«Палочки Непера» стали началом новой эпохи – «эпохи науки», которая пришла на смену ранее популярному торговому делу. Счетные палочки – это изобретение шотландского математика Джона Непера, который вошел в историю, благодаря изобретению логарифмов. С помощью первой вычислительной техники развитие арифметики сделало шаг вперед, а «палочки Непера» до сих пор считаются прообразом первой вычислительной техники, например, такой, как калькулятор.
Джон Непер – шотландский математик, известный как изобретатель нового вида вычислительных инструментов – логарифмов, толчком к появлению которых стали «палочки Непера». В ХVI веке наука ощущала потребность в проведении сложных расчетов, однако в то время не были созданы необходимые условия для ее дальнейшего развития. Поэтому Джон Непер предложил вместо сложной операции умножения использовать процесс сложения, который ему же удалось сопоставить с помощью специальных таблиц. Благодаря этой схеме, трудоемкий процесс деления также может быть заменен на операцию вычитания. Это изобретение позволило заметно облегчить работу вычислителям.
Джон Непер в 1617 году выпустил книгу, в которой предложил новый метод проведения операции умножения с помощью специальных палочек. В то время большой популярностью пользовался способ решетчатого умножения, поэтому ученый и решил на его основе создать собственную методику.
«Палочки Непера» представляли собой комплект специальных палочек, состоящих из дощечки с разметкой от одного до девяти и остальными палочками, на которые была помещена таблица умножения с такой же разметкой цифр. Вверху каждой дощечки располагались числа в порядке возрастания, а по всей длине выложенной таблицы Непер разместил собственно результаты умножения чисел на цифры от одного до девяти. Иными словами, таблица давала возможность совершать операции умножения числа 123456789 на число 123456789. Сама сетка была разделена столбцами.
Для того чтобы получить результат при умножении, нужно было выбрать палочки, которые бы отвечали разряду множимого, и расположить их в линию, ряд чисел которой обозначал бы само число. Из-за того, что разряды в множимом могли повторяться, в комплекте всегда были дополнительные палочки, отвечающие за каждый разряд. Дощечка с вертикально расположенными цифрами от одного до девяти, ставилась слева. С помощью нее можно было выбирать строку, соответствующую для разряда множителя.
Джон Непер решил, что если разделить ячейку на 2 части с помощью диагональной линии, то можно будет компактно записать результат операции: в верхнем отсеке зафиксировать старший разряд полученного числа, а в нижнем – младший разряд. Для получения окончательного результата операции нужно сложить числа в «таблице» справа налево – сумма цифр и будет необходимым ответом.
«Палочки Непера» могли использоваться, как для операции умножения, так и для деления, и вычисления квадратного корня числа. Если делить числа можно было по принципу схожему с умножением, то для того, чтобы извлечь квадратный корень в набор добавлялась еще одна палочка, состоящая из трех колонок. В первой колонке находились возведенные в квадрат числа, которые соответствовали значению дощечки, указывающей строки, во второй - цифры, полученные при результате умножения указателя строк на два, а в третьем столбце находились числа от одного до девяти.
После изобретения этого арифметического метода, многие ученые-математики старались внести какие-то новшества в разработанный до них механизм. Например, в 1666 году английским ученым-изобретателем была сделана попытка перенести всю таблицу с палочек на диски. Этот опыт увенчался успехом, так как подобная методика упростила работу с изобретением предшественника. А в конце 60-х немецкий математик Каспар Шот выдвинул идею заменить дощечки цилиндрами, на двух сторонах которых следовало разместить все числовые значения вместе с сеткой умножения от одного до девяти. Если поставить цилиндры в такое положение, чтобы их верхняя сторона с цифрами образовывала множитель, то операцию умножения можно производить по тому же принципу, что и с помощью «палочек Непера».
Уже в ХIX столетии, чтобы облегчить пользование прибором, вместо обычных ровных дощечек стали изготовлять бруски под наклоном, с углом 65 градусов. В результате, треугольники, содержащие числа для операции, можно было использовать по порядку, так как теперь они находились друг под другом. Уже к концу века внесли еще некоторые изменения, связанные с заменой палочек на тонкие полоски, зафиксированные в специальном чехле, который напоминал блокнот. Полоски нужно было передвигать с помощью острой палочки.
