1. История открытия
Первая весть
В январе 1896 года весь земной шар облетело странное известие. Какому-то немецкому ученому удалось открыть неведомые дотоле лучи, обладающие загадочными свойствами. Первое загадочное свойство лучей – они невидимы. Они не окрашены – цвета у них нет. Второе удивительное свойство – они проходят сквозь плотный картон, сквозь алюминий, сквозь толстые доски. Непрозрачное для них прозрачно. Третье свойство лучей – есть вещества, на которые они производят необычное действие. Кристаллы платино-цианистого бария, сернистого цинка внезапно вспыхивают ярким светом, чуть только на них упадут невидимые лучи. Под действием невидимых лучей чернеет фотографическая пластинка. И сам воздух чудесно меняется, когда его пронизывают невидимые лучи: он приобретает новое свойство – способность пропускать электрический ток. Газеты, напечатавшие известие о лучах, только упомянули имя человека, который совершил необыкновенное открытие: Вильгельм-Конрад Рентген. Рентген Вильгельм Конрад (27.03.1845 – 10.02.1923) – немецкий физик. Слайд 2 С 1894 г. В. Рентген был ректором Института физики Вюрцбургского университета. Несмотря на многочисленные административные обязанности, Рентген всегда сам проводил эксперименты. Осенью 1895г. Рентген занимался в своей лаборатории в Вюрцбурге изучением влияния катодных лучей на люминесценцию различных химических веществ.
Начало опытов
Слайд 3
Рентген взял стеклянный шар с двумя впаянными внутрь металлическими пластинами. К обеим пластинам было приделано по проволочке. Концы проволочек торчали наружу сквозь стеклянную стенку шара и соединялись с индукционной катушкой изобретенной парижским механиком Румкортом. Воздух из шара был выкачен. Так начались опыты Рентгена.
Неожиданная находка (выступление учащегося)
Слайд 4
8 ноября 1895 года Рентген обнаружил необычайное явление. Случилось это так. Был вечер. Ассистенты, целый день трудившиеся над своими измерениями, усталые разошлись по домам. Ушел и старик-смотритель. Рентген остался в лаборатории один. Он собирался работать до поздней ночи. Он хотел выяснить, как отражается на электрическом токе степень разреженности газа, форма баллона и расположение пластин. Результаты своих наблюдений Рентген вносил в лабораторный дневник. Часы пробили одиннадцать. Рентгена клонило ко сну. Он накрыл свой последний баллон плотным картонным футляром. Оставалось только разомкнуть ток в индукционной катушке, погасить свет и уйти. Но по рассеянности Рентген позабыл выключить катушку. Он погасил свет и уже направился было к дверям, когда треск молоточка вывел его из задумчивости. Рентген вернулся, и вот тут-то его глазам представилось удивительное зрелище. На столе – не на том столе, а на соседнем – мерцало странное сияние. Тусклым зеленовато-желтым огнем горел какой-то маленький предмет. Рентген в темноте направился к столу, чтобы посмотреть в чем там дело. Оказалось, это светился кусочек бумаги. Бумага была не простая: она была покрыта с одной стороны слоем платино-цианистого бария. Это вещество имеет обыкновение светиться, если на него упадут солнечные лучи. Но ведь на дворе ночь, в комнате полная тьма. Почему же светится платино-цианистый барий? В полной темноте Рентген нащупал рубильник и разомкнул ток. Бумага, которую он держал в руке, сейчас же перестала светиться. Он снова включил. И бумага засверкала снова. Рентген уже не думал уходить из лаборатории. Он решил исследовать непонятное явление. Что заставляет бумагу светиться? Индукционная катушка? При проверке оказалось – нет. Сомнений не оставалось. Все дело в баллоне: когда сквозь баллон проходит электрический ток, тогда-то и светится бумага. Что же за невидимая сила, проходящая не только сквозь стеклянный баллон, но и сквозь картонный футляр, прикрывающий этот баллон? Рентген решил назвать неизвестное, открытое им явление «лучи икс». Ион решил продолжить свои опыты до тех пор, пока неизвестная сила не превратится в известную.
