Реферат - Принтеры, виды, характеристики - файл 1.doc. Принтеры реферат


Реферат на тему - Реферат - Принтеры, виды, характеристики

Реферат - Принтеры, виды, характеристики (341 kb.)Доступные файлы (1):
1.doc341kb.04.12.2011 10:32
содержание

1.doc

Реферат на тему:

Принтеры, принцип действия, сравнительная характеристика.

План:Введение.

  1. Матричные принтера.
  2. Струйные принтера.
  3. Лазерные принтера.
  4. Термопринтеры.
  5. Дупликаторы.
Заключение.

Литература.

Введение.Персональный компьютер представляет собой вполне самостоятельное устройство, в котором есть все необходимое для автономной жизни. Хотя разговоры о "безбумажной" технологии ведутся уже довольно давно, нормальную работу с компьютером пока еще трудно представить без использования печатающего устройства. Зачастую нужна копия на бумаге того или иного документа, рисунка и т. п., имеющихся в компьютере в файле. Различаются принтеры прежде всего по способу печати. Широко распространены несколько видов принтеров : матричные, струйные, лазерные, светодиодные. ^ .Матричные принтеры - наиболее распространенный тип принтеров. Идея матричных печатающих устройств заключается в том, что требуемое изображение воспроизводится из набора отдельных точек, наносимых на бумагу. В этом типе принтеров используется для печати печатающая головка (ПГ), которая содержит одни или два ряда тонких игл. Головка устанавливается на ракетке и движется вдоль печатаемой строки. При этом иголки в нужный момент ударяют через красящую ленту по бумаге. Это обеспечивает формирование на бумаге символов и изображений. В дешевых моделях принтеров используются ПГ с 9 иглами. Качество печати в этих принтерах улучшается при печати информации не в один, а в два или четыре прохода ПГ вдоль печатаемой строки. Более качественная и быстрая печать обеспечивается 24-иголочными принтерами. Однако эти принтеры более дороги по сравнению с 9-иголочными, менее надежны .

Для перемещения красящей ленты используется передаточный механизм, использующий движение каретки. За перемещение каретки отвечает шаговой двигатель. Еще один шаговой двигатель отвечает за перемещение бумагоопорного валика. Скорость печати матричных принтеров невысока. В зависимости от выбранного качества печати и модели принтера скорость печати составляет от 10 до 60 секунд на страницу.

2. Струйные принтера.

Методу струйной печати уже почти сто лет. Лорд Рейли , лауреат нобелевской премии по физике, сделал свои фундаментальные открытия в области распада струй жидкости и формирования капель еще в прошлом веке, датой рождения технологии струйной печати можно считать только 1948 год. Именно тогда шведская фирма Siemens Elema подала патентную заявку на устройство, работающее как гальванометр, но оборудованное не измерительной стрелкой , а распылителем, с помощью которого регистрировались результаты измерений.

И даже теперь, спустя почти полвека, эта гениально простая система печати применяется, например, в медицинских приборах . Правда, жидкостный осциллограф способен печатать лишь кривые, а не тексты и графики. Эта эффективная схема была усовершенствована , и появился новый струйный принтер , функционирующий по принципу непрерывного распыления красителя или печати под высоким давлением.

Разработчики воспользовались закономерностью, выявленной лордом Рейли : струя жидкости стремится распасться на отдельные капли . Нужно только чуть подправить случайный процесс распадения струи, накладывая с помощью пьезоэлектрического преобразования на струю красителя , выбрасываемую под высоким давлением (до 90 бар), высокочастотные колебания давления.

Таким способом может выбрасываться до миллиона капель в секунду. Их размеры зависят от геометрической формы сопел-распылителей и составляют всего лишь несколько микрон, а скорость, с которой они долетают до бумаги, достигает 40 м/с.

