Агрохимия. Реферат роль отечественных и зарубежных ученых в развитии агрохимии


Реферат: Агрохимия

Агрохимия, наука о химических и биохимических процессах в растениях и среде их обитанияю, а также о способах химического воздействия на эти процессы с целью повышения плодородия почвы и урожая с.-х. культур. Агрохимия одна из наук, входящих в агрохимию. Отдельные её разделы нразрывно связаны с физиологией растений, химией, биохимией, почвоведением, микробирлогией, земледелием и растеневодством.

Основные объекты, традиционно изучаемые агрохимией растения, почва и удобрения. В 20 веке сфера анрохимии расширилась: она стала изучать также агробиоценоз в целом, химические средства защиты растений и регуляторы роста растении.

Агрохимические исследования включают: определение содержания в почвах и растениях химических элементов, белков, аминокислот, витаминов, жиров, углеводов; установление механического и минералогического состава почв, содержания в них органической части (гумуса), солей, водорослей, микроорганизмов и др.; изучение влияния удобрений на растения и почву и др. Обычно сначала исследования ведут в лаборатории методами, аналогичными тем, которые применяют в химии, биологии и др. смежных науках. Затем, как правило, проводят вегетационные опыты в теплице с участием живых растений. Рекомендации для практического применения агрохимичкских средств и методов выдают на основании полевых опытов, а также производственных испытаний, проводимых на больших площадях в течение ряда лет.

Многие приемы агрохимии (например, применение ряда органических удобрений) вошли в практику земледелия в глубокой древности и описаны еще в 1 в. н.э. Как наука анрохимия сформировалась лишь в 19 в., когда сложились основные представления о том, из чего состоят, чем и как питаются растения. Как вехи на пути становления агрохимии обычно отмечают опыты Я. Б. ван Гельмонта (1634), осветившие роль воды в питании растений, а также высказывания М.В.Ломоносова (1753) и А.Лавуазье (1761) о воздухе как источнике питательных веществ, вскоре подтвержденные опытами Дж. Пристли, Я. Ингенхауза, Ж. Сенебье и Н. Соссюра, показавшими, что растения поглощают из воздуха СО2; и выделяют О2; и что это связано с фотосинтезом.

Наиболее трудным оказался вопрос о корневом питании растений. Представления о том, что растения поглощают из почвы минеральные соли (Б. Палисси, 1563; А. Лавуазье, 1761; А. Т. Болотов, 1770), долгое время наталкивались на сопротивление сторонников так называемой гумусной теории питания растений (И. Валериус, 1761) и окончательно утвердились лишь в 19 в. после работ Ж. Буссенго (1836) и Ю. Либиха (1840) и особенно после разработки метода гидропоники (В. Кноп, Ю. Сакс, 1859), в котором растения выращиваются без участия почв. Большую роль в становлении агрохимии сыграли Ж. Буссенго и Ю. Либих. Первый развил представления о круговороте веществв в земледелии, роли азота в питании растений, разработал методологию агрохимических исследований. Второй обосновал теорию истощения почв вследствие выноса питательных веществ растениями и показал необходимость возврата этих веществ в виде минеральных удобрений. Связь агрохимии с микробиологией была обоснована Г. Гельригелем (1886) и С. Н. Виноградским (1893), выяснившими роль азотфиксирующих бактерий в природе и земледелии.

Становление отечественной школы агрохимии связано с именами М.Г.Павлова, А. Н. Энгелыардта, Д.И.Менделеева, К. А. Тимирязева, П. А. Костычева, Д. Н. Прянишникова, П. С. Коссовича, К. К. Гедройца и др., внесших существенный вклад в агропочвоведение и науку об удобрении почв. В послереволюционный период их работы продолжила плеяда советских агрохимиков во главе с Д. Н. Прянишниковым.

Современная агрохимия значительно отличается от «классической агрохимии» конца 19 начала 20 вв., она пользуется несравненно более совершенными методами исследования, опирается на возросший уровень знаний, развитую химическую промышленность и широкую сеть агрохимических служб. Так называемых «зеленая революция» -резкое повышение урожайности с.-х. культур, достигнутое в начале 50-х гг. 20 в., связана не только с успехами генетики и селекции, но и с достижениями агрохимии. Агрохимическая наука располагает знаниями о содержащихся в растениях веществах (белках, углеводах и др.), биосинтезе и обмене веществ в растениях, фитогормонах, ферментных системах, болезнях растений.

Благодаря созданию новой отрасли агрохимии химии пестицидов появилась возможность не только улучшать питание растений, но и влиять (с помощью регуляторов роста) на их развитие, а также защищать их от болезней (с помощью протравителей семян, фунгицидов и бактерицидов), насекомых, клещей, нематод и др. вредителей.

В области агропочвоведения и химии удобрений разработаны и широко распространены методы лабораторной оценки плодородия почв и их потребности в тех или иных удобрениях для разных севооборотов. На основании лабораторных исследований делают выводы о необходимости проведения химической мелиорации почв (известкование, гипсование) с целью улучшения их состава, структуры и свойств. Создан большой ассортимент твердых и жидких удобрений, содержащих как основные элементы (N, Р, К), так и микроэлементы. В больших масштабах применяют Nh4 и удобрения на основе мочевины.

Огромное влияние на агрохимию оказало открытие избирательных гербицидов (1942-44). Уничтожение сорняков с их помощью позволило улучшить условия роста растений и более эффективно использовать удобрения, так как они не расходуются на подкормку сорняков.

Средства агрохимии позволяют не только повысить урожай, но и добиться значительной интенсификации с.-х. производства. Например, благодаря гербицидам устраняется необходимость ручной прополки, с помощью дефолиантов облегчается машинная уборка хлопчатника.

Агрохимия научная основа химизации с. хозяйства и развития промышленности удобрений и пестицидов.

История развития агрохимии

Развитие взглядов на питание растений до Либиха

 Историю развития агрохимии в нашей стране можно подразделить на три периода. Первый период охватывает конец XVIII и первую половину XIX столетия. Этот период характеризуется накоплением данных по вопросам питания растений, применением удобрений и первыми попытками их обобщения. Второй период охватывает вторую половину XIX и начало XX столетия до октябрьского переворота 17-го года. Для этого периода характерно развитие опытов в лабораториях, на опытных станциях и в производственных условиях. Работами этого периода показана необходимость глубокого изучения питания растений, химических и биологических процессов в почве, являющихся основой для применения удобрений. Третьим периодом в развитии агрохимии является советский период. Его можно охарактеризовать, как период реконструкции сельского хозяйства в целом, механизайией и химизацией земледелия.