Новые опыты (выступление учащегося)
Слайд 5
Рентген изучал действие загадочных лучей. Он поставил между бумагой и баллоном толстую книгу, в которой было тысяча страниц. Бумажка продолжала светиться. Он испробовал колоду карт, еловую доску толщиной 4 см, эбонитовую пластинку, лист оловянной бумаги. И только 30 листов этой оловянной бумаги, сложенных вместе, оказались для икс-лучей трудно-преодолимой преградой: свечение ослабело, померкло. Рентген испытал и другие металлы: медь, серебро, золото, свинец. Оказалось, что через тонкие слои металлов икс-лучи проходят свободно, а через толстые слои проникает только их ничтожная часть. Слайд 6, Слайд 7
Вывод: все вещества проницаемы для икс-лучей, но только в различной степени. Бумага, дерево, эбонит прозрачны для них, как для солнечных лучей – стекло. А толстые слои металлов почти непроницаемы. Ученый был настолько заинтригован, что в эти дни почти не разговаривал с женой во время обеда и в течение нескольких недель практически не выходил из своей лаборатории.
Слайд 8
Серия экспериментов убедила Рентгена в том, что в катодной трубке генерируется невидимое излучение большой проникающей способности. 23 января 1896 г. Рентген прочел свою первую публичную лекцию о свойствах Х-лучей. После доклада он попросил добровольца из зала подняться на сцену. Им оказался коллега Рентгена с медицинского факультета университета в Вюрцбурге. На глазах публики Рентген сделал снимок руки своего коллеги и показал всем присутствующим. Аудитория разразилась бурными аплодисментами. На следующий день Рентген проснулся знаменитым, так как всем сразу стали ясны грандиозные перспективы применения нового открытия в медицине. В считанные недели физические лаборатории всего мира начали работу над изучением рентгеновских лучей и усовершенствованию аппаратуры.
Рентген занимался Х-лучами немногим более года (с 8 ноября 1895 года по март 1897 года) и опубликовал о них три статьи, в которых было исчерпывающее описание новых лучей, впоследствии сотни работ его последователей, опубликованных затем на протяжении 12 лет, не могли ни прибавить, ни изменить ничего существенного. Рентген, потерявший интерес к Х-лучам, говорил своим коллегам: «Я уже всё написал, не тратьте зря время». Свой вклад в известность Рентгена внесла также знаменитая фотография руки его жены, которую он опубликовал в своей статье.
Слайд 9
За открытие рентгеновских лучей Рентгену в 1901 году была присуждена первая Нобелевская премия по физике, причём нобелевский комитет подчёркивал практическую важность его открытия. Рентген не получил никакой финансовой выгоды от своего открытия. Он категорически отказался запатентовать какие-либо его детали, так как считал, что Х-лучи должны служить всему человечеству. Рентген отказывался от всех приглашений на торжественные заседания и лекции. Единственное исключение пришлось сделать для кайзера Вильгельма с супругой. Кайзер пожаловал Рентгену дворянский титул с правом употребления частицы фон перед фамилией, чем Рентген ни разу не воспользовался.
2. Свойства лучей
1. Большая проникающая и ионизирующая способность. 2. Не отклоняются электрическим и магнитным полем. 3. Обладают фотохимическим действием. 4. Вызывают свечение веществ. 5. Отражение, преломление и дифракция как у видимого излучения. 6. Оказывают биологическое действие на живые клетки.
3. Получение
В настоящее время для получения рентгеновских лучей разработаны весьма совершенные устройства, называемые рентгеновскими трубками. Слайд 10
Схематическое изображение рентгеновской трубки. X – рентгеновские лучи, K – катод, А – анод (иногда называемый антикатодом), С – теплоотвод, Uh – напряжение накала катода, Ua – ускоряющее напряжение, Win – впуск водяного охлаждения, Wout – выпуск водяного охлаждения (см. рентгеновская трубка).