«Палочки Непера» пользовались большим спросом в свое время. Это, казалось бы, несложное открытие сделало большой прорыв в области развития арифметики.
www.calculator888.ru
Коррекционная карточка 6 класс: Действия с рациональными числами (с помощью координатной прямой) 1. Построить координатную прямую, указав начало координат и единичный отрезок. Отметить на координатной
ПодробнееПонятие системы счисления Для записи информации о количестве объектов используются числа. Числа записываются с использованием особых знаковых систем, которые называются системами счисления (с/с). Алфавит
ПодробнееЛекция 5 Основы представления информации в цифровых автоматах Позиционные системы счисления Системой счисления называется совокупность приемов и правил для записи чисел цифровыми знаками. Любая предназначенная
ПодробнееДиагностическая работа (2 класс конец года) Задание 1 Какую цифру надо поставить в рамочку, чтобы вычисление было проведено верно? Подчеркни правильный вариант ответа. _61 2 37 а) 0 б) 6 в) 4 г) 3 Задания
ПодробнееB3 (повышенный уровень, время 7 мин) Тема: динамическое программирование. Что нужно знать: динамическое программирование это способ решения сложных задач путем сведения их к более простым задачам того
ПодробнееНЕСТАНДАРТНЫЕ ПРИЁМЫ УСТНОГО СЧЁТА 1. УМНОЖЕНИЕ ДВУЗНАЧНЫХ ЧИСЕЛ ОТ 10 ДО 20 2. УМНОЖЕНИЕ ДВУЗНАЧНЫХ ЧИСЕЛ ОТ 20 ДО 30 3. УМНОЖЕНИЕ ДВУХ ЧИСЕЛ, У КОТОРЫХ ЦИФРЫ ДЕСЯТКОВ РАВНЫ МЕЖДУ СОБОЙ, А СУММА ЕДИНИЦ
ПодробнееВХОДНАЯ КОНТРОЛЬНАЯ РАБОТА Ц е л и д е я т е л ь н о с т и у ч и т е л я : создать условия для проверки умений выполнять сложение и вычитание однозначных чисел без перехода через десяток. П л а н и р у
ПодробнееОСНОВНЫЕ ТРЕБОВАНИЯ ПО МАТЕМАТИКЕ к уровню подготовки учащихся 1 класса К концу обучения в 1 классе учащиеся должны: предмет, расположенный левее (правее), выше (ниже) данного предмета, над (под, за) данным
ПодробнееГ. И. Просветов УЧИМСЯ СЧИТАТЬ БЫСТРО: ЗАДАЧИ И РЕШЕНИЯ Учебно-практическое пособие Москва Альфа-Пресс 2008 УДК 51(07) ББК 22.1 П 82 ПРЕДИСЛОВИЕ Нетрудно свести лошадь к воде. Но если Вы заставите плавать
ПодробнееЛекция Системы счисления Подумайте, сколькими разными способами можно записать число «десять» Один способ уже представлен в предыдущем предложении Можно назвать еще достаточно много способов написания
ПодробнееПояснительная записка. Программа по математике для 6 класса разработана на основе программы для специальной (коррекционной) общеобразовательной школы VIII вида, под редакцией В. В. Воронковой, 00 года.