В XVIII столетии в России господствовала крепостническая система хозяйства. Наряду с этим возникали капиталистические формы хозяйства в виде мелкого товарного производства. Наиболее высокого для того уровня достигла металлургическая промышленность. Под влиянием металлургической, военной, кораблестроительной промышленности в россии стали развиваться естественные науки. В 1725 году в Петербурге была организована академия наук, а в 1755 г. по инициативе гениального Ломоносова создан Московский университет. XVIII век ознаменовался в России рядом изобретений и достижений в области науки (Ползунов и др.). Это положительно сказалось на творчестве Ломоносова. В 1748 году Ломоносовым была построена первая в России научно-исследовательская химическая лаборатория, в которой он проводил работы по химии, физике, минералогии и геологии.

К гениальным открытиям Ломоносова, составившим эпоху в развитии передовой науки всех стран, относится открытие и естественно-научное обоснование закона сохранения вещества и движения, ставшего одним из краеугольных камней материалистического истокования природы. Этот закон открыт открыт им совершенно самостоятельно, и задолго до Лавуазье. На основе этого закона Ломоносов по-новому объясняет многие явления природы, в частности, им была создана и научно обоснованная теория о природе тепловых явлений. М.В. Ломоносов сыграл огромную роль в обосновании и дальнейшем развитии основных принципов материалистической философии в нашей стране. Работы Ломоносова оказали большое влияние на развитие науки в России, в частности, естествознания, на развитие передовой мысли. Можно сказать, что Ломоносов был начальником естесвознания в России.

Особенно сильно влияние Ломоносова сказалось на развитии физики и химии. Он ввел в химию весы и количественные наблюдения. Это сказалось и на исследованиях в агрономии. И.И.Комов (1750-1792),профессор земледелия и других наук, в своей книге следующим образом определяет сущность земледелия :" Земледелие же с высокими науками тесной союз имеет, каковы суть История естественная, наука лечебная, Химия, Механика и почти вся Физика, и само оно ничто есть иное, как часть Физики опытной, только всех полезнейшая.

Комов призывает к развитию опытной работы, которая должна дать более глубокие ответы на различные вопросы агрономии, причем рекомендует не полагаться на " однократный опыт", а для большей уверенности повторять его. В книге Комова подробно изложено значение многих сельскохозяйственных культур, описываются обработка почвы, удобрение, севообороты, земледельческие орудия. Характеризуя почвы, Комов говорил, что " о доброте" и глинистой и песчаной и всякой земли по количеству чернозема в них содержимого судить можно. Для определения в почве количества глины, песка, извести и "питательного сока" он предлагал механический анализ, основанный на разделении глины от песка отмучиванием водой, и химический анализ. Комов писал, что питательный сок родится от "согнития животных", травяных веществ и корней в земле, стеблей и ветвей растений на воздухе. Песчаная земля от него плотнее, а глинистая делается рыхлее.

Узнав свойства земли, главное дело земледельца состоит, по Комову, в том, чтобы "худую " землю удобрить, и удобрив, стараться, чтобы она доброе не потеряла. Первое делается пахотой, а последнее очередным севом различных культур. Обработка почвы, по мнению Комова, не может заменит внесение навоза. При этом Комов подчеркивал, что навоз имеет большое значение в улучшении физических свойств почвы, в создании рыхлости почвы и сохранении влаги. Комов отмечает также важную роль в улучшении почвы и повышении урожая. По его мнению, известкование глинистой почвы положительно сказывается в продолжении 20 лет и более. При этом известь глинистую почву не только делает рыхлой, но и всякую кислоту в глинистой по большой части земле находящуюся истребляет. Поэтому Комов рекомендует искать известняки и мергель и вносить по 100-150 четвертей сыромолотого известняка на десятину (1 четверть около 200 л).

И.И.Комов подробно описывает приготовление фекальных компостов. Куриный помет он предлагает вносить под озимь во время сева вместе с семенами либо весной, когда сойдет снег, в подкормку. Навоз он рекомендует вывозить на поле свежим, а не сгоревшим или сгнившим, так как при этом сила питательная исчезнет. После вывозки в поле навоз должен немедленно заделываться в почву. Комов придавал большое значение в питании растений органическому веществу почвы. В этом отношении он явился предшественником немецкого ученого Тэера, развившего так называемую гумусовую теорию (см.ниже) питания растений. Болотов А.Т. (1738-1833) в течение ряда десятилетий занимался вопросами сельского хозяйства и сыграл большую роль в развитии русской агрономии. Большое внимание им уделено удобрению почв. Им опубликовано более 20 статей по вопросам использования удобрений. Хранить навоз он рекомендовал не под животными, а в специальных навозохранилищах в уплотненных кучах.

В статье О навозных солях А.Т.Болотов пишет об образовании из органических удобрений доступных растениям питательных веществ. А.П.Пошман (1792-1852) в своей книге Наставление о приготовлении сухихи и влажных туков, служащих к удобрению пашен (1809) высказал соображение о том, что в удобрении действующим началом являются щелочно-соляные вещества, содержащиеся в навозе и в золе, иначе говоря, минеральные вещества, которые и служат пищей для растений. Таким образом, за много лет до опубликования Ю.Либихом теории минерального питания Болотов и Пошман писали о значении минеральных солей в питании растений. М.Г.Павлов (1794-1840), являвшийся профессором Московского университета, читал лекции по физике, технологии, лесоводству, сельскому хозяйству и руководил земледельческой школой. Он впервые в России увязал химию с агрономией.

В 1825 г. М.Г.Павловым издан труд Земледельческая химия. М.Г.Павлов писал, что земледельческая химия есть наука о веществе тех исключительно предметов, которые имеют отношение к земледелию и знание веществе коим может руководствовать с выгоднейшему устройству производств сего искусства. Удобрить почву, по М*Г*Павлову, значит сделать ее более плодоносной. Землеудобрение может быть осуществлено с целью улучшения физических свойств или устранения кислот, или ускорения разрушения органических веществ почвы, или повышения плодородия. Целью последнего, по Павлову, является умножение в почве питательных веществ или по крайней мере вознаграждение того, что похищается из земли возрастающими на ней растениями с помощью органических удобрений. Работы этих ученых относятся к первому, начальному периоду в развитии агрохимии,когда главным образом накапливались свещения о питании растений и удобрении и делались попытки обобщения накопленного опыта. Обобщение сведений о питании и удобрении, как мы видели, привело Комова в конце 18-го века к выводу о важной роли гумуса в питании растений, а в начале 19-го века, обобщая данные по удобрениям, Пошман пришел к заключению, что в удобрениях действующим началом является минеральная часть.