Рентгеновские лучи возникают при сильном ускорении заряженных частиц (в основном электронов) либо же при высокоэнергетичных переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках, в которых электроны, испущенные раскалённым катодом, ускоряются (при этом рентгеновские лучи не испускаются, т. к. ускорение слишком мало) и ударяются об анод, где они резко тормозятся (при этом испускаются рентгеновские лучи: т. н. тормозное излучение) и в то же время выбивают электроны из внутренних электронных оболочек атомов металла, из которого сделан анод. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с определённой, характерной для материала анода, энергией. В настоящее время аноды изготовляются главным образом из керамики, причём та их часть, куда ударяют электроны, — из молибдена. В процессе ускорения-торможения лишь 1% кинетической энергии электрона идёт на рентгеновское излучение, 99% энергии превращается в тепло.
Рентгеновское излучение можно получать также и на ускорителях заряженных частиц. Синхротронное излучение возникает при отклонении пучка частиц в магнитном поле, в результате чего они испытывают ускорение в направлении, перпендикулярном их движению. Синхротронное излучение имеет сплошной спектр с верхней границей. При соответствующим образом выбранных параметрах (величина магнитного поля и энергия частиц) в спектре синхротронного излучения можно получить и рентгеновские лучи.
4. Как делают рентгеновский снимок (выступление учащегося)
Рентгеновская трубка испускает рентгеновские лучи. Из трубки выкачивают воздух до одной сто миллионной первоначального объема. В стеклянной трубке находятся два электрода. Один называется «катод», он заряжен отрицательно. В нем расположена вольфрамовая катушка провода, которая при нагревании электрическим током испускает электроны. Другой электрод — это «мишень», или «анод».
Электроны с огромной скоростью движутся от катода к мишени. Они бомбардируют мишень со скоростью от 100 000 до 325 000 мм/сек.
Мишень состоит из вольфрама и позволяет практически мгновенно остановить электроны. Почти вся энергия электронов превращается в тепло, но некоторые превращаются в рентгеновское излучение, которое выходит через окно в основании трубки в виде рентгеновских лучей.
5. Применение (выступление учащегося)
При помощи рентгеновских лучей можно просветить человеческое тело, в результате чего можно получить изображение костей, а в современных приборах и внутренних органов.
Слайд 11
При этом используется тот факт, что у содержащегося преимущественно в костях элемента кальция (Z = 20) атомный номер гораздо больше, чем атомные номера элементов, из которых состоят мягкие ткани, а именно водорода (Z = 1), углерода (Z = 6), азота (Z = 7), кислорода (Z = 8). Кроме обычных приборов, которые дают двумерную проекцию исследуемого объекта, существуют компьютерные томографы, которые позволяют получать объёмное изображение внутренних органов.
Слайд 12
Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.) с помощью рентгеновского излучения называется рентгеновской дефектоскопией.
Слайд 13
В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК.
Слайды 14-18
Кроме того, при помощи рентгеновских лучей может быть определён химический состав вещества. В электронно-лучевом микрозонде (либо же в электронном микроскопе) анализируемое вещество облучается электронами, при этом атомы ионизируются и излучают характеристическое рентгеновское излучение. Вместо электронов может использоваться рентгеновское излучение. Этот аналитический метод называется рентгено-флюоресцентным анализом. В настоящее время начинает развиваться область рентгеноскопии на базе применения рентгеновских лазерных лучей.
Слайды 19, 20
Человечество должно быть благодарно ученому за его бескорыстие. Сейчас рентгеновские лучи находят широчайшее применение во множестве областей науки, техники и медицины.
www.ronl.ru
1. История открытия
Первая весть
В январе 1896 года весь земной шар облетело странное известие. Какому-то немецкому ученому удалось открыть неведомые дотоле лучи, обладающие загадочными свойствами. Первое загадочное свойство лучей – они невидимы. Они не окрашены – цвета у них нет. Второе удивительное свойство – они проходят сквозь плотный картон, сквозь алюминий, сквозь толстые доски. Непрозрачное для них прозрачно. Третье свойство лучей – есть вещества, на которые они производят необычное действие. Кристаллы платино-цианистого бария, сернистого цинка внезапно вспыхивают ярким светом, чуть только на них упадут невидимые лучи. Под действием невидимых лучей чернеет фотографическая пластинка. И сам воздух чудесно меняется, когда его пронизывают невидимые лучи: он приобретает новое свойство – способность пропускать электрический ток. Газеты, напечатавшие известие о лучах, только упомянули имя человека, который совершил необыкновенное открытие: Вильгельм-Конрад Рентген.Рентген Вильгельм Конрад (27.03.1845 – 10.02.1923) – немецкий физик. Слайд 2 С 1894 г. В. Рентген был ректором Института физики Вюрцбургского университета. Несмотря на многочисленные административные обязанности, Рентген всегда сам проводил эксперименты. Осенью 1895г. Рентген занимался в своей лаборатории в Вюрцбурге изучением влияния катодных лучей на люминесценцию различных химических веществ.