ПодробнееВариант 1 Регион Город / посёлок / село Школа Класс Фамилия, имя Инструкция для учащихся На выполнение работы отводится 90 минут (с перерывом). В каждой части работы даются один или несколько текстов и
ПодробнееТема Целые и рациональные числа Входной тест Ответом к каждому заданию является конечная десятичная дробь, целое число или последовательность цифр. Запишите ответы к заданиям в поле ответа в тексте работы,
ПодробнееПОЯСНИТЕЛЬНАЯ ЗАПИСКА Математика Цели: o Развитие образного и логического мышления, воображения, формирование предметных умений и навыков, необходимых для успешного решения учебных и практических задач,
ПодробнееB5 (повышенный уровень, время 0 мин) Тема: Поиск алгоритма минимальной длины для исполнителя. Что нужно знать: каких-либо особых знаний из курса информатики не требуется, задача решаема на уровне 6-7 класса
ПодробнееB (базовый уровень, время 4 мин) Тема: Поиск алгоритма минимальной длины для исполнителя. Что нужно знать: каких- либо особых знаний из курса информатики не требуется, задача решаема на уровне 6-7 класса
Подробнее«Математика» Первоклассник научится: предмет, расположенный левее (правее), выше (ниже) данного предмета, над (под, за) данным предметом, между двумя предметами; натуральные числа от 1 до 20 в прямом и
ПодробнееСПЕЦИФИКАЦИЯ диагностической работы по математике для обучающихся 4-х классов общеобразовательных организаций г. Москвы Диагностическая работа проводится 19 января 2017 г. 1. Назначение диагностической
ПодробнееПояснительная записка Рабочая программа разработана на основе авторской программы начального общего образования в соответствии с требованиями Федерального государственного образовательного стандарта начального
ПодробнееАННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ Предмет: Русский язык Класс: 2 Количество часов по учебному плану: всего- 136часов в год (4 часа в неделю) УМК: 1. Авторская программа «Перспективная начальная школа» на основе
ПодробнееПояснительная записка Рабочая программа по математике составлена на основе следующих нормативных документов и методических рекомендаций: 1.Федеральнфй государственный образовательный стандарт основного
ПодробнееРаздел І. обобщение и Систематизация учебного материала за 1 класс Цель раздела І обобщение и систематизация знаний, умений и навыков учащихся, приобретенных в 1 классе. Учебное содержание раздела разделено
ПодробнееПояснительная записка Рабочая программа по математике разработана на основе Федерального государственного образовательного стандарта начального общего образования, Концепции духовно-нравственного развития
ПодробнееСистемы счисления (СС) I. Двоичная система счисления. Как устроено число в десятичной СС: 579 0 =5 0 7 0 9 0 0 ( a 0, a 0). В любой другой позиционной системе счисления числа устроены точно таким же образом.
ПодробнееМатематика (1 класс) Пояснительная записка Рабочая программа для 1 класса по математике составлена по Основной образовательной программе начального общего образования государственного бюджетного общеобразовательного
ПодробнееТема 7. Представление информации в ЭВМ.. Единицы информации. Бит - (bit-biry digit - двоичный разряд) наименьшая единица информации - количество её, необходимое для различения двух равновероятных событий.
ПодробнееB (базовый уровень, время 4 мин) Тема: Поиск алгоритма минимальной длины для исполнителя. Что нужно знать: каких-либо особых знаний из курса информатики не требуется, задача решаема на уровне 6-7 класса
ПодробнееК. Поляков, 009-04 B (базовый уровень, время 4 мин) Тема: Поиск алгоритма минимальной длины для исполнителя. Что нужно знать: каких-либо особых знаний из курса информатики не требуется, задача решаема
ПодробнееМуниципальное бюджетное общеобразовательное учреждение «Лицей» УЧЕБНАЯ ПРОГРАММА по математике 5-6 класс уровень основного общего образования Пояснительная записка. Учебная программа по математике ориентирована
ПодробнееСИСТЕМЫ СЧИСЛЕНИЯ Системы счисления Понятие числа фундаментальная основа, как математики, так и информатики. Но если в математике наибольшее внимание уделяется методам обработки чисел, то для информатики
ПодробнееОБРАЩЕНИЕ К ЧИТАТЕЛЮ Дорогие друзья! Мы рады снова встретиться с вами в 6 классе! Мы предлагаем учить математику уже в привычной для вас форме: вы сможете одновременно использовать учебник, учебные книги,
Подробнееdocplayer.ru
ПАЛОЧКИ НЕПЕРА
ДЖОН НЕПЕР (1550-1617)
Родился в 1550 году в Мерчистон-Касле близ Эдинбурга (Англия). Шотландский барон, 8-й лорд Мерчистона. В 1563г. Поступил в Сент-Эндрюсский университет, но никакой ученой степени по окончании не получил. Затем уехал путешествовать в Германию, Францию, Италию. В 1957 году вернулся на родину и поселился в родовом замке. Все время посвятил занятиям богословием и математикой. В 1593 г. опубликовал свою первую работу – по-богословию. В области математики Непер известен как изобретатель системы логарифмов, основанной на установлении соответствия между арифметической и геометрической прогрессии. В «Описании удивительной таблицы логарифмов» в 1614 г. он опубликовал первую таблицу логарифмов и вел сам термин.