Развитие агрохимии в Западной Европе

 Не входя в изложение исследований в области агрохимии в Западной Европе более раннего периода, отметим работы по агрохимии, начиная с Х1Х столетия, когда в лабораториях развернулась работа по изучению питания растений. В 1804 г. получили известность исследования по ассимиляции углерода и дыханию растений. Французский ученый Соссюр провел детальный анализ золы растений и на основании этих данных пришел к выводу, что минеральные вещества не случайно проникают с растение. Например, фосфорнокислая известь была найдена им взоле всех растений.

В 1800 г. Шрадер нашел в проростках в 4 раза больше золы, чем в семенах (причина нечистота условий опыта), и пришел к выводу, что растения сами производят свои зольные вещества посредством жизненной силы и не нуждаются в доставлении их извне. Для проверки этого утверждения СОссюр выращивал растения на дестиллированной воде и нашел в них минеральных веществ столько же, сколько их было в семенах. Таким образом, Соссюром были экспериментально опровергнуты виталистические представления Шрадера о питании растений. На основании своих опытов Соссюр пришел к выводу, что главным источником углерода для растений является атмосфера, а почва источником зольных веществ.

Либих впоследствии использовал анализы и выводы Соссюра в качестве доводов в пользу теории минерального питания растений. В конце ХУ111 и в начале Х1Х столетия в Западной Европе была широко распространена так называемая гумусовая теория питания растений. Один из наиболее видных сторонников этой теории немецкий ученый Тэер говорил о гумусе следующим образом. Плодородие почвы зависит собственно целиком от гумуса, так как, кроме воды, он представляет единственное вещество почвы, могущее служить пищей растений. В то время считалось, что чем больше питательных веществ содержит растение, тем больше оно поглощает и гумуса.

Сторонниками гумусовой теории минеральным веществам отводилась косвенная роль: они лишь ускоряют, по их представлениям, процессы разложения органических веществ в почве и переводят гумус в удобоусвояемую для растений форму. Тэер и другие сторонники гумусовой теории считали важным условием для поддержания плодородия почвы накопление и сбережение в ней гумуса. Необходимость севооборота обосновывалась стремление уравновесить расход органического вещества с его приходом в почву. В гумусовой теории сочетались верные наблюдения агрономов-практиков о большом значении гумуса для плодородия почвы с неверными метафизическими представлениями о том, что гумус является единственным веществом почвы, могущим служить пищей для растений.

Ряд ученых того времени выступали против гумусовой теории. К ним относятся прежде всего Буссенго,Шпренгель и Либих. Буссенго (Франция) известен своими работами (опубликованными в 1836-1841гг.) по физиологии, биохимии и агрохимии. ОН установил, что источником углерода для растений служит угленкислота воздуха. Им было показано также влияние внешних условий на ассимиляцию углерода листьями. Изучение особенностей питания животных и растений сыграл большую роль в дальнейшем развитии исследований по азотному питанию растений.

Опыты с растениями в искусственных условиях привели Буссенго к разработке вегетационного метода для изучения питания растений. Отвергнув гумусовую теорию питания растений, Буссенго развил так называемую азотную теорию. В своем имении он устроил опытную станцию с хорошо оборудованной лабораторией, где занимался исследованиями с 1836 г. В нескольких севооборотах опытного поля он провел учет урожаев и определил содержание углерода, азота и золы в урожаях. Это позволило Буссенго произвести учет круговорота веществ в хозяйстве. Он обнаружил, что накопление углерода в урожаях не связано с его количеством в навозе. Особенно ценным было установление того факта, что количество азота в урожаях за целый севооборот превосходит то его количество, которое дается растениями с навозом. Излишек азота в урожае был тем выше, чем большее было участие в севообороте бобовых растений клевера и люцерны.

Таким образом, в полевых условиях было установлено, что бобовые культуры обогащают почву азотом, доступным другим растениям, что и сказывается на повышении их урожая, например, урожай пшеницы после клевера выше урожая пшеницы после картофеля и корнеплодов. Буссенго высказал мнение, что азот, который накапливают бобовыее, происходит из воздуха. Позднее он пытался вопроизвести фиксацию азота бобовыми в вегетационных опытах с предварительной стерилизацией песка и сосудов. Обнаружилось, что чем более чистые условия создавал он в опытах, тем менее ясные получались результаты. В то время такое явление было неясно. Теперь известно, что при стерилизации среды отсутствовал симбиоз бобовых с клубеньковыми бактериями, поэтому фиксации азота воздуха не происходило.

Работы Буссенго привели к установлению важного значения азотных удобрений в повышении урожаев. Своими исследованиями Буссенго решил ряд важных вопросов физиологии растений, биохимии и агрохимии. Немецкий ученый Шпренгель, опубликовавший свои взгляды на питание растений в 1837-1839 гг., был одним из ближайших предшественников Либиха. Шпренгель, писал, что растения из неорганических веществ, получаемых ими из почвы и воздуха, образуют тела органические с помощью света, тепла, электричества и влаги. Объяснение падения урожаев при непрерывной культуре он видел в том, что минеральные вещества необходимы для жизни растений и потому должны возмещаться в почве. При этом Шпренгель не отрицал одновременного использования растениями, кроме главного источника углерода, углекислоты воздуха, также и перегноя почвы корнями. Недостаток фактических данных не позволил ему более четко поставить вопрос о значении гумуса в питании растений, однако развитые Шпренгелем представления и питании растений имеют серьезное значение в развитии агрохимии.

www.neuch.ru

Вклад российских ученых в развитие агрохимии

Количество просмотров публикации Вклад российских ученых в развитие агрохимии - 307

Отечественную школу агрохимии по праву возглавляет М.Г. Павлов (1793-1840). Он с 1821 ᴦ. - заведующий кафедрой физики, минœералогии и сельского хозяйства (домоводства) в Московском университете, надворный советник при Императорском университете минœералогии и сельского домо­водства, профессор медицины, доктор учрежденной при императорском Мо­сковском обществе сельского хозяйства Земледельческой школы и ее дирек­тор. Размещено на реф.рфНа этой же кафедре с 1804 ᴦ. читался курс почвоведения.

М.Г. Павлов был ученым-энциклопедистом: занимался медициной, ми­нералогией, физикой, химией. Но смыслом жизни М.Г. Павлова стало сель­ское хозяйство. Главный его тезис: относиться к сельскому хозяйству как к науке. Им впервые было раскрыто значение почвенных процессов в питании растений, разработана теория применения удобрений, замены господствую­щего тогда зернового трехполья интенсивной плодосменной системой земле­делия. Он придавал большое значение практике, считая, что она является во­площением теории в действии. Практика немыслима без теории, теория без практики бесплодна.