Начало опытов
Слайд 3
Рентген взял стеклянный шар с двумя впаянными внутрь металлическими пластинами. К обеим пластинам было приделано по проволочке. Концы проволочек торчали наружу сквозь стеклянную стенку шара и соединялись с индукционной катушкой изобретенной парижским механиком Румкортом. Воздух из шара был выкачен. Так начались опыты Рентгена.
Неожиданная находка (выступление учащегося)
Слайд 4
8 ноября 1895 года Рентген обнаружил необычайное явление. Случилось это так. Был вечер. Ассистенты, целый день трудившиеся над своими измерениями, усталые разошлись по домам. Ушел и старик-смотритель. Рентген остался в лаборатории один. Он собирался работать до поздней ночи. Он хотел выяснить, как отражается на электрическом токе степень разреженности газа, форма баллона и расположение пластин. Результаты своих наблюдений Рентген вносил в лабораторный дневник. Часы пробили одиннадцать. Рентгена клонило ко сну. Он накрыл свой последний баллон плотным картонным футляром. Оставалось только разомкнуть ток в индукционной катушке, погасить свет и уйти. Но по рассеянности Рентген позабыл выключить катушку. Он погасил свет и уже направился было к дверям, когда треск молоточка вывел его из задумчивости. Рентген вернулся, и вот тут-то его глазам представилось удивительное зрелище. На столе – не на том столе, а на соседнем – мерцало странное сияние. Тусклым зеленовато-желтым огнем горел какой-то маленький предмет. Рентген в темноте направился к столу, чтобы посмотреть в чем там дело. Оказалось, это светился кусочек бумаги. Бумага была не простая: она была покрыта с одной стороны слоем платино-цианистого бария. Это вещество имеет обыкновение светиться, если на него упадут солнечные лучи. Но ведь на дворе ночь, в комнате полная тьма. Почему же светится платино-цианистый барий? В полной темноте Рентген нащупал рубильник и разомкнул ток. Бумага, которую он держал в руке, сейчас же перестала светиться. Он снова включил. И бумага засверкала снова. Рентген уже не думал уходить из лаборатории. Он решил исследовать непонятное явление. Что заставляет бумагу светиться? Индукционная катушка? При проверке оказалось – нет. Сомнений не оставалось. Все дело в баллоне: когда сквозь баллон проходит электрический ток, тогда-то и светится бумага. Что же за невидимая сила, проходящая не только сквозь стеклянный баллон, но и сквозь картонный футляр, прикрывающий этот баллон? Рентген решил назвать неизвестное, открытое им явление «лучи икс». Ион решил продолжить свои опыты до тех пор, пока неизвестная сила не превратится в известную.
Новые опыты (выступление учащегося)
Слайд 5
Рентген изучал действие загадочных лучей. Он поставил между бумагой и баллоном толстую книгу, в которой было тысяча страниц. Бумажка продолжала светиться. Он испробовал колоду карт, еловую доску толщиной 4 см, эбонитовую пластинку, лист оловянной бумаги. И только 30 листов этой оловянной бумаги, сложенных вместе, оказались для икс-лучей трудно-преодолимой преградой: свечение ослабело, померкло. Рентген испытал и другие металлы: медь, серебро, золото, свинец. Оказалось, что через тонкие слои металлов икс-лучи проходят свободно, а через толстые слои проникает только их ничтожная часть. Слайд 6, Слайд 7
Вывод: все вещества проницаемы для икс-лучей, но только в различной степени. Бумага, дерево, эбонит прозрачны для них, как для солнечных лучей – стекло. А толстые слои металлов почти непроницаемы. Ученый был настолько заинтригован, что в эти дни почти не разговаривал с женой во время обеда и в течение нескольких недель практически не выходил из своей лаборатории.