Я всегда старался, насколько позволяли мои силы и способности, освободить людей от трудности и скуки вычислений, докучливость которых обыкновенно отпугивает очень многих от изучения математики.
Принцип умножения решеткой, широко распространенный в XVII веке
Для умножения решеткой использовалась таблица, содержащая столько столбцов, сколько разрядов у множимого, и столько строк, сколько разрядов у множителя. Над столбцами таблицы записывается множимое так, чтобы разряды числа находились каждый над своим столбцом. Справа от таблицы записывался множитель так, чтобы каждый разряд числа был напротив своей строки. При этом старший разряд записывался напротив верхней строки. В каждую ячейку таблицы записывался результат перемножения разряда множимого, находящегося над этой ячейкой, и разряда множителя, находящегося справа от этой ячейки. Причем для записи результата ячейка разделялась по диагонали на две части. В верхнюю часть записывался старший разряд результата, а в нижнюю – младший. Затем произведения суммировались по наклонным плоскостям справа налево. Полученная сумма и есть окончательный результат.
Проиллюстрируем на примере:
Палочки Непера
Используя этот способ умножения, Джон Непер создал свой прибор – «Палочки Непера». Это набор палочек, в который входила одна палочка с нанесенными на нее цифрами от 1 до 9 (указатель строк) и палочки с таблицей умножения всех чисел от 1 до 9 (разряды множимого). Сверху каждой такой палочки наносилось число от 1 до 9, а вдоль длины – результаты умножения этого числа на все числа от 1 до 9. По сути дела палочки Непера представляли собой решетку для умножения числа 123456789 на число 123456789, разрезанную на столбцы. Для умножения с помощью этого прибора выбирались палочки, соответствующие значениям разряда множимого, и выкладывались в ряд так, чтобы цифры сверху каждой палочки составляли множимое. Часто значения разрядов множимого повторялись, поэтому в наборе всегда было несколько палочек для каждого разряда. Слева прикладывали палочку с цифрами от 1 до 9 (указатель строк), по которой выбирали строки, соответствующие разрядам множителя. Затем каждая отобранная строка суммировалась по наклонной плоскости. Полученные результаты складывались между собой с учетом порядка разрядов множителя.
Модификация палочек Непера
Было множество попыток усовершенствовать палочки Непера.
Так в 1668 году Каспар Шот предложил вместо брусочков использовать цилиндры, на поверхности каждого из которых нанесены значения всех палочек Непера с таблицей умножения от 1 до 9. Цилиндры помещались в ящик параллельно друг другу. Повернув цилиндры так, чтобы их верхние цифры составляли множитель, можно проводить умножение также, как и с помощью палочек Непера.
В 19 веке для облегчения счета палочки Непера стали делать на брусочках, располагающихся под углом в 65 градусов. Таким образом, треугольники, используемые для сложения, при счете по наклонной плоскости располагались друг под другом.
А в 1892 году был создан прибор для умножения, использующий вместо палочек узкие полоски, закрепленные в футляре в виде записной книжки и передвигающиеся с помощью заостренной палочки, а слева прикладывали палочку с цифрами от 1 до 9 (указатель строк), по которой выбирали строки, соответствующие разрядам множителя. Затем каждая отобранная строка суммировалась по наклонной плоскости. Полученные результаты складывались между собой с учетом порядка разрядов множителя.
Палочки Непера были очень популярны и привлекали многих изобретателей.
За века их использования было предложено много разнообразных усовершенствований и устройств для их использования.
Техника умножения с помощью палочек Непера
Рассмотрим технику умножения с помощью палочек Непера на примере перемножения чисел 4938 и 385:
1. Выбираем палочки с таблицей умножения чисел 3,4,8 и 9.
