Кислоты и основания, классы химических соединений. Обычно кислотами называют вещества, содержащие водород (HCl, HNO3, h3SO4, Ch4COOH и т.д.) и диссоциирующие в воде с образованием ионов Н+ (точнее, ионов гидроксония h4O+). Присутствие этих ионов обусловливает характерный острый вкус водных растворов кислот, а также их способность изменять окраску индикаторов химических. По числу отщепляющихся протонов различают кислоты одноосновные (например, азотная HNO3, соляная HCl, уксусная Ch4COOH), двухосновные (серная h3SO4, угольная h3CO3), трехосновные (ортофосфорная h4PO4). Чем больше ионов гидроксония присутствует в водном растворе кислоты, т. е. чем выше степень диссоциации последней, тем кислота сильнее. Кислоты, полностью диссоциированные в разбавленных растворах, называют сильными. К слабым относятся кислоты с константой ионизации (характеризующей степень диссоциации кислоты в растворе, например, при 25 °С) ниже 10-5 (уксусная 1,8?10-5, синильная 7,9?10-10). Диссоциация многоосновных кислот происходит в несколько ступеней, каждая из которых имеет свою константу ионизации. Например, константа ионизации h4PO4 на Н+ и h3PO-4 7?10-3, h3PO4- на Н+ и HPO42- 8?10-8, HPO42- на Н+ и PO43- 4,8?10- 13. Об органических кислотах см. также Карбоновые кислоты. Основаниями обычно называют вещества, содержащие гидроксильную группу OH [КОН, NaOH, Ca (OH)2 и др.] и способные диссоциировать в водном растворе с образованием гидроксильных ионов OH-. Большинство оснований нерастворимо в воде. Растворимые в воде основания называют щелочами. Присутствием ионов OH- и объясняется характерный щелочной вкус растворов щелочей, а также их способность изменять окраску индикаторов. Основания с 1, 2, 3 гидроксильными группами называются соответственно одно-, двух-, трёхкислотными. Не полностью диссоциирующие при растворении в воде основания называются, как и кислоты, слабыми. К сильным основаниям относятся гидроокиси калия KOH, натрия NaOH, бария Ba (OH)3. О принципах установления названий К. и о. см. Номенклатура неорганических соединений. Понятия К. и о. возникли ещё на заре развития химии. В 1778 французский химик А. Л. Лавуазье попытался объяснить особенности свойств кислот содержанием кислорода. Несостоятельность такого мнения стала очевидной, когда оказалось, что многие кислородсодержащие вещества (окислы металлов, щелочи, соли и др.) не проявляют кислотных свойств, а ряд типичных кислот (соляная, синильная, плавиковая и др.), как показали английский учёный Г. Дэви (1810) и французский учёный Ж. Л. Гей-Люссак (1814), не содержат кислорода. Шведский химик И. Я. Берцелиус (1812—19) видел причину кислотных и основных свойств в электрической природе окислов: электроотрицательные окислы неметаллов (и некоторых металлов — хрома, марганца) он считал кислотами, а электроположительные окислы металлов — основаниями. В 1814 Г. Дэви предложил признать носителем кислотных свойств водород, входящий в состав всех известных тогда соединений, обладающих кислотными свойствами, а немецкий химик Ю. Либих (1833) внёс существенное уточнение, что кислотные свойства вещества обусловлены не всеми содержащимися в нём атомами водорода, а лишь теми из них, которые могут замещаться металлом с образованием солей. После появления (1884—87) теории электролитической диссоциации шведского учёного С. Аррениуса кислотами стали называть соединения, при диссоциации которых в водном растворе образуются ионы водорода Н+, а основаниями — соединения, диссоциирующие с отщеплением иона гидроксила OH-. По мере развития теории растворов стало ясно, что важную роль в процессе электролитической диссоциации веществ играет взаимодействие как самих веществ, так и продуктов их диссоциации с растворителем. Было выяснено также, что ион Н+ не может находиться в растворе в свободном виде: вследствие очень высокой плотности заряда он прочно соединяется с молекулами растворителя (сольватируется) и реально существует в виде сольватного иона, в водных растворах — иона гидроксония, который и является носителем кислотных свойств. Определение понятий К. и о. на основе теории электролитической диссоциации часто вполне