В 1821 ᴦ. вышла его работа ʼʼО главных системах сельского хозяйства, с приноровлением к Россииʼʼ. Трехполье он предлагает заменить плодосменом, считает недопустимой монокультуру. Свои взгляды па питание растений М.Г. Павлов обосновывает достижениями естественных наук: физики, хи­мии, биологии. В основном труде ʼʼЗемледельческая химияʼʼ (1825) он особо подчеркивал взаимосвязь почвы, растения и удобрения, что получило в даль­нейшем и глубокое научное обоснование и стало одним из важнейших науч­ных положений современной агрономической химии. В книге представлен достаточно полный курс естественных наук, в т.ч. ведущие разделы современной агрохимии. Будучи профессором Московского университета͵ он создал опытные поля, сельскохозяйственные школы.

Питание растений М.Г. Павловым толкуется с позиций учения А. Тэе-ра. Но в изложении русского ученого оно выглядит оригинальным. По его мнению, источником питания является преимущественно чернозем. В расте­ние он переходит через корень в измененной форме - в виде слизи. Термин ʼʼслизьʼʼ (ʼʼчерноземная слизьʼʼ) заимствован им из курса химии. Позже М.Г. Павлов выдвинул теорию, близкую к учению о минœеральном питании. Свои взгляды он изложил в книге ʼʼКурс сельского хозяйстваʼʼ (1837 ᴦ.). Изучая разнообразие почв, ученый создал довольно полную их классификацию: по преобладанию веществ выделяются почвы глинистые, песчаные, чернозем­ные, по количеству чернозема — жирные и тощие, по сцеплению частиц -рыхлые и плотные. Из различных свойств почвы он выделяет плодородие. Рекомендованные им мероприятия направлены на повышение этой уникаль­ной способности. Но ошибочными были высказанные им взгляды о том, что почва есть ʼʼмеханическая смесь веществ разнородныхʼʼ.

6. ДИФФЕРЕНЦИАЦИЯ АГРАРНОЙ НАУКИ В ХГХ - НАЧАЛЕ XX в._______________________ 229.

Особое значение М.Г. Павлов придавал глубинœе вспашки почвы. За во­семь лет опытов на Бутырском хуторе глубина пахотного слоя была доведена им до 27-31 см. Он сконструировал плуг (ʼʼплужок Павловаʼʼ).

Безусловная заслуга профессора - пропаганда применения химических методов анализа при изучении природных объектов. Целый раздел книги ʼʼЗемледельческая химияʼʼ был отведен химическому анализу почвы для вы­яснения качественного и количественного состава. Приемы, используемые им, не потеряли своей актуальности (водная и кислотная вытяжка, взбалты­вание, фильтрование, прокаливание и др.).

Практическое назначение земледельческой химии - обоснование пра­вильного удобрения почв с целью повышения плодородия и улучшения пи­тания растений. Роль удобрения он видел в ʼʼпоправлении, возбуждении, утучненииʼʼ. Почва представляет собой механическую смесь разнородных веществ. В случае если она неблагоприятна, то ее крайне важно поправлять: глинистые почвы - песковать, песчаные - наоборот, глиновать и т. д. Возбуждение почв - это устранение кислотности (в современной терминологии - химическая мелиорация). В качестве возбуждающих веществ М. Г. Павлов называл из­весть, рухляк (мергель), гипс, золу. Утучнение - собственно применение удобрений с целью увеличения питательных веществ в почве или хотя бы восполнение того, что вынесено растениями.

Его педагогическая и учебная деятельность, по словам А. В. Чаянова, положила начало русской агрономической школе. По его предложению при обществе была открыта первая отечественная Земледельческая школа для подготовки агрономов. Он был ее директором с 1822 по 1828 ᴦ. По его ини­циативе было развернуто распространение сельскохозяйственных знаний в Сибири и других районах страны. На опытных полях школы изучались раз­личные системы земледелия: выгонная, плодопеременная и др.

Пятитомный труд М.Г. Павлова ʼʼКурс сельского хозяйстваʼʼ долгое время служил капитальным руководством, по которому учились многие по­коления русских агрономов.

После смерти М.Г. Павлова кафедру сельского хозяйства занял ЯЛ. Линовский. Заведовал кафедрой всœего два года, очень рано погиб, но ос­тавил серьезные труды по агрохимии. Среди них книга ʼʼКритический разбор мнений ученых об условиях плодородия земли, с применением общего выво­да к земледелиюʼʼ (1846 ᴦ.). Кроме этого он написал два тома ʼʼБеседы о сель­ском хозяйствеʼʼ, где изложил свои рекомендации земледельцам.

После работ Ю. Либиха химию стали считать наукой, которая сможет решить всœе вопросы. Полагали, что одна она призвана разрешить вопрос плодородия почвы. Будучи еще молодым ученым, Я.А. Линовский возвысил свой голос против одностороннего увлечения в сельском хозяйстве химией. Он писал: ʼʼВся теория, всœе учение Либиха относительно производительности земли состоит в том, что она зависит от количества и качества, находящихся в ней разных растворимых неорганических солейʼʼ. Либих ʼʼперешел к по­следней крайности и стал утверждать, что земля и навозы вовсœе почти не со-

230______________________ 6. ДИФФЕРЕНЦИАЦИЯ АГРАРНОЙ НАУКИ В XIX - НАЧАЛЕ XX в.

действуют к умножению органической материи, находящейся в растениях, а это совершенно противоречит всœем известнейшим физиологическим наблю­дениям, и еще более - вековой опытности хозяевʼʼ. Я.А. Линовский справед­ливо замечает: ʼʼХотя соли и другие минœеральные вещества, разбрасываемые по полям, могут значительно содействовать к возвышению производительно­сти почв, но они недостаточны для того, чтобы пропитать собою растения, чтобы вполне уловить их развитие; нужно чтобы сверх того почва содержала известную примесь органических материй, чтобы она находилась под соот­ветствующим влиянием внешних деятелœей природы, а именно: воздуха, воды и теплотыʼʼ. И далее: ʼʼКак ни силилась химия, но она не могла проникнуть в тайну плодородия почв, не успела еще разорвать всœех тех завес, за которыми далеко от нас скрывается истинаʼʼ. Он рекомендует: ʼʼПодвергнуть землю со­ответствующему действию воздуха, воды, теплоты и навозов, т. е. уметь раз­рыхлить ее, удержать в ней нужную для развития растений влажность, на­греть и удобрить ее - вот предмет занятий земледельца, вот в чем состоит весь секрет хозяйстваʼʼ (Линовский Я.А., 1846).