2. Выкладываем их вряд так, чтобы цифры сверху каждой палочки составили число 4938.
3. Выкладываем слева указатель строк.
4. Ориентируясь по крайней левой палочке, проводим суммирование по наклонной плоскости для третьей строки. Суммирование проводится по этой строке, так как старший разряд множителя – три. Получаем результат суммирования 14814.
5. Аналогичные действия проводим для восьмой строки, так как второй разряд множителя – восемь. Результат суммирования – 39504.
6. Эти же действия проводим для младшего разряда множителя, которому соответствует пятая строка. Результат суммирования – 24690.
7. Складываем полученные ранее результаты с учетом порядка разрядов множителя. Так как первая сумма вычислялась для разряда сотен, то умножаем ее на 100. Соответственно вторую сумму умножаем на 10, а третью оставляем без изменения. Складываем полученные результаты: 1 481 400 + 395 040 + 24690 = 1 901 130. Полученная сумма и есть результат перемножения чисел 49380 и 385.
Палочки Непера могли использоваться не только для умножения, но и для деления, и излечения квадратного корня. Рассмотрим технику деления на примере 491756 / 3852 = 127.6625:
1. Выбираем палочки с таблицей умножения чисел 2,3,5 и 8.
2. Выкладываем их в ряд так, чтобы цифры сверху каждой палочки составили делитель (3852).
3. Суммируем по наклонной плоскости первый ряд и записываем напротив него результат. Эту же операцию проделываем с оставшимися восемью рядами.
4. Теперь приступаем непосредственно к делению. На этом этапе необходимо найти наибольшее число из столбца сумм, но при этом оно должно быть меньше делимого с учетом разрядности. То есть необходимо привести числа из столбца сумм к единому порядку с делимым и уже из этих чисел выбирать нужное нам. Для нашего примера - это число из первой строки с учетом приведения к единому порядку с делимым 385200. Вычитаем найденное число (385200) из делимого и получаем старший разряд результат и остаток. Старший разряд результата будет 1, так как мы выбрали число из первой строки. Остаток от деления будет 491756 - 385200 = 106556.
5. Повторяем действия, описанные в пункте 4, но применительно к остатку от деления. В результате получаем следующий разряд результата (2) и новый остаток (29516). Повторяем эти действия до тех пор, пока остаток больше делителя. Когда остаток от деления становится меньше делителя, означает, что найдена целая часть результата. В нашем случае это произойдет после трех итераций, и целая часть результата будет 127.
6. Увеличиваем остаток от деления в 10 раз и проводим с ним описанные выше действия, в результате получаем десятые доли результата (для нашего примера 6) и новый остаток. Повторяем эти действия до тех пор, пока не будет достигнута необходимая точность деления или остаток не будет равен нулю.
Извлечение квадратного корня происходит поэтапно. Число разбивают на группы по 2 цифры, начиная с права, и на каждом этапе оперируют со своей парой цифр. При этом от этапа к этапу к паре чисел присоединяется остаток от извлечения квадратного корня на предыдущем этапе.
Этап 1. Число 56349 разбивается на пары следующим образом: 5 63 49. Извлечение квадратного корня начинается с крайней левой группы, в нашем случае это 5.
Выбираем из первого ряда палочки для деления максимальное число, но меньшее первой группы (пяти). Это будет четыре: 4
Определяем остаток от операции над первой группой, отнимая от значения группы (5) выбранное нами число (4). Остаток будет 1 (5-4 = 1). Зная остаток от операции над первой группой, определяем значение для второго этапа извлечения квадратного корня. Путем объединения остатка(1) и второй группы(63) получаем число 163.
Смотрим значение второго столбца палочки для деления во второй строке (4) и выкладываем это число слева от этой палочки, как показано на рисунке «Извлечение кв. корня. Этап 1». Подсчитываем сумму всех рядов по наклонной плоскости, игнорируя второй и третий столбцы палочки, для извлечения квадратного корня и записываем их справа от выложенных палочек.