Слайд 8
Серия экспериментов убедила Рентгена в том, что в катодной трубке генерируется невидимое излучение большой проникающей способности. 23 января 1896 г. Рентген прочел свою первую публичную лекцию о свойствах Х-лучей. После доклада он попросил добровольца из зала подняться на сцену. Им оказался коллега Рентгена с медицинского факультета университета в Вюрцбурге. На глазах публики Рентген сделал снимок руки своего коллеги и показал всем присутствующим. Аудитория разразилась бурными аплодисментами. На следующий день Рентген проснулся знаменитым, так как всем сразу стали ясны грандиозные перспективы применения нового открытия в медицине. В считанные недели физические лаборатории всего мира начали работу над изучением рентгеновских лучей и усовершенствованию аппаратуры.
Рентген занимался Х-лучами немногим более года (с 8 ноября 1895 года по март 1897 года) и опубликовал о них три статьи, в которых было исчерпывающее описание новых лучей, впоследствии сотни работ его последователей, опубликованных затем на протяжении 12 лет, не могли ни прибавить, ни изменить ничего существенного. Рентген, потерявший интерес к Х-лучам, говорил своим коллегам: «Я уже всё написал, не тратьте зря время». Свой вклад в известность Рентгена внесла также знаменитая фотография руки его жены, которую он опубликовал в своей статье.
Слайд 9
За открытие рентгеновских лучей Рентгену в 1901 году была присуждена первая Нобелевская премия по физике, причём нобелевский комитет подчёркивал практическую важность его открытия. Рентген не получил никакой финансовой выгоды от своего открытия. Он категорически отказался запатентовать какие-либо его детали, так как считал, что Х-лучи должны служить всему человечеству. Рентген отказывался от всех приглашений на торжественные заседания и лекции. Единственное исключение пришлось сделать для кайзера Вильгельма с супругой. Кайзер пожаловал Рентгену дворянский титул с правом употребления частицы фон перед фамилией, чем Рентген ни разу не воспользовался.
2. Свойства лучей
1. Большая проникающая и ионизирующая способность. 2. Не отклоняются электрическим и магнитным полем. 3. Обладают фотохимическим действием. 4. Вызывают свечение веществ. 5. Отражение, преломление и дифракция как у видимого излучения. 6. Оказывают биологическое действие на живые клетки.
3. Получение
В настоящее время для получения рентгеновских лучей разработаны весьма совершенные устройства, называемые рентгеновскими трубками. Слайд 10
Схематическое изображение рентгеновской трубки. X – рентгеновские лучи, K – катод, А – анод (иногда называемый антикатодом), С – теплоотвод, Uh – напряжение накала катода, Ua – ускоряющее напряжение, Win – впуск водяного охлаждения, Wout – выпуск водяного охлаждения (см. рентгеновская трубка).
Рентгеновские лучи возникают при сильном ускорении заряженных частиц (в основном электронов) либо же при высокоэнергетичных переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках, в которых электроны, испущенные раскалённым катодом, ускоряются (при этом рентгеновские лучи не испускаются, т. к. ускорение слишком мало) и ударяются об анод, где они резко тормозятся (при этом испускаются рентгеновские лучи: т. н. тормозное излучение) и в то же время выбивают электроны из внутренних электронных оболочек атомов металла, из которого сделан анод. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с определённой, характерной для материала анода, энергией. В настоящее время аноды изготовляются главным образом из керамики, причём та их часть, куда ударяют электроны, — из молибдена. В процессе ускорения-торможения лишь 1% кинетической энергии электрона идёт на рентгеновское излучение, 99% энергии превращается в тепло.
Рентгеновское излучение можно получать также и на ускорителях заряженных частиц. Синхротронное излучение возникает при отклонении пучка частиц в магнитном поле, в результате чего они испытывают ускорение в направлении, перпендикулярном их движению. Синхротронное излучение имеет сплошной спектр с верхней границей. При соответствующим образом выбранных параметрах (величина магнитного поля и энергия частиц) в спектре синхротронного излучения можно получить и рентгеновские лучи.