Критика Я.А. Линовского, направленная против одностороннего увле­чения химией была глубоко научна и справедлива. Это понял впоследствии и Ю. Либих. Когда он впервые применил минœеральные удобрения, урожаи сельскохозяйственных культур в Германии возросли в несколько раз. Каза­лось, что найдено средство непрерывного их повышения - стоит лишь уве­личивать нормы удобрений. При этом скоро пришло разочарование. Нормы удобрений увеличивали, а урожай дальше не поднимался или даже падал. Причина этого - забвение почвенной физики и биологии.

Неожиданно, возрождению интереса к физике почвы способствовали микробиологи. В микробиологических исследованиях была показана исклю­чительная роль для развития микроорганизмов водного, воздушного и тепло­вого режимов почв, а значимость микробиологических процессов для плодо­родия почв четко обозначилась уже тогда.

Крупный вклад в развитие отечественной агрохимии внес А.П. Людоговский (1840-1882). Он работал вместе с И.А. Стебутом и Д.И. Менделœеевым. Им были сформулированы принципы построения зо­нальных систем применения удобрений, дифференцирования их в зависимо­сти от агрохимических свойств почв и возделываемых культур. Размещено на реф.рфДля черно­земной зоны наиболее эффективными были фосфорно-калийные удобрения при сочетании с органическими. А.П. Людоговский участвовал в создании первой оригинальной сельскохозяйственной энциклопедии ʼʼНастольная кни­га для русских сельских хозяевʼʼ (1875-1876 гᴦ.). Впервые в истории сельско­хозяйственной науки А.П. Людоговский попытался выделить из системы земледелия как ее составную часть систему полеводства. Севооборот, по его мнению, выражает характер только системы полеводства и подчинœен только ей. Он классифицировал системы земледелия по так называемым основным признакам: по степени интенсивности, способу восстановления плодородия

referatwork.ru

Реферат Агрохимия

скачать

Реферат на тему:

План:

Введение

Агрономическая хи́мия (Агрохи́мия) — наука об оптимизации питания растений, применения удобрений и плодородия почвы с учётом биоклиматического потенциала для получения высокого урожая и качественной продукции сельского хозяйства, прикладная наука, составная часть раздела химии — «неорганическая химия».

Агрохимия — также учебная дисциплина о химических процессах в почве и растениях, минеральном питании растений, применении удобрений и средств химической мелиорации почв. Включает определение содержания в почвах и растениях химических элементов, белков, аминокислот, витаминов, жиров, углеводов; установление механического и минералогического состава почв, содержания в них органической части (гумуса), солей, водорослей, микроорганизмов и др. Изучает влияние удобрений на растения и почву.

1. Наука

Агрохимия — наука, которая изучает круговорот веществ в системе «почва — растение — удобрения», а также их влияние на качество сельскохозяйственной продукции и проблемы охраны окружающей среды в зоне ведения аграрного сектора экономики государства.

Агрохимические исследования касаются вопросов воспроизводства плодородия почв, высокоэффективного использования минеральных, органических удобрений, микроэлементов на фоне других средств химизации, изучение агрохимической, экономической, энергетической и экологической эффективности удобрений, их физико-химических и агрохимических свойств, организации системы химизации отраслей агро-промышленного комплекса (АПК).

Основные разделы агрохимии:

Агрохимия является научной основой химизации сельского хозяйства. Она развивается под воздействием требований земледелия и призвана способствовать повышению его культуры. Агрохимия применяет в своих исследованиях методику химического анализа растений, почвы и удобрений, широко пользуется методами лабораторного и полевого опыта, меченых атомов, спектроскопии и хроматографии и другими.

2. История

Агрохимия — молодая наука, хотя многие приёмы агрохимии (применение органических удобрений) вошли в практику земледелия в глубокой древности и описаны еще в I веке. н. э.. Как наука она начала формироваться лишь в XIX веке, когда сложились основные представления о том, из чего состоят, чем и как питаются растения. Как вехи на пути становления агрохимии обычно отмечают опыты Я. Б. ван Гельмонта (1634), осветившие роль воды в питании растений, а также высказывания М. В. Ломоносова (1753) и А. Лавуазье (1761) о воздухе как источнике питательных веществ, вскоре подтвержденные опытами Дж. Пристли, Я. Ингенхауза, Ж. Сенебье (англ.)русск. и Н. де Соссюра, показавшими, что растения поглощают из воздуха СО2 и выделяют О2 и что это связано с фотосинтезом. Начало изучению круговорота веществ в земледелии было положено в 30-х годах XIX века французским учёным Ж.-Б. Буссенго. Он установил, что клевер и люцерна способны обогащать почву азотом. В 1866 году русский учёный М. С. Воронин открыл, что азот накапливается в клубеньках, образующиеся на корнях растений под влиянием жизнедеятельности микроорганизмов. Немецкий агрохимик Г. Гельригель (нем.)русск. окончательно установил, что азот воздуха усваивают микроорганизмы, живущие в клубеньках на корнях бобовых растений. Немецкий учёный Ю. Либих (1840 год) создал теорию минерального питания растений, которая сыграла большую роль в развитии представлений о питании растений и о удобрениях.

3. Россия

3.1. Имперский период

Зарождение отечественной агрохимии в 60—70 гг. связано с Д. И. Менделеевым, который исследовал вопросы питания растений и повышения урожайности сельскохозяйственных культур. Особое внимание Менделеев уделял применению удобрений и использованию питательных веществ подпахотных слоев почвы. Д. И. Менделеева — инициатора изучения в грунтовых условиях эффективности костной муки, суперфосфата и извести.

В России развитие агрохимии связан с трудами А. Н. Энгельгардта (1832—1893). В 70—80-х гг. в своем имении он изучил эффективность минеральных и органических удобрений, в частности роль извести и люпина. В 1888 год опубликовал труд по использованию фосфоритной муки, А. Е. Зайкевича (1888 год) — который предложил строчный способ внесения суперфосфата, П. А. Костычева (1884 год) — автора первого руководства по агрохимии. Большое влияние на развитие агрохимии оказал К. А. Тимирязев. В 90-х гг 19-го века по его предложению были построены первые вегетационные домики, в которых ставились опыты по изучению питания растений и их удобрение. Открытие в конце 19-го века крупных залежей фосфоритов дало новый толчок развитию агрохимии, была доказана возможность непосредственного применения размолотых фосфоритов как удобрения и использования их для выработки суперфосфата.

Большая заслуга в этом принадлежит Д. Н. Прянишникову (1865—1948) — изучил процессы усвоения растениями аммиачного азота, что позволило организовать промышленное производство аммиачных удобрений и широко их применять в земледелии. Проведенные им исследования фосфоритов способствовали развитию производства фосфорных удобрений. Он выделил взаимосвязь между тремя взаимодействующими факторами: почвой, растением и удобрением, определил роль бобовых культур в азотном балансе, развил учение о плодосменной системе земледелия и севообороте.