Этап 2. Выбираем наибольшее число из столбца суммирования строк по наклонной плоскости, которое в свою очередь меньше числа, определенного для второго этапа (163). Это будет 129 (129
Определяем остаток от операции на втором этапе, отнимая от числа, определенного для второго этапа (163), выбранное нами число (129). Остаток будет 34 (163-129 = 34). Зная остаток, определяем значение для третьего этапа извлечения квадратного корня. Путем объединения остатка(34) и третей группы(49) получаем число 3449.
Смотрим значение второго столбца палочки для деления в третьей строке (6) и выкладываем палочку, соответствующую этому числу слева от палочки для деления, как показано на рисунке «Извлечение кв. корня. Этап 2». Подсчитываем сумму всех рядов по наклонной плоскости, игнорируя второй и третий столбцы палочки, для извлечения квадратного корня и записываем их справа от выложенных палочек.
Этап 3. Выбираем наибольшее число из столбца, который получился в результате суммирования строк по наклонной плоскости, которое в свою очередь меньше числа, определенного для третьего этапа (3449). Это будет 3269 (3269
Определяем остаток от операции, отнимая от числа, определенного для третьего этапа (3449), выбранное нами число (3269). Остаток будет 180 (3449-3269 = 180). Зная остаток, определяем значение для продолжения извлечения квадратного корня на четвертом этапе. Так как для четвертого этапа
Деление с помощью палочек Непера
Палочки Непера могли использоваться не только для умножения, но и для деления, и излечения квадратного корня. Рассмотрим технику деления на примере 491756 / 3852 = 127.6625:
1. Выбираем палочки с таблицей умножения чисел 2,3,5 и 8.
2. Выкладываем их в ряд так, чтобы цифры сверху каждой палочки составили делитель (3852).
3. Суммируем по наклонной плоскости первый ряд и записываем напротив него результат. Эту же операцию проделываем с оставшимися восемью рядами.
4. Теперь приступаем непосредственно к делению. На этом этапе необходимо найти наибольшее число из столбца сумм, но при этом оно должно быть меньше делимого с учетом разрядности. То есть необходимо привести числа из столбца сумм к единому порядку с делимым и уже из этих чисел выбирать нужное нам.
Деление с помощью палочек Непера
Извлечение квадратного корня этап 1
Этап 2
Этап 3
Этап 3. Выбираем наибольшее число из столбца, который получился в результате суммирования строк по наклонной плоскости, которое в свою очередь меньше числа, определенного для третьего этапа (3449). Это будет 3269 (3269
Определяем остаток от операции, отнимая от числа, определенного для третьего этапа (3449), выбранное нами число (3269). Остаток будет 180 (3449-3269 = 180). Зная остаток, определяем значение для продолжения извлечения квадратного корня на четвертом этапе. Так как для четвертого этапа не осталось группы для объединения с остатком, то разряд результата, полученный после четвертого этапа, будет разряд десятых частей. А для вычисления числа для четвертого этапа остаток (180) объединяется с группой, состоящей из двух нулей (00). Таким образом, число для четвертого этапа будет 18000.
Смотрим значение второго столбца палочки для деления в седьмой строке (14). Объединяем число, выложенное палочками (46), с 14 по следующему правилу: разряд десятков от числа 14 прибавляем к числу выложенными палочками (46+1=47), а разряд единиц просто приписываем справа и получаем 474. Выкладываем это число слева от палочки для извлечения квадратного корня, как показано на рисунке «Извлечение кв. корня. Этап 3». Подсчитываем сумму всех рядов по наклонной плоскости, игнорируя второй и третий столбцы палочки для извлечения квадратного корня, и записываем их справа от выложенных палочек.
Этап 4
kopilkaurokov.ru
Чтобы освоить умножение многозначных чисел, нужно всего лишь знать таблицу умножения и уметь складывать числа. В сущности, вся сложность заключается в том, как правильно разместить промежуточные результаты умножения (частичные произведения). Стремясь облегчить вычисления, люди придумали множество способов умножения чисел. За многовековую историю математики их набралось несколько десятков.
Умножение способом решётки. Иллюстрация из первой печатной книги по арифметике. 1487 год.