Благодаря высокой скорости полета капель допускается использовать поверхности с сильными неровностями и в зависимости от требований к качеству печати размещать их на расстоянии 1-2 см от сопла-распылителя. В результате можно наносить маркировку, например данные о сроке годности товара на картонные коробки, бутылки, консервные банки, яйца или кабели. Эту технологию печати нетрудно узнать по точкам, кажущимся неравномерными и как бы обтрепанными.

С начала 70-х годов необычайно активизировалась исследовательская деятельность, направленная на создание систем без недостатков, свойственных системам печати под высоким давлением. Первое решение, найденное специалистами - печатающие головки с пьезоэлектрическими преобразователями, испускающие по запросу отдельные капли красителя.

^

Первые заявки на регистрацию изобретения систем струйной печати с пьезоэлектрическими исполнительными механизмами были поданы в 1970 и 1971 гг. На протяжении нескольких лет различные фирмы и институты проводили фундаментальные исследования, пока, наконец, компании Siemens не удалось облечь этот принцип в приемлемую для рынка форму. В 1977 г. Был продемонстрирован первый струйный принтер с дозированным выбросом красителя. Этот принтер, оснащенный двенадцатью соплами-распылителями и печатающий почти бесшумно со скоростью 270 символов в секунду, произвел революцию даже в кругах специалистов.

Siemens в качестве электромеханического преобразователя использовала пьезоэлектрическую трубочку, вмонтированную в канал из литьевой смолы.. Все каналы заканчиваются пластиной с калиброванными отверстиями для распыления, расположенной на передней стороне устройства. Передача электроэнергии и красителя производится исключительно посредством колебаний давления, распространяющихся в канале в соответствии с законами акустики. Колебания, достигающие конца канала, отражаются там с инверсией фазы, т.е. в этом месте колебание с пониженным давлением и наоборот.

Пьезопластины.

В начале 1985 г. компания Epson представила первый из своих пьезопланарных струйных принтеров.

Вместо пьезоэлектрических трубочек, как у Siemens, на печатающих головках Epson, выполненных из структурированных стеклянных пластинок, укреплены небольшие пьезопластинки. Если к ним приложить электрическое напряжение, их диаметр чуть-чуть изменится, но и этого будет достаточно, чтобы они согнулись вместе с пассивной стеклянной многослойной подложкой подобно биметаллической пластине, что приведет к возникновению в канале красителя выталкиваются тем же способом, что и в печатающих головках с пьезотрубочками.

В 1987 г. компания Dataproducts предложила другой принцип использования пьезоэлектриков для струйной печати, основанный на применении пластинчатого пьезопреобразователя. В последующие годы этот метод оставался сравнительно малоизвестным причем не столько из-за конструкции на базе преобразователя, сколько из-за жидких восковых чернил, которые применялись во всех струйных принтерах с пластинчатым пьезопреобразователем производства Epson

Согласно этому методу пьезопреобразователь, представляющий собой длинную плоскую пластинку (ламель), размещается позади небольшого резервуара с красителем. При воздействии на ламель импульсов напряжения ее длина немного меняется, что приводит к всплескам давления внутри резервуара, которые, в свою очередь, выталкивают капли из сопла-распылителя.

Пластинчатые пьезопреобазователи сочетают в себе преимущества как плоских, так и трубчатых систем высокую частоту распыления и компактную конструкцию. Сегодня на печатающие головки с пьезоламелями делают ставку такие фирмы, как Dataproduts, Tektronix и Epson.

В начале 1994 года Epson продемонстрировал пьезотехнологию MACH (Multilayer Actuator Head - головка с многоуровневым исполнительных механизмом). Тем не менее и в пьезоэлектрических печатающих головках MACH-головках применяются пьезоламели. Правда, компании Epson удалось изготовить пьезоламели одного ряда сопел-распылителей в едином блоке (Multilayer). Таким образом оказалось возможным еще уменьшить размеры печатающей головки, разместить преобразователи, каналы и сопла-распылители с меньшей дистанцией и одновременно снизить производственные расходы.