4. Как делают рентгеновский снимок (выступление учащегося)
Рентгеновская трубка испускает рентгеновские лучи. Из трубки выкачивают воздух до одной сто миллионной первоначального объема. В стеклянной трубке находятся два электрода. Один называется «катод», он заряжен отрицательно. В нем расположена вольфрамовая катушка провода, которая при нагревании электрическим током испускает электроны. Другой электрод — это «мишень», или «анод».
Электроны с огромной скоростью движутся от катода к мишени. Они бомбардируют мишень со скоростью от 100 000 до 325 000 мм/сек.
Мишень состоит из вольфрама и позволяет практически мгновенно остановить электроны. Почти вся энергия электронов превращается в тепло, но некоторые превращаются в рентгеновское излучение, которое выходит через окно в основании трубки в виде рентгеновских лучей.
5. Применение (выступление учащегося)
При помощи рентгеновских лучей можно просветить человеческое тело, в результате чего можно получить изображение костей, а в современных приборах и внутренних органов.
Слайд 11
При этом используется тот факт, что у содержащегося преимущественно в костях элемента кальция (Z = 20) атомный номер гораздо больше, чем атомные номера элементов, из которых состоят мягкие ткани, а именно водорода (Z = 1), углерода (Z = 6), азота (Z = 7), кислорода (Z = 8). Кроме обычных приборов, которые дают двумерную проекцию исследуемого объекта, существуют компьютерные томографы, которые позволяют получать объёмное изображение внутренних органов.
Слайд 12
Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.) с помощью рентгеновского излучения называется рентгеновской дефектоскопией.
Слайд 13
В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК.
Слайды 14-18
Кроме того, при помощи рентгеновских лучей может быть определён химический состав вещества. В электронно-лучевом микрозонде (либо же в электронном микроскопе) анализируемое вещество облучается электронами, при этом атомы ионизируются и излучают характеристическое рентгеновское излучение. Вместо электронов может использоваться рентгеновское излучение. Этот аналитический метод называется рентгено-флюоресцентным анализом. В настоящее время начинает развиваться область рентгеноскопии на базе применения рентгеновских лазерных лучей.
Слайды 19, 20
Человечество должно быть благодарно ученому за его бескорыстие. Сейчас рентгеновские лучи находят широчайшее применение во множестве областей науки, техники и медицины.
www.referatmix.ru
Реферат на тему:
Рентге́новское излуче́ние — электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10−2 до 103 Å (от 10−12 до 10−7 м).[1]
Энергетические диапазоны рентгеновского излучения и гамма-излучения перекрываются в широкой области энергий. Оба типа излучения являются электромагнитным излучением и при одинаковой энергии фотонов — эквивалентны. Терминологическое различие лежит в способе возникновения — рентгеновские лучи испускаются при участии электронов (либо в атомах, либо свободных) в то время как гамма-излучение испускается в процессах девозбуждения атомных ядер. Фотоны рентгеновского излучения имеют энергию от 100 эВ до 250 кэВ, что соответствует излучению с частотой от 3×1016 Гц до 6×1019 Гц и длиной волны 0,005 — 10 нм (общепризнанного определения нижней границы диапазона рентгеновских лучей в шкале длин волн не существует). Мягкий рентген характеризуется наименьшей энергией фотона и частотой излучения (и наибольшей длиной волны), а жёсткий рентген обладает наибольшей энергией фотона и частотой излучения (и наименьшей длиной волны). Жёсткий рентген используется преимущественно в промышленных целях.
Схематическое изображение рентгеновской трубки. X — рентгеновские лучи, K — катод, А — анод (иногда называемый антикатодом), С — теплоотвод, Uh — напряжение накала катода, Ua — ускоряющее напряжение, Win — впуск водяного охлаждения, Wout — выпуск водяного охлаждения.
