания могут нейтрализовать друг друга. Предпринимались также по-пытки установить содержание кислот и оснований в солях. Т.Бергман и Р.Кирван нашли, что, например, в реакции двойного об-мена между химически нейтральными сульфатом калия и нитратом натрия образуются новые соли - сульфат натрия и нитрат калия, ко-торые тоже являются химически нейтральными. Но ни один из ис-следователей не сделал из этого наблюдения общего вывода. В 1767 г. Кавендиш обнаружил, что количество азотной и серной кислот, ней-трализующие одинаковые количества карбоната калия, нейтрализуют также одинаковое количество карбоната кальция. И.Рихтер первым сформулировал закон эквивалентов, объяснение которому было найдено позднее с позиций атомистической теории Дальтона.
Рихтер установил, что раствор, получающийся при смешивании растворов двух химически нейтральных солей, тоже ней-трален. Он провел многочисленные определения количеств основа-ний и кислот, которые, соединяясь, дают химически нейтральные соли. Рихтер сделал следующий вывод: если одно и то же количество какой-либо кислоты нейтрализуется различными, строго определенными количествами разных оснований, то эти количества оснований эквивалентны и нейтрализуются одним и тем же количеством другой кислоты. Вы-ражаясь современным языком, если к раствору сульфата калия, напри-мер, добавить раствор нитрата бария до полного осаждения сульфата бария, то раствор, содержащий нитрат калия, тоже будет нейтрален:
K2SO4 + Ba(NO3)2 = 2KNO3 + BaSO4.
Следовательно, при образовании нейтральной соли эквива-лентны друг другу следующие количества: 2K, 1Ba, 1SO4 и 2NO3. По-линг обобщил и сформулировал в современном виде этот закон со-единительных весов”: “Весовые количества двух элементов (или их целочисленные кратные), которые, реагируют с одним и тем же ко-личеством третьего элемента, реагируют друг с другом в тех же коли-чествах”. Вначале работы Рихтера почти не привлекли внимания исследователей, поскольку он пользовался еще терминологией фло-гистонной теории. Кроме того, полученные ученым ряды эквива-лентных весов были недостаточно наглядны, а предложенный им выбор относительных количеств оснований не имел серьезных доказательств. Положение исправил Э.Фишер, кото-рый среди эквивалентных весов Рихтер выбрал в качестве эталона эк-вивалент серной кислоты, приняв его равным 100, и составил, исходя из этого, таблицу “относительных весов” (эквивалентов) соединений. Но о таблице эквивалентов Фишера стало известно лишь благодаря Бертолле, который, критикуя Фишера, привел эти данные в своей книге “Опыт химической статики” (1803 г.). Бертолле сомневался, что состав химических соединений постоянен. Он имел на это основание. Вещества, которые в начале XIX в. считались чистыми, на самом деле были либо смесями, либо равновесными системами различных веществ, а количественный состав химических соединений во многом зависел от количеств ве-ществ, участвующих в реакциях их образования.
Некоторые историки химии считают, что, подобно Венцелю, Бертолле также предвосхитил основные положения закона дейст-вия масс, который аналитически выражал влияние количеств взаимо-действующих на скорость превращения. Немецкий химик К.Венцель в 1777 г. показал, что скорость растворения металла в кислоте, изме-ряемая количеством металла, растворившегося за определенное время, пропорциональна “силе” кислоты. Бертолле сделал многое для учета влияния масс реагентов на ход превращения. Однако между рабо-тами Венцеля и даже Бертолле, с одной стороны, и точной формули-ровкой закона действия масс - с другой, существует качественное различие. Негативное отношение Бертолле к закону нейтрализации Рих-тера не могло длиться долго, так как против положений Бертолле энергично выступил Пруст. Проделав в течение 1799-1807 гг. массу анализов, Пруст дока-зал, что Бертолле сделал свои выводы о различном составе одних и тех же веществ, анализируя смеси, а не индивидуальные вещества, что он, например, не учитывал содержания воды в некоторых оксидах. Пруст убедительно доказал постоянство состава чистых химических соединений и завершил свою борьбу против взглядов Бертолле уста-новлением закона постоянства состава веществ: состав одних и тех же веществ независимо от способа получения одинаков (постоянен).
Периодический закон
Рассматривая историю химии я не могу не упяуть об от-крытии периодического закона. Уже на ранних этапах развития химии было обнаружено, что раз-личнымлементам присущи особые свойства. Вначале элементы раз-деляли всего на два типа - металлы и неметаллы. В 1829 г. немецкий химик Иоганн Деберейнер обнаружил су-ществование нескольких групп из трех элементов (триад) со сход-ными химическими свойствами. Деберейнер обнаружил всего 5 триад, это:
1. Cl, Br, I
2. S, Se, Te
3. Ca, Cr, Ba
4. Li, Na, K
5. Fe, Co, Ni
Это обнаружение свойств элементов побудило к дальнейшим исследованиям химиков, которые пытались найти рациональные способы классификации элементов.