^

В 1985 году сенсацию вызвал Thinkjet компании Hewlett-Packard - первый струйно-пузырьковый термопринтер. Метод пузырьково-струйной термопечати за несколько лет покорил рынок (количество проданных струйных термопринтеров составило 10 млн.)

В чем же революционность этой технологии? Как часто бывает в подобных случаях, достижением стало сокращение производственных расходов. Если пьезоэлектрические печатающие механизмы приходилось с большим или меньшим трудом собирать из множества отдельных деталей, то пузырьково-струйные печатающие головки, представляющие собой кристаллы на кремниевых подложках, изготавливались по тонкослойной технологии сотнями.

При тонкослойной технологии применяются в принципе те же производственные процессы, что и при изготовлении интегральных схем. Каналы подачи красителя, сопла-распылители, исполнительные механизмы и токоподводящие шины возникают при поочередном нанесении слоев на подложки, например способом ионно-лучевого напыления, и последующем структурировании этих слоев.

Таким образом, по завершении процесса производства, насчитывающего более сотни шагов, на одной подложке появляется очень много термопечатающих элементов. Все структуры должны быть выполнены с точностью до тысячной доли миллиметра. Кроме того, малейшее загрязнение при производстве приводит к отказу. По этой причине пузырьково-струйные печатающие элементы изготавливаются в чистых помещениях и с применением машин, типичных для полупроводниковой промышленности.

Поскольку головки струйно-пузырьковой термопечати изготавливаются по тому же принципу, что и интегральные микросхемы, напрашивается мысль об интеграции последних в печатающие кристаллы. И первый шаг в этом направлении сделала фирма Canon, встроив в печатающие головки своих принтеров транзисторную матрицу. Примеру Canon последовала компания Xerox, выпустившая в 1993 году модель пузырьково-струйного принтера с головкой, оборудованной 128 распылителями, и полностью интегрированным последовательно-параллельным преобразователем.

Функционирование пузырьково-струйного сопла-распылителя:

Сначала сильный импульс напряжения длительностью 3-7 мкс подается на крохотный нагревательный элемент, который мгновенно накаляется до 500 гр. Цельсия. На его поверхности температура превышает 300 гр. Цельсия. Мощность нагрева поверхности настолько велика, что при увеличении длительности импульса напряжения всего лишь на несколько микросекунд нагревательный элемент моментально бы разрушился.

Сразу же в тонкой пленке над нагревательным элементом начинают кипеть чернила, и через 15 мкс образуется закрытый пузырек пара высокого давления (до 10 бар). Он выталкивает каплю чернил из сопла-распылителя, при чем скорость полета капли достигает 10 м/с и более. Через 40 мкс пузырек, соединившись с атмосферой, опять опадает, однако пройдет еще 200 мкс, пока новые чернила под действием капиллярных сил не будут засосаны из резервуара.

С самого начала пузырьково-струйные печатающие головки делились на две группы. Компания Canon, изобретатель системы, предпочла вариант Edlgeshooter. Почти одновременно фирма Hewlett-Packard разработала головку типа Sidechooter, которую теперь изготавливает и компания Olivetti.

Головка Edgeshooter, как становится ясно уже из названия, разбрызгивает чернильные капли "за угол", т.е. перпендикулярно к направлению образования пузырьков. В головке Sideshooter, где пластина с соплами-распылителями находится поверх нагревательных элементов и каналов подачи чернил, пузырьки и капли движутся в одном направлении. Поскольку края сопел-распылителей в головках типа Sideshooter сделаны из однородного, а не из различных материалов, как в Edgeshooter, процесс изготовления распылителей с отверстиями определенного размера для Sideshooter значительно проще, чем для головок Edgeshooter. Кроме того, приходится учитывать неодинаковое смачивание разнородной поверхности головки Edgeshooter.