достаточно для практических целей. Однако, как было установлено уже давно, многие соединения, проявляющие типичные свойства К. и о., не содержат ни водорода ни групп ОН. Кроме того, одно и то же вещество нередко в одних реакциях ведёт себя как кислота, а в других — как основание (см. Амфотерность). Способность вещества реагировать как кислота или основание является, таким образом, не абсолютным свойством этого вещества, а выражается в конкретных химических реакциях, относимых к классу кислотно-основных. В таких реакциях одно из взаимодействующих веществ играет роль кислоты по отношению к другому веществу, играющему роль основания. Итак, способность вещества реагировать в качестве кислоты или основания является его функциональной характеристикой. Было предпринято множество попыток разработать единую теорию, которая позволила бы, с учётом указанных обстоятельств, однозначно относить данное вещество к классу кислот или оснований. Однако до сих пор единого критерия для этого не найдено. Наиболее распространены две концепции — датского физико-химика И. Н. Брёнстеда и американского физико-химика Г. Н. Льюиса (1923). Брёнстед относит к классу кислот водородсодержащие вещества, отдающие при реакциях положительные ионы водорода — протоны (т. н. протонные, или брёнстедовские, кислоты), а к классу оснований — вещества, присоединяющие протоны. Функции К. и о., по Брёнстеду, могут выполнять как нейтральные молекулы, так и ионы. Химическая реакция, при которой происходит передача протона от кислоты к основанию: АН+В- U А-+ВН (где АН — кислота, а В- — основание), называется кислотно-основной, или протолитической. Поскольку протолитические реакции обратимы, причем в обратной реакции, так же как и в прямой, происходит передача протона, продукты прямой реакции также выполняют друг по отношению к другу функцию К. и о. (так называемые сопряженные К. и о.), то есть ВН — кислота, а А- — основание. Например, в реакции: h3SO4 + h3O U HSO-4 + h4O+ кислотами являются h3SO4, и h4O+, а HSO-4 и h3O — основания. Концепция Брёнстеда дает четкий критерий для отнесения химических реакций к типу кислотно-основных, позволяет выражать в количественной форме основные характеристики протолитических равновесий и расположить водородсодержащие вещества в ряд по возрастанию их способности отдавать протон, то есть по их кислотности. Эти достоинства теории протолитических равновесий обусловили ее предсказательную силу и обеспечили широкое использование брёнстедовских представлений в химической практике. В то же время концепции Брёнстеда свойственна ограниченность, выражающаяся в том, что, связывая кислотные свойства вещества с наличием в его составе водорода, она все же оставляет в стороне большое число веществ кислотного характера, не содержащих водорода. К таким веществам, получившим в химии название апротонных, или льюисовских, кислот, относятся электронно-ненасыщенные соединения, например галогениды бора, алюминия и олова, окислы некоторых металлов и т.д. Согласно концепции Льюиса, восполняющей в какой-то степени вышеуказанный пробел, кислотой называют вещество, присоединяющее при химической реакции пару электронов, а основанием — вещество, отдающее пару электронов. Результатом является восполнение электронной ненасыщенности молекулы кислоты за счет электронов основания, а также возникновения нового соединения (соли) с устойчивой электронной оболочкой (в частности, октетом) и донорно-акцепторной связью. Важная особенность кислотно-основных реакций, по Льюису, состоит в обобществлении электронной пары основания. Этим они отличаются от окислительно- восстановительных реакций, в ходе которых молекулы окислителя полностью отбирают по одному или несколько электронов у молекул восстановителя; никаких обобществленных орбит при этом не возникает. В отличие от Брёнстеда, Льюис связывает кислотно-основные свойства не с наличием определенных химических элементов (в частности, водорода), а исключительно со строением внешних электронных оболочек атомов. В то же время между обеими концепциями имеется внутренняя связь, основанная на том, что для иона Н+, так же как и для льюисовских