Палочки Непера. Этот простой счётный прибор впервые был описан в сочинении Джона Непера «Рабдология». 1617 год.
Джон Непер (1550—1617).
Модель счётной машины Шиккарда. Это не дошедшее до нас вычислительное устройство изготовлено изобретателем в 1623 году и описано им годом позже в письме Иоганну Кеплеру.
Вильгельм Шиккард (1592—1635).
‹
›
Наследие индусов — способ решётки
Индусы, с давних времён знавшие десятичную систему счисления, предпочитали устный счёт письменному. Они изобрели несколько способов быстрого умножения. Позже их заимствовали арабы, а от них эти способы перешли к европейцам. Те, однако, ими не ограничились и разработали новые, в частности тот, что изучается в школе, — умножение столбиком. Этот способ известен с начала XV века, в следующем столетии он прочно вошёл в употребление у математиков, а сегодня им пользуются повсеместно. Но является ли умножение столбиком лучшим способом осуществления этого арифметического действия? На самом деле существуют и другие, в наше время забытые способы умножения, ничуть не хуже, например способ решётки.
Этим способом пользовались ещё в древности, в Средние века он широко распространился на Востоке, а в эпоху Возрождения — в Европе. Способ решётки именовали также индийским, мусульманским или «умножением в клеточку». А в Италии его называли «джелозия», или «решётчатое умножение» (gelosia в переводе с итальянского — «жалюзи», «решётчатые ставни»). Действительно, получавшиеся при умножении фигуры из чисел имели сходство со ставнями-жалюзи, которые закрывали от солнца окна венецианских домов.
Суть этого нехитрого способа умножения поясним на примере: вычислим произведение 296 × 73. Начнём с того, что нарисуем таблицу с квадратными клетками, в которой будет три столбца и две строки, — по количеству цифр в множителях. Разделим клетки пополам по диагонали. Над таблицей запишем число 296, а с правой стороны вертикально — число 73. Перемножим каждую цифру первого числа с каждой цифрой второго и запишем произведения в соответствующие клетки, располагая десятки над диагональю, а единицы под ней. Цифры искомого произведения получим сложением цифр в косых полосах. При этом будем двигаться по часовой стрелке, начиная с правой нижней клетки: 8, 2 + 1 + 7 и т.д. Запишем результаты под таблицей, а также слева от неё. (Если при сложении получится двузначная сумма, укажем только единицы, а десятки прибавим к сумме цифр из следующей полосы.) Ответ: 21 608. Итак, 296 x 73 = 21 608. Способ решётки ни в чём не уступает умножению столбиком. Он даже проще и надёжнее, при том, что количество выполняемых действий в обоих случаях одинаково. Во-первых, работать приходится только с однозначными и двузначными числами, а ими легко оперировать в уме. Во-вторых, не требуется запоминать промежуточные результаты и следить за тем, в каком порядке их записывать. Память разгружается, а внимание сохраняется, поэтому вероятность ошибки уменьшается. К тому же способ решётки позволяет быстрее получить результат. Освоив его, вы сможете убедиться в этом сами.
Почему способ решётки приводит к правильному ответу? В чём заключается его «механизм»? Разберёмся в этом с помощью таблицы, построенной аналогично первой, только в этом случае множители представлены как суммы 200 + 90 + 6 и 70 + 3. Как видим, в первой косой полосе стоят единицы, во второй — десятки, в третьей — сотни и т.д. При сложении они дают в ответе соответственно число единиц, десятков, сотен и т.д. Дальнейшее очевидно:
Иначе говоря, в соответствии с законами арифметики произведение чисел 296 и 73 вычисляется так:296 x 73 = (200 + 90 + 6) x (70 + 3) = 14 000 + 6300 + 420 + 600 + 270 + 18 = 10 000 + (4000 + 6000) + (300 + 400 + 600 + 200) + (70 + 20 + 10) + 8 = 21 608.
Палочки Непера
Умножение способом решётки лежит в основе простого и оригинального счётного прибора — палочек Непера. Его изобретатель Джон Непер, шотландский барон и любитель математики, наряду с профессионалами занимался усовершенствованием средств и методов вычисления. В истории науки он известен, прежде всего, как один из создателей логарифмов.