3.2. Советский период

После переворота (революции) начался новый этап в развитии агрохимии. Индустриализация страны и коллективизация в деревне вызвали необходимость широкой химизации земледелия. Вскоре после революции был создан Комитет по химизации народного хозяйства, в 1919 году — научный институт удобрений, в 1928 году — кафедры агрохимии при ряде высших учебных сельскохозяйственных заведений. В 1931 году в составе Всесоюзной академии сельскохозяйственных наук организован Всесоюзный научно-исследовательский институт удобрений, агротехники и агропочвоведения. Перед институтом и другими научными учреждениями была поставлена задача изучить эффективность минеральных и органических удобрений в различных почвенно-климатических и производственных условиях и на этой основе разработать принципы рационального размещения и применения удобрений.

4. Учебная дисциплина

Учебная дисциплина о химических процессах в почве и растениях, минеральном питании растений, применении удобрений и средств химической мелиорации почв. Включает определение содержания в почвах и растениях химических элементов, белков, аминокислот, витаминов, жиров, углеводов; установление механического и минералогического состава почв, содержания в них органической части (гумуса), солей, водорослей, микроорганизмов и др. Изучает влияние удобрений на растения и почву и включает в себя:

5. Агрохимическое производство

Агрохимическое производство — производство удобрений — отличается высокой энергоёмкостью. Например, доля газа в структуре себестоимости азотных удобрений доходит до 75 %[1][2].

Россия контролирует 8,4 % мирового рынка минеральных удобрений, уступая только Индии, контролирующей 10 % рынка, США (13,1 %) и Китаю (20,6 %)[3]. Продукция агрохимии занимает третье место в российском экспорте после продуктов топливно-энергетического и металлургического секторов экономики. В 2005 году Россия произвела на экспорт азотных удобрений на $1,4 млрд, смешанных — $1,3 млрд, калийных — $1,2 млрд

Примечания

  1. Об актуальных проблемах развития сельского хозяйства и роли современных технологий в устойчивом развитии агропромышленного комплекса Российской Федерации - txt.mcx.ru/index.html?he_id=981&news_id=2808&n_page=1&print=1. Министерство сельского хозяйства России.
  2. Синтез без анализа - www.raexpert.ru/editions/epr5/topic/. "Эксперт РА".
  3. Программа развития химической промышленности Республики Казахстан на 2006-2011 годы - www.mit.kz/docs/document_318.doc (doc). Министерство индустрии и торговли Республики Казахстан.

wreferat.baza-referat.ru

Введение в агрохимию

Понятие об агрохимии, ее целях и задачах

В период интенсивной химизации земледелия с каждым годом применяются все большие объемы минеральных и органических удобрений. В сельскохозяйственную практику внедряются прогрессивные технологии возделывания культур, а также возрастает комплексная антропогенная нагрузка на почву. Поэтому важно не только получать высокие урожаи культур, но необходимо также знать, какое влияние окажут средства химизации на биологические свойства почвы и экологическую обстановку в ней.

Агрономическая химия является современной научной основой применения удобрений. Она охватывает главнейшие вопросы химии в сельском хозяйстве и вместе с химической защитой растений является основой химизации земледелия. Ведь органические и минеральные удобрения представляют собой сильное средство воздействия на почву (ее химические, физические и биологические свойства) и растения – их питание, рост и развитие, устойчивость к неблагоприятным условиям, урожай и его качество.

Отечественный и зарубежный опыт показывает, что не менее половины прироста урожая сельскохозяйственных культур получают за счет применения минеральных удобрений, на 14% увеличиваются валовые сборы продукции земледелия благодаря использованию химических средств защиты растений.

В самом кратком определении агрохимия – это наука, изучающая питание растений и применение удобрений в целях повышения урожайности сельскохозяйственных культур. Агрохимия предусматривает также вопросы повышения плодородия почв.

Современное определение этой науки можно дать так:

Агрохимия -наука о химических и биохимических процессах в растениях и среде их обитания, а также о способах химического воздействия на эти процессы с целью повышения плодородия почвы и урожая с.-х. культур. Отдельные её разделы неразрывно связаны с физиологией растений, химией, биохимией, почвоведением, микробиологией, земледелием и растениеводством.

Многие приемы агрохимии, например, применение ряда органических удобрений, вошли в практику земледелия в глубокой древности и описаны еще в 1 в. н.э. Как наука агрохимия сформировалась лишь в 19 в., когда сложились основные представления о том, из чего состоят, чем и как питаются растения. Как вехи на пути становления агрохимии обычно отмечают опыты Я. Б. ван Гельмонта (1634), осветившие роль воды в питании растений, а также высказывания М. В. Ломоносова (1753) и А. Лавуазье (1761) о воздухе как источнике питательных веществ, вскоре подтвержденные опытами Дж. Пристли, Я. Ингенхауза, Ж. Сенебье и Н. Соссюра, показавшими, что растения поглощают из воздуха СО2; и выделяют О2; и что это связано с фотосинтезом.

Наиболее трудным оказался вопрос о корневом питании растений. Представления о том, что растения поглощают из почвы минеральные соли (Б. Палисси, 1563; А. Лавуазье, 1761; А. Т. Болотов, 1770), долгое время наталкивались на сопротивление сторонников так называемой гумусной теории питания растений (И. Валериус, 1761) и окончательно утвердились лишь в 19 в. после работ Ж. Буссенго (1836) и Ю. Либиха (1840) и особенно после разработки метода гидропоники (В. Кноп, Ю. Сакс, 1859), в котором растения выращиваются без участия почв. Большую роль в становлении агрохимии сыграли Ж. Буссенго и Ю. Либих. Первый развил представления о круговороте веществ в земледелии, роли азота в питании растений, разработал методологию агрохимических исследований. Второй обосновал теорию истощения почв вследствие выноса питательных веществ растениями и показал необходимость возврата этих веществ в виде минеральных удобрений. Связь агрохимии с микробиологией была обоснована Г. Гельригелем (1886) и С. Н. Виноградским (1893), выяснившими роль азотфиксирующих бактерий в природе и земледелии.

Становление отечественной школы агрохимии связано с именами М. Г. Павлова, А. Н. Энгелыардта, Д. И. Менделеева, К. А. Тимирязева, П. А. Костычева, Д. Н. Прянишникова, П. С. Коссовича, К. К. Гедройца и др., внесших существенный вклад в агропочвоведение и науку об удобрении почв. В послереволюционный период их работы продолжила плеяда советских агрохимиков во главе с Д. Н. Прянишниковым.