кислот, характерно сильное сродство к электронной паре. Кроме двух рассмотренных концепций К и о., известны некоторые другие, которые не получили, однако, столь широкого распространения. Как брёнстедоские, так и льюисовские теории К. и о. широко применяются на практике. Изменение кислотности или основности среды часто используют с целью увеличения скорости реакций и изменения механизма взаимодействия. В этом состоит сущность кислотно-основного катализа, широко используемого в химической промышленности; при этом важно, что брёнстедовские и льюисовские кислоты оказывают во многих случаях сходное каталитическое действие. Широкое применение получили кислотно-основные процессы в химической промышленности (нейтрализация, гидролиз, травление металлов и т.д.). Многие кислоты (серная, азотная, соляная, ортофосфорная и др.) и щёлочи (едкое кали, едкий натр и др.) являются основными продуктами химического производства и используются в качестве исходных веществ в важнейших отраслях химической промышленности. Многообразные — структурные и динамические — функции К. и о. выполняют в живых организмах, принимая участие во многих биохимических процессах. Как правило, эти процессы очень чувствительны к кислотности или основности среды (см. Водородный показатель, Кислотно-щелочное равновесие). Направленное воздействие К. и о. используется в медицине. Так, разбавленные растворы соляной кислоты употребляются для усиления секреции желудка, борной — для дезинфицирующих и вяжущих полосканий и т.д. В то же время при попадании в организм концентрированных К. и о. возможны сильные ожоги внутренних органов, падение сердечной деятельности и т.д., приводящие в ряде случаев к гибели организма.
scholarum.ru
Реферат на тему:
Неоргани́ческие кисло́ты — неорганические вещества, молекулы которых при электролитической диссоциации в водной среде отщепляют протоны, в результате чего в растворе образуются гидроксоний-катионы Н3О+ и анионы кислотных остатков А:
НА + Н2O ↔ Н3О+ + А-Исключение составляет борная кислота h4BO3, которая акцептирует ионы ОН−, в результате чего в водном растворе создается избыток гидроксоний-катионов:
h4BO3 + 2Н2O ↔ [B(OH)4]− + h4O+Число отщепляемых от молекулы кислоты протонов называется основностью кислоты. Теории кислот и оснований (Брёнстеда, Льюиса и др.) кроме указанных выше относят к кислотам многие ионные соединения. Общее свойство кислот — способность реагировать с основаниями и основными оксидами с образованием солей, например:
HNO3 + NaOH → NaNO3 + h3O 2HCl + CaO → CaCl2 + h3OКислоты неорганические подразделяют на кислородсодержащие (оксокислоты) общей формулы НnЭОm, где Э — кислотообразующий элемент, и бескислородные HnХ, где Х — галоген, халькоген или неорганический бескислородный радикал (CN, NCS, N3 и др.). Оксокислоты характерны для многих химических элементов, особенно для элементов в высоких (+3 и выше) степенях окисления.
Атомы Н в оксокислотах обычно связаны с кислородом. Если в оксокислоте имеются атомы Н, не связанные с кислородом (например, два атома Н, образующие связи Р-Н в Н3РО2), то они не отщепляются в водном растворе с образованием Н3O+ и не принимают участия в реакции кислот с основаниями. Некоторые кислоты известны в двух таутомерных формах, различающихся положением атома Н, например.:
Молекулы многих кислот содержат более одного атома кислотообразующего элемента Э. Очень многочисленны изополикислоты, содержащие атомы Э, связанные через атом кислорода, причем фрагменты -Э-О-Э- могут образовать как открытые цепи (например, в Н4Р2О7), так и циклические структуры [например, в (НРО3)n]. В некоторых кислотах содержатся цепи из одинаковых атомов, например, цепи -S-S- в политионовых кислотах h3SnO6 или сульфанах h3Sn. Известны гетерополикислоты, имеющие фрагменты -Э-О-Э'-, где Э и Э'-атомы двух разных элементов, например: h5[SiW12O40]×14h3O. Существует множество комплексных кислот, например: h3[SiF6], H[AuCl4], h5[Fe(CN)6]. Кислоты аналогичные оксокислотам, но содержащие вместо атома (атомов) кислорода серу, называются тиокислотами, например Н2S2O3, Н3AsS3. Пероксокислоты, например h3S2O8, имеют пероксогруппы -О-О-.