Рентгеновские лучи возникают при сильном ускорении заряженных частиц (тормозное излучение), либо при высокоэнергетических переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках. Основными конструктивными элементами таких трубок являются металлические катод и анод (ранее называвшийся также антикатодом). В рентгеновских трубках электроны, испущенные катодом, ускоряются под действием разности электрических потенциалов между анодом и катодом (при этом рентгеновские лучи не испускаются, так как ускорение слишком мало) и ударяются об анод, где происходит их резкое торможение. При этом за счёт тормозного излучения происходит генерация излучения рентгеновского диапазона, и одновременно выбиваются электроны из внутренних электронных оболочек атомов анода. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий (характеристическое излучение, частоты определяются законом Мозли: где Z — атомный номер элемента анода, A и B — константы для определённого значения главного квантового числа n электронной оболочки). В настоящее время аноды изготавливаются главным образом из керамики, причём та их часть, куда ударяют электроны, — из молибдена или меди.
Трубка Крукса
В процессе ускорения-торможения лишь около 1% кинетической энергии электрона идёт на рентгеновское излучение, 99% энергии превращается в тепло.
Рентгеновское излучение можно получать также и на ускорителях заряженных частиц. Так называемое синхротронное излучение возникает при отклонении пучка частиц в магнитном поле, в результате чего они испытывают ускорение в направлении, перпендикулярном их движению. Синхротронное излучение имеет сплошной спектр с верхней границей. При соответствующим образом выбранных параметрах (величина магнитного поля и энергия частиц) в спектре синхротронного излучения можно получить и рентгеновские лучи.
0,193735 | 0,193604 | 0,193998 | 0,17566 | 0,17442 |
0,154184 | 0,154056 | 0,154439 | 0,139222 | 0,138109 |
0,0560834 | 0,0559363 | 0,0563775 | ||
0,2291 | 0,22897 | 0,229361 | ||
0,179026 | 0,178897 | 0,179285 | ||
0,071073 | 0,07093 | 0,071359 | ||
0,0210599 | 0,0208992 | 0,0213813 | ||
0,078593 | 0,079015 | 0,070173 | 0,068993 | |
0,165791 | 0,166175 | 0,15001 | 0,14886 |
Длина волны рентгеновских лучей сравнима с размерами атомов, поэтому не существует материала, из которого можно было бы изготовить линзу для рентгеновских лучей. Кроме того, при перпендикулярном падении на поверхность рентгеновские лучи почти не отражаются. Несмотря на это, в рентгеновской оптике были найдены способы построения оптических элементов для рентгеновских лучей. В частности выяснилось, что их хорошо отражает алмаз[4].
Рентгеновские лучи могут проникать сквозь вещество, причём различные вещества по-разному их поглощают. Поглощение рентгеновских лучей является важнейшим их свойством в рентгеновской съёмке. Интенсивность рентгеновских лучей экспоненциально убывает в зависимости от пройденного пути в поглощающем слое (I = I0e-kd, где d — толщина слоя, коэффициент k пропорционален Z³λ³, Z — атомный номер элемента, λ — длина волны).
Поглощение происходит в результате фотопоглощения (фотоэффекта) и комптоновского рассеяния:
В дополнение к названным процессам существует ещё одна принципиальная возможность поглощения — за счёт возникновения электрон-позитронных пар. Однако для этого необходимы энергии более 1,022 МэВ, которые лежат вне вышеобозначенной границы рентгеновского излучения (<250 кэВ)
Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов и может быть причиной лучевой болезни, лучевых ожогов и злокачественных опухолей. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты. Считается, что поражение прямо пропорционально поглощённой дозе излучения. Рентгеновское излучение является мутагенным фактором.
При помощи рентгеновских лучей можно «просветить» человеческое тело, в результате чего можно получить изображение костей, а в современных приборах и внутренних органов). При этом используется тот факт, что у содержащегося преимущественно в костях элемента кальция (Z=20) атомный номер гораздо больше, чем атомные номера элементов, из которых состоят мягкие ткани, а именно водорода (Z=1), углерода (Z=6), азота (Z=7), кислорода (Z=8). Кроме обычных приборов, которые дают двумерную проекцию исследуемого объекта, существуют компьютерные томографы, которые позволяют получать объёмное изображение внутренних органов.
Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.) с помощью рентгеновского излучения называется рентгеновской дефектоскопией.