Основоположник научной школы в агрономической химии выдающийся агрохимик Дмитрий Николаевич Прянишников в простой и доходчивой форме представил содержание этой науки. Он изобразил ее в виде треугольника, по вершинам которого написаны основные объекты агрохимии: растение, почва, удобрение. Каждая из вершин соединена противоположно направленными стрелками с двумя другими (см. рисунок).

Стрелки означают взаимодействие: растение взаимодействует с почвой и удобрением, почва – с растением и удобрением, удобрение – с почвой и растением. Агрохимия исследует процессы взаимного влияния этих трех систем, результатом которых является урожай; высота и состав его определяются условиями взаимодействия.

При взаимодействии растения и почвы последняя оказывает влияние на растение содержащимися в ней элементами питания, но и растение в свою очередь поглощением питательных веществ, корневыми выделениями, отложением органических остатков, механическим и биохимическим воздействием оказывает влияние на почву, изменяет ее свойства.

Схема взаимодействия растения, почвы и удобрений

Рис. Схема взаимодействия растения, почвы и удобрений.

Удобрение является сильным средством изменения в растении характера обмена веществ и всех жизненных процессов, но в то же время физические и химические свойства удобрения изменяются под воздействием растения. Точно так же при взаимодействии почвы и удобрения, с одной стороны, изменяются свойства почвы, ее кислотность или щелочность, содержание питательных веществ, деятельность микроорганизмов и т. п., а с другой стороны, под влиянием почвы в удобрении изменяется растворимость и доступность растению элементов питания, их концентрация под влиянием вымывания или превращения в труднорастворимые соединения и т. д.

Д. Н. Прянишников в своем определении понятия «удобрение» указывал, что оно может содержать пищу для растений, усиливать мобилизацию питательных веществ в почве, повышать энергию жизненных процессов в ней и изменять свойства самой почвы.

Задача науки состоит в том, чтобы по возможности управлять этими условиями и давать соответственные рекомендации практике с учетом вида и даже сорта культуры, ее физиологических особенностей, свойств данной почвы, определяющих ее плодородие, природы действия конкретных удобрений на эту почву, и взятое для возделывания на ней растение. При этом наука вскрывает те принципиальные закономерности процессов, знание которых позволяет предвидеть их течение в обстановке, создающейся в результате различных комбинаций условий действия удобрений.

Знание этих закономерностей и помогает специалисту разработать правильное решение вопроса в каждом конкретном случае. Только при таком подходе к делу применения удобрений они становятся могучим фактором влияния и на почву, и на растение.

Таким образом, агрохимия изучает взаимоотношения между растением, почвой и удобрениями в процессе питания сельскохозяйственных культур.

Главная задача агрохимии по определению ее выдающегося представителя Д. Н. Прянишникова – изучение круговорота веществ в земледелии и выявление тех мер воздействия на химические процессы, протекающие в почве и растении, которые могут повышать урожай или изменять его состав. А с учетом современного состояния науки – управление круговоротом и балансом химических элементов в системе «почва - растение».

Задача агрохимика состоит в определении точных параметров круговорота всех биогенных элементов с учетом зон выращивания и специфики различных сельскохозяйственных растений и их сортов при заданных уровнях продуктивности. Цель – создание наилучших условий питания растений.

Главным способом вмешательства в этот круговорот является применение удобрений. Без них невозможно направлять процессы питания растений, изменять качество урожая и влиять на почвенное плодородие. Внесение минеральных удобрений позволяет вводить в круговорот веществ в данном хозяйстве новые количества элементов питания растений, а использование навоза и прочих отходов - повторноутилизировать элементы, уже входившие в состав предыдущих урожаев, выращенных на территории хозяйства.

Круговорот каждого из элементов питания растений имеет своеобразные черты. Важно отметить, что приход того или иного элемента в почву с удобрениями и расход его с урожаем осложняются целым рядом других процессов: потерей питательных веществ из-за выщелачивания за пределы почвенного профиля или даже в грунтовые воды, улетучивания в атмосферу, а также вследствие ветровой и водной эрозии почвы.

Вместе с тем некоторые элементы поступают в почву из атмосферы с осадками и благодаря жизнедеятельности микроорганизмов (азот). Кроме того, сильное влияние оказывает дальнейшая судьба урожая: вещества, входящие в состав его товарной части, продаваемой на сторону, уходят за пределы хозяйства, в то время как элементы, составлявшие нетоварную массу, используемую на корм и подстилку животным, в значительно большей степени возвращаются на поля с навозом. Отсюда ясно, что заботе о введении в круговорот веществ элементов, удаляемых с товарной продукцией, в агрохимии уделяется гораздо больше внимания, чем элементам, полнее возвращаемым в почву после использования нетоварной массы.

Крайне существенно и то, что содержание в почве различных элементов питания растений далеко не одинаково, а это, в свою очередь, не может не влиять на баланс питательных веществ, складывающийся в итоге их круговорота в хозяйстве. Следовательно, как изучение, так и в особенности управление круговоротом веществ, представляет нелегкую задачу.

Объекты агрохимии и основные методы их исследования

Основные объекты, традиционно изучаемые агрохимией: растения, почва и удобрения. Рассмотрим их подробней.

Почва — сложный объект исследования. Сложность исследования химического состояния почв обусловлена особенностями их химических свойств и связана с необходимостью получения информации, адекватно отражающей свойства почв и обеспечивающей наиболее рациональное решение, как теоретических вопросов почвоведения, так и вопросов практического использования почв. Для количественного описания химического состояния почв используют широкий набор показателей. В него входят показатели, определяемые при анализе практически любых объектов и разработанные специально для исследования почв (обменная и гидролитическая кислотность, показатели группового и фракционного состава гумуса, степень насыщенности почв основаниями и др.)

Особенностями почвы как химической системы является гетерогенность, полихимизм, дисперсность, неоднородность, изменение и динамика свойств, буферность, а так же необходимость оптимизации свойств почвы.

Гетерогенность: В составе почвы выделяют твердую, жидкую, газовую фазы. При исследовании химического состояния почвы и отдельных

Полихимизм: В почвах один и тот же химический элемент может входить в состав разнообразных соединений: легкорастворимых солей, сложных алюмосиликатов, органоминеральных веществ.

Дисперсность: Твердые фазы почвы состоят из частиц разного размера от крупинок песка до коллоидных частиц диаметром в несколько микрометров. Они неодинаковы по составу и обладают разными свойствами.

Неоднородность: Свойства почв неодинаковы даже в пределах одного и того же генетического горизонта.

В почвах непрерывно протекают разнообразные процессы, которые приводят к изменению химических свойств почв.