Прибор состоит из десяти линеек, на которых размещена таблица умножения. В каждой клетке, разделённой диагональю, записано произведение двух однозначных чисел от 1 до 9: в верхней части указано число десятков, в нижней — число единиц. Одна линейка (левая) неподвижна, остальные можно переставлять с места на место, выкладывая нужную числовую комбинацию. При помощи палочек Непера легко умножать многозначные числа, сводя эту операцию к сложению.
Например, чтобы вычислить произведение чисел 296 и 73, нужно умножить 296 на 3 и на 70 (сначала на 7, затем на 10) и сложить полученные числа. Приложим к неподвижной линейке три другие — с цифрами 2, 9 и 6 наверху (они должны образовать число 296). Теперь заглянем в третью строку (номера строк указаны на крайней линейке). Цифры в ней образуют уже знакомый нам набор. Складывая их, как в способе решётки, получим 296 x 3 = 888. Аналогично, рассмотрев седьмую строку, найдём, что 296 x 7 = 2072, тогда 296 x 70 = 20 720. Таким образом, 296 x 73 = 20 720 + 888 = 21 608.
Палочки Непера применялись и для более сложных операций — деления и извлечения квадратного корня. Этот счётный прибор не раз пытались усовершенствовать и сделать более удобным и эффективным в работе. Ведь в ряде случаев для умножения чисел, например с повторяющимися цифрами, нужны были несколько комплектов палочек. Но такая проблема решалась заменой линеек вращающимися цилиндрами с нанесённой на поверхность каждого из них таблицей умножения в том же виде, как её представил Непер. Вместо одного набора палочек получалось сразу девять.
Подобные ухищрения в самом деле ускоряли и облегчали расчёты, однако не затрагивали главный принцип работы прибора Непера. Так способ решётки обрел вторую жизнь, продлившуюся ещё несколько столетий.
Машина Шиккарда
Учёные давно задумывались над тем, как переложить непростую вычислительную работу на механические устройства. Первые успешные шаги в создании счётных машин удалось осуществить только в XVII столетии. Считается, что раньше других подобный механизм изготовил немецкий математик и астроном Вильгельм Шиккард. Но по иронии судьбы об этом знал лишь узкий круг лиц, и столь полезное изобретение более 300 лет не было известно миру. Поэтому оно никак не повлияло на последующее развитие вычислительных средств. Описание и эскизы машины Шиккарда были обнаружены всего полвека назад в архиве Иоганна Кеплера, а чуть позже по сохранившимся документам была создана её действующая модель.
По сути, машина Шиккарда представляет собой шестиразрядный механический калькулятор, выполняющий сложение, вычитание, умножение и деление чисел. В ней три части: множительное устройство, суммирующее устройство и механизм для сохранения промежуточных результатов. Основой для первого послужили, как нетрудно догадаться, палочки Непера, свёрнутые в цилиндры. Они крепились на шести вертикальных осях и поворачивались с помощью специальных ручек, расположенных наверху машины. Перед цилиндрами располагалась панель с девятью рядами окошек по шесть штук в каждом, которые открывались и закрывались боковыми задвижками, когда требовалось увидеть нужные цифры и скрыть остальные.
В работе счётная машина Шиккарда очень проста. Чтобы узнать, чему равно произведение 296 x 73, нужно установить цилиндры в положение, при котором в верхнем ряду окошек появится первый множитель: 000296. Произведение 296 x 3 получим, открыв окошки третьего ряда и просуммировав увиденные цифры, как в способе решётки. Точно так же, открыв окошки седьмого ряда, получим произведение 296 x 7, к которому припишем справа 0. Остаётся только сложить найденные числа на суммирующем устройстве.
Придуманный некогда индусами быстрый и надёжный способ умножения многозначных чисел, много веков применявшийся при расчётах, ныне, увы, забыт. А ведь он мог бы выручить нас и сегодня, если бы под рукой не оказалось столь привычного всем калькулятора.
www.nkj.ru