В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК.
Кроме того, при помощи рентгеновских лучей может быть определён химический состав вещества. В электронно-лучевом микрозонде (либо же в электронном микроскопе) анализируемое вещество облучается электронами, при этом атомы ионизируются и излучают характеристическое рентгеновское излучение. Вместо электронов может использоваться рентгеновское излучение. Этот аналитический метод называется рентгенофлуоресцентным анализом.
В аэропортах активно применяются рентгенотелевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа в целях визуального обнаружения на экране монитора предметов, представляющих опасность.
Рентгенотерапия — раздел лучевой терапии, охватывающий теорию и практику лечебного применения рентгеновских лучей, генерируемых при напряжении на рентгеновской трубке 20—60 кв и кожно-фокусном расстоянии 3—7 см (короткодистанционная рентгенотерапия) или при напряжении 180—400 кв и кожно-фокусном расстоянии 30—150 см (дистанционная рентгенотерапия).
Рентгенотерапию проводят преимущественно при поверхностно расположенных опухолях и при некоторых других заболеваниях, в том числе заболеваниях кожи (ультрамягкие рентгеновские лучи Букки).
На Земле электромагнитное излучение в рентгеновском диапазоне образуется в результате ионизации атомов излучением, которое возникает при радиоактивном распаде, а также космическим излучением. Радиоактивный распад также приводит к непосредственному излучению рентгеновских квантов, если вызывает перестройку электронной оболочки распадающегося атома (например, при электронном захвате). Рентгеновское излучение, которое возникает на других небесных телах, не достигает поверхности Земли, так как полностью поглощается атмосферой. Оно исследуется спутниковыми рентгеновскими телескопами, такими как Чандра и XMM-Ньютон.
Сделанная В. К. Рентгеном фотография (рентгенограмма) руки Альберта фон Кёликера
Рентгеновское излучение было открыто Вильгельмом Конрадом Рёнтгеном. Он был первым, кто опубликовал статью о рентгеновских лучах, которые он назвал икс-лучами (x-ray). Статья Рентгена под названием «О новом типе лучей» была опубликована 28-го декабря 1895 года в журнале Вюрцбургского физико-медицинского общества. В некоторых кругах, однако, утверждается, что рентгеновские лучи были уже получены до этого И. П. Пулюем. Катодолучевая трубка, которую Рентген использовал в своих экспериментах, была разработана Й. Хитторфом и В. Круксом. При работе этой трубки возникают рентгеновские лучи. Это было показано в экспериментах Крукса[источник не указан 763 дня] и с 1892 года в экспериментах Генриха Герца и его ученика Филиппа Ленарда через почернение фотопластинок. Однако никто из них не осознал значения сделанного ими открытия и не опубликовал своих результатов.
По этой причине Рентген не знал о сделанных до него открытиях и открыл лучи независимо — при наблюдении флюоресценции, возникающей при работе катодолучевой трубки. На некоторых языках (включая русский и немецкий) эти лучи были названы его именем, несмотря на его сильные возражения. Рентген занимался Х-лучами немногим более года (с 8 ноября 1895 года по март 1897 года) и опубликовал о них три статьи, в которых было исчерпывающее описание новых лучей, впоследствии сотни работ его последователей, опубликованных затем на протяжении 12 лет, не могли ни прибавить, ни изменить ничего существенного. Рентген, потерявший интерес к Х-лучам, говорил своим коллегам: «Я уже всё написал, не тратьте зря время». Свой вклад в известность Рентгена внесла также знаменитая фотография руки Альберта фон Кёликера, которую он опубликовал в своей статье (см. изображение справа). За открытие рентгеновских лучей Рентгену в 1901 году была присуждена первая Нобелевская премия по физике, причём нобелевский комитет подчёркивал практическую важность его открытия. В 1896 году, в России, впервые было употреблено название «рентгеновские лучи»[источник не указан 763 дня]. В других странах используется предпочитаемое Рентгеном название — X-лучи. В России лучи стали называть «рентгеновскими» по инициативе ученика В. К. Рентгена — Абрама Фёдоровича Иоффе.
wreferat.baza-referat.ru