Свойства почв варьируют в пространстве, изменяются во времени и в то же время почвы обладают способностью противостоять изменению своих свойств, т. е. проявляют буферность.

Разные типы и даже виды и разновидности почв могут иметь столь разные свойства, что для их химической характеристики используют не только разные аналитические приемы, но и разные наборы показателей.

Перечисленные особенности почв во многом обусловливают принципиальные основы методов исследования химического состояния почв, номенклатуру и классификацию показателей химических свойств почв и химических почвенных процессов.

Анализ растений позволяет решить следующие задачи.

1. Исследовать трансформацию макро- и микроэлементов в системе почва - растение - удобрения при различных режимах выращивания растении.

2. Определить содержание основных биокомпонентов в растительных объектах и кормах: белков, жиров, углеводов, витаминов, алкалоидов и соответствие их содержания принятым нормам и стандартам.

3. Оценить меру пригодности растений для потребителя (нитраты, тяжелые металлы, алкалоиды, токсиканты).

При работе с различными видами удобрений необходимо различать их виды, уметь определить их состав как качественный, так при необходимости и количественный

Агрохимический анализ необходим для более эффективного ведения сельского хозяйства, сохранения окружающей среды и благоприятной экологической обстановки. Нарушение природного баланса может привести к разрушению гумусного слоя, снижению урожайности сельскохозяйственных культур, нарушению обменной функции почв, появлению заболеваний, опасных, в том числе, и для человека.

В соответствии с целями и задачами агрономической химии находятся методы ее исследований.

Их можно объединить в 4 группы:

1) лабораторные (химические, физико-химические, физические) анализы растения, почвы и удобрения;

2) физиологические эксперименты с растениями в специальных помещениях (теплицы, климатические камеры)

3) полевые опыты с сельскохозяйственными культурами в различных почвенно-климатических зонах

4) производственные опыты на больших площадях с экономической оценкой полученных результатов. Три последние группы методов являются биологическими.

Лабораторные исследования включают: определение содержания в почвах и растениях химических элементов, белков, аминокислот, витаминов, жиров, углеводов; установление механического и минералогического состава почв, содержания в них органической части (гумуса), солей, водорослей, микроорганизмов и др.; изучение влияния удобрений на растения и почву и др.

На основании лабораторных исследований делают выводы о необходимости проведения химической мелиорации почв (известкование, гипсование) с целью улучшения их состава, структуры и свойств. В настоящее время создан большой ассортимент твердых и жидких удобрений, содержащих как основные элементы (N, Р, К), так и микроэлементы. В больших масштабах применяют Nh4  и удобрения на основе мочевины. Внедряются в практику все новые препараты по защите растений.

Связь агрохимии с другими науками

Подводя итоги развития научного земледелия за все предшествующие 19 столетий, К. А. Тимирязев писал: « Земледелие стало тем, что оно есть, только благодаря агрономической химии и физиологии растений. Возникновением этих двух отраслей знания отмечены научные успехи за этот последний век, отразившиеся на земледелии, совершенно изменившие его характер, превратившие его из бессвязного собрания рецептов и слепого подражания успешным примерам в более или менее сознательную разумную деятельность… ».

«Чем питается растение и как это узнать? Вот коренной вопрос, на котором зиждется рациональное земледелие…», - говорил великий ученый.

Следовательно, изучение питания зеленых растений связывает агрохимию и физиологию растений. Но задача агрохимии более широкая: не только исследование, но и регулирование, управление этим процессом в производственной обстановке для увеличения продуктивности сельскохозяйственных культур и повышения их качества. Регулирование питания растений – мощное средство, поддерживающее единство организма и среды.

Наиболее частым случаем нарушения единство растения и среды бывает недостаток влаги и одного или нескольких питательных веществ в почве в состоянии, доступном для корневой системы. В зависимости от степени дефицита этих факторов роста возделываемые культуры либо бывают угнетены, либо вовсе погибают.

Изучая биологические, химические и физико-химические свойства почвы, агрохимия познает условия ее плодородия (формы и динамику соединений питательных элементов в связи с их растворимостью и усвояемостью для растений, поглотительную способность почв и ее влияние на подвижность ионов, потребляемых культурами, кислотность почвы и ее буферность и пр.) и превращение внесенных удобрений. Этот раздел агрономической химии тесно связан с наукой о почве – почвоведением.

Накопление в почве необходимой растениям влаги зависит не только от климатических и погодных условий, но и находится под влиянием приемов и сроков ее обработки. Обработка почвы – важный фактор динамики в ней питательных веществ, что связывает агрохимию и земледелие. Кроме того, земледелие разрабатывает проблему севооборотов, а это очень важно для обоснования определенной системы применения удобрений в конкретных условиях. Но применять удобрения рационально и экономно нельзя, не опираясь на агротехнические, организационно-экономические и хозяйственные приемы возделывания тех высших растений, для которых предназначается данная система удобрения. Поэтому агрономическая химия тесно связана и с указанными научными дисциплинами: растениеводством, экономикой и организацией предприятий.

Выше отмечалось, что динамика питательных веществ в почве имеет большое значение для питания растений. Но превращение многих элементов питания культур зависит от течения микробиологических процессов почве. Это особенно касается азота, фосфора, серы. Больше того, для активирования биологических процессов в почве применяют даже специальные бактериальные препараты, что связывает агрохимию с микробиологией. Исключительную важность представляет связывание бактериями и некоторыми грибками и водорослями, обитающими в почве, молекулярного азота атмосферы, что обогащает почву органическими азотистыми соединениями, являющимися резервом пищи растений.

Как ни велико значение минеральных удобрений, местные удобрительные ресурсы никогда не потеряют своего значения. Дешевизна и повсеместное распространение этих удобрений делают их весьма рентабельными.

Ни в одной стране, даже с высокоразвитой туковой промышленностью и большим количеством применяемых минеральных удобрений, использование навоза не сократилось. Наоборот, интенсификация земледелия и его обильная химизация позволили увеличить выход навоза и повысить нормы его использования. Агрохимик должен знать основы животноводства, чтобы быть хорошо ориентированным в свойствах и особенностях использования на удобрение отходов этой отрасли сельского хозяйства.

Наконец, химизация земледелия включает, помимо минеральных и органических удобрений, еще и многочисленные средства защиты растений – яды и гербициды, изучение и руководство применением которых ложится не только на специалистов по защите растений, но и на агрохимиков, что обязывает основательно изучать методы защиты растений, биологию насекомых-вредителей, возбудителей бактериальных и грибных болезней культур и особенности сорных растений. Только при этом условии средства химической защиты будут использованы эффективно.



biofile.ru


Смотрите также