Константу равновесия реакции (1) называют константой кислотности Ka. Многоосновные кислоты диссоциируют ступенчато, каждой ступени отвечает своя Кa, причем всегда Ka(1)"Ka(2) ориентировочно каждая последующая Ka меньше предыдущей на 5 порядков. По значению рК1 = -lgKa(1) Неорганические кислоты подразделяют на очень слабые, слабые, средней силы, сильные, очень сильные. Согласно правилу Полинга, для очень слабых оксокислот НnЭOm разность m — n = 0, для слабых, сильных и очень сильных эта разность составляет соответственно 1, 2 и 3. Данная закономерность обусловлена сдвигом электронной плотности от связи Н-О к связям Э = O (содержащим атом О с большим значением электроотрицательности) и делокализацией электронной плотности в анионе.
Для характеристики кислотности веществ в неводных средах используют функцию кислотности Гаммета Н0. Известны жидкости, для которых Н0 более отрицательна, чем для концентрированных водных растворов очень сильных кислот, таких, как HNO3, Н2SO4. Эти жидкости называются сверхкислотами. Примеры: 100%-ная h3SO4 (H0 = −12), безводная фторсульфоновая кислота HSO3F (H0 = −15), смесь HF и SbF5, (H0 = −17), 7%-ный раствор SbF5 в HSO3F (Н0 = −19,4). Эквимолярную смесь HSO3F и SbF5 называют «магической кислотой». Сверхкислотность обусловлена исключительной слабостью взаимодействия с протоном соответствующих анионов (HSO4−, SbF6− и др.). В среде сверхкислот протонируются вещества, обычно не проявляющие основных свойств, в частности углеводороды. Это явление используют на практике, преимущественно в органического синтезе (алкилирование по Фриделю — Крафтсу, гидрирование нефти и др.).
Многие оксокислоты (HNO3, HMnO4, Н2Cr2O7, HClO и др.) — сильные окислители. Окислительная активность этих кислот в водном растворе выражена сильнее, чем у их солей. Все пероксокислоты — сильные окислители. Неорганические кислоты всегда менее термически устойчивы, чем их соли, образованные активными металлами (Na, К и др.). Некоторые кислоты (Н2СО3, Н2SO3, HClO и др.) невозможно выделить в виде индивидуальных соединений эти кислоты существуют только в растворе.
1. взаимодействие оксидов (ангидридов) с водой, например:
Р2O5 + 3Н2O → 2Н3РО42. вытеснение более летучей кислоты из ее соли менее летучей кислотой, например:
CaF2 + h3SO4 → CaSO4 + 2HF3. гидролиз галогенидов или солей, например:
PI3 + 3Н2O → Н3РО3 + 3HI Al2Se3 + 6h3O → 2Al(ОН)3 + 3h3Seзамена катионов растворенных солей на Н+ с помощью катионита. Существует также множество др. методов получения кислот.
Кислоты применяют в промышленности и в научных исследованиях. В больших количествах производят серную кислоту, азотную кислоту, фосфорную кислоту, соляную кислоту и др.
wreferat.baza-referat.ru
Доклад по химии на тему:
«Серная кислота и её применение»
Серная кислота и её применение
Серная кислота (h3SO4) - прозрачная, бесцветная или коричневая маслянистая жидкость, обладающая высокой коррозивной активностью. Это очень важный химический продукт, используемый по всему миру. Например, Великобритания в год производит более одного миллиона тонн серной кислоты.
Серную кислоту получают путем сжигания сульфатов, чтобы выделить диоксид серы, а в последствии под воздействием катализаторов и высокой температуры получают триоксид серы. В зависимости от дальнейшего использования кислоту оставляют в концентрированном виде, либо разбавляют водой - это контактный способ.