В 1865 г. английский химик Джон Ньюлендс (1839-1898) заинтересовался проблемой периодической повторяемости свойств элементов. Он расположил из из-вестных элементов в порядке возрастания их атомных масс следующим образом: H Li Be B C N O F Na Mg Al Si P S Cl K Ca Cr Ti Mn Fe
Ньюлендс заметил, что в этой последовательности восьмой элемент (фтор) напоминает первый (водород), девятый элемент напоминает второй и т.д. Тем самым через каждые восемь элементов свойства повторялись. Однако в этой системе элементов было много неверного:
1) В таблице не нашлось места новым элементам.
2) Таблица не открывала возможности научного подхода к определению атомных масс и не позволяла сделать выбор между их вероятными наилучшими значе-ниями.
3) Некоторые элементы представлялись не-удачно размещенными в таблице. Например железо сопоставля-лось с серой (!) и т.д.
Несмотря на большое количество недостатков, попытка Ньюлендса явилась шагом в правильном направлении. Мы знаем, открытие периодического закона при-надлежит Дмитрию Ивановичу Менделееву. Давайте рас-смотрим историюего открытия. В 1869 году Н.А.Меншуткин представил членам Русского химического общества небольшую работу Д.И.Менделеева “Соотношение свойств с атомным ве-сом элементов”. (Сам Д.И.Менделеев на заседании не присутствовал.) На этом заседании работа Д.И.Менделеева не была воспринята всерьез. Пауль Вальден писал впоследствии: “Большие события слиш-ком часто встречают незначительный отклик, и тот день, который должен был стать знаменательным днем для мо-лодого Русского химического общества, а в действитель-ности оказался будничным днем”. Д.И.Менделеев любил дерзкие идеи. Обнаружен-ная им закономерность гласила: химические и физиче-ские свойства элементови их соединений нахо-дятся в периодической зависимости от атомных весов элементов. Подобно своим предшественникам, Д.И.Менделеев выделил наи-более типичные элементы. Однако он предположил нали-чие пустот в таблице и осмелился утверждать, что они должны быть заполнены не открытыми еще элементами. В одно и тоже время с Менделеевым над этой же про-блемой работал Лотарь Мейер, который опубликовал свою работу в 1870 году. Однако приори-тет в открытиипериодического заслуженно остается за Дмитрием Ивановичем Менделеевым, т.к. даже сам Л.Мейер не помышлял отрицать выдающуюся роль Д.И.Менделеева в открытии периодического закона. В своих воспоминаниях Л.Мейер указывал, что пользовался при написании своей работы рефератом статьи Д.И.Менделеева. В 1870 году Менделеев внес в таблицу некото-рые изменения: как любая закономерность, в основе кото-рой лежит bepm` идея, новая система оказалась жиз-неспособной, поскольку в ней предусматривалась возмож-ность уточнений. Как я уже говорил, гениальность теории Менде-леева состояла в том, что он оставил пустоты в своей таб-лице. Тем самым он предположил (а точнее был уверен), что еще не все элементы открыты. Однако Дмитрий Иванович не остановился на достигнутом. С помощью пе-риодического закона он даже описал химические и фи-зические свойства еще не открытых химических элемен-тов, например: галлия, германия, скандия, которые полностью подтвердились. После этого большинство ученых убедилось в правильности теории Д.И.Менделеева. В наше время периодический закон имеет огромное
значение. С помощью его предсказывают свойства химических со-единений, продукты реакций. С помощью периодического закона и в наше время предсказывают свойства элементов - это элементы которые нельзя получить в весомых коли-чествах.
Заключение
После работ Лавуазье, Пруста, Ломоносова и Мен-делеева, уже в нашем веке было сделано много важней-ших открытий в области химии и физики. Это работы по термодинамике, строению атома и молекул, электрохимии, - этот список можно продолжить до бесконечности. Од-нако открытия Лавуазье и Д.И.Менделеева остаются фун-даментом химических знаний.
Литература
1) Ахметов Н.С. Общая и неорганическая химия. -М.: Высшая школа, 1988.
2) Дикерсон Р., Грей Г., Грей Дж. Основные законы хи-мии : В 2-х т. / Перевод с английского и пре-дисловие Е.Л.Розенберга.-М.: Мир, 1982.
3) Некрасов Б.В. Основы общей химии : Т. I. -М.: Химия, 1969.
4) Штрубе В. Пути развития химии : В 2-х т. / Перевод с немецкого А.Ш.Гладкой, под редакцией В.А.Крицмана. -М.: Мир, 1984.
superbotanik.net