Серная кислота в жизнедеятельности человека применяется во многих сферах: при производстве каучука, удобрений, моющих средств, красителей, некоторых лекарств и при нефтепереработке. С недавних времен серную кислоту стали использовать в развитых странах при сборе урожая картофеля: кислота высушивает побеги, останавливает нежелательный дальнейший рост, расщепляет большую часть почвы, тем самым упрощается процесс извлечения картофеля из земли машинным способом.
Дома основными источниками кислоты являются автомобильные свинцово-кислотные батареи (аккумуляторы), которые мы приносим в квартиру для подзарядки. Также кислота часто содержится в бытовых чистящих веществах, используемых для чистки канализации и удаления засоров в трубах. В небольших количествах серная кислота содержится в клее, зубной пасте (силикатах), в продуктах в виде лимонной и молочной кислоты, в некоторых лекарствах.
Стоит упомянуть тот факт, что серная кислота не сохраняется в окружающей среде, быстро нейтрализуется. Однако, высококонцентрированный раствор серной кислоты опасен для человека: при контакте с кожей вызывает сильные ожоги, а при попадании в полость рта, горло, желудок может вызвать летальный исход. Контакт глаз с серной кислотой может привести к слепоте. Чем быстрее пострадавший промоет рану большим количеством воды или слабым содовым раствором, тем больше шансов сохранить пораженный кожный покров. При разлитии серной кислоты нельзя дышать её парами - можно повредить легкие, горло и даже зубы. Особенно страдают от паров кислоты астматики.
Так как серная кислота воздействует точечно, то есть в месте соприкосновения с объектом, то беременные женщины могут не переживать за плод, если, скажем, получили небольшой ожог руки.
Серная кислота (h3SO4) - прозрачная, бесцветная или коричневая маслянистая жидкость, обладающая высокой коррозивной активностью. Это очень важный химический продукт, используемый по всему миру. Например, Великобритания в год производит более одного миллиона тонн серной кислоты.
Серную кислоту получают путем сжигания сульфатов, чтобы выделить диоксид серы, а в последствии под воздействием катализаторов и высокой температуры получают триоксид серы. В зависимости от дальнейшего использования кислоту оставляют в концентрированном виде, либо разбавляют водой - это контактный способ.
Серная кислота в жизнедеятельности человека применяется во многих сферах: при производстве каучука, удобрений, моющих средств, красителей, некоторых лекарств и при нефтепереработке. С недавних времен серную кислоту стали использовать в развитых странах при сборе урожая картофеля: кислота высушивает побеги, останавливает нежелательный дальнейший рост, расщепляет большую часть ботвы, тем самым упрощается процесс извлечения картофеля из земли машинным способом.
Дома основными источниками кислоты являются автомобильные свинцово-кислотные батареи (аккумуляторы), которые мы приносим в квартиру для подзарядки. Также кислота часто содержится в бытовых чистящих веществах, используемых для чистки канализации и удаления засоров в трубах. В небольших количествах серная кислота содержится в клее, зубной пасте (силикатах), в продуктах в виде лимонной и молочной кислоты, в некоторых лекарствах.
Стоит упомянуть тот факт, что серная кислота не сохраняется в окружающей среде, быстро нейтрализуется. Однако, высококонцентрированный раствор серной кислоты опасен для человека: при контакте с кожей вызывает сильные ожоги, а при попадании в полость рта, горло, желудок может вызвать летальный исход. Контакт глаз с серной кислотой может привести к слепоте. Чем быстрее пострадавший промоет рану большим количеством воды или слабым содовым раствором, тем больше шансов сохранить пораженный кожный покров. При разлитии серной кислоты нельзя дышать её парами - можно повредить легкие, горло и даже зубы. Особенно страдают от паров кислоты астматики.
Так как серная кислота воздействует точечно, то есть в месте соприкосновения с объектом, то беременные женщины могут не переживать за плод, если, скажем, получили небольшой ожог руки.
infourok.ru