Требования к качеству чернил для любой системы струйной термопечати очень высоки, значительно выше, чем пьезосистемах. Принцип функционирования и высокие температуры обусловливают применение только смешанных растворимых красителей на водяной основе.

Красители должны соответствовать целому ряду требований:

- быть совместными с материалами, из которых сделан печатающий механизм;

- не образовывать отложений в каналах и распылителях, а также не расслаиваться;

- храниться в течении длительного времени;

- обладать определенными показателями плотности, вязкости и поверхностного натяжения при температурах от 10 до 40 гр. Цельсия;

- ну служить питательной средой для образования бактерий и водорослей;

- не содержать ядовитых или канцерогенных веществ и не возгораться.

К тому же красители для струйной термопечати должны образовывать пузырьки пара без отложения осадков и выдерживать кратковременное нагревание до 350 гр. Цельсия.

И так мы видим что способ струйной печати, зародившийся около 50 лет назад, - относительно молодая технология. Вполне вероятно, что струйные принтеры завоюют массовый рынок, вытесняя таким образом матричные принтеры. Если же разработчикам удастся повысить разрешение и скорость печати струйных принтеров, то изготовителям лазерных принтеров придется всерьез побороться за место на рынке.

До сих пор никакой другой метод печати не порождал такого разнообразия вариантов, как струйная печать, при чем не подлежит сомнению что возможность этой технологии еще долго не будет исчерпана. 3. Лазерные принтеры Лазерные принтеры, как и копировальные аппараты используют принцип сухой ксерографии, в основе которого лежит напыление порошка на материал с последующим запеканием.

Как же устроен обычный лазерный принтер? Впрочем до того, как перейти непосредственно к принтерам рассмотрим вначале копировальные аппараты, поскольку на их основе строения были сделаны лазерные принтеры.

Функционально аппарат состоит из следующих частей (если не рассматривать сканирующую часть):

  1. Фоторецептор (барабан)
  2. Магнитный вал
  3. Ракельный нож
  4. Коротрон заряда
  5. Вал переноса (коротрон переноса)
  6. Коротрон отсечения
  7. Бункер с тонером
  8. Бункер отработки
  9. Печка (фьюзер)
Фоторецептор представляет собой специальный материал (обычно это селен), нанесенный на металлическую основу. Обычно он выполняется в виде вала, поэтому иногда его называют барабан (drum unit).

Фоторецептор заряжается коротроном заряда, который представляет собой металлическую (обычно золотую или платиновую проволоку) или же резиновый вал с металлической основой. Причем резина токопроводящая. На старых аппаратах применялся проволочный коротрон. В настоящее время происходит переход к другой технологии. Дело в том, что проволочный коротрон сильно озонирует воздух из за высокого напряжения, подаваемого на него. Как известно озон полезен, но в малых количествах. Поэтому характерный запах озона в копировальных центрах постепенно уходит в прошлое.

После зарядки на фоторецептор подается изображение, которое в копировальных аппаратах освещается мощным источником света и проецируется через систему зеркал. Обычно для освещения оригинала используется каретка с лампой как в сканерах, Для увеличения и уменьшения изображения служит объектив с изменяемым фокусным расстоянием. Скорость барабана и каретки должна быть согласована. Те места на фоторецепторе, на которые падает свет меняют свой потенциал или вообще теряют заряд (в зависимости от типа копировального аппарата). Таким образом на фоторецепторе остается рисунок оригинала в виде заряженных участков.

Затем фоторецептор входит в контакт с магнитным валом, который покрыт смесью тонера и носителя.

Тонер представляет собой пыль состоящую из мельчайших частиц определенного цвета. Для достижения более высокого качества печати фирмы-производители стремятся к созданию более мелких частиц тонера.

Носитель (developer) представляет собой железные частицы, на которых осаждается тонер. Таким образом на магнитном валу находятся железные частицы, покрытые тонером. В некоторых аппаратах носитель отделен от тонера и заправляется отдельно, в других тонер представляет собой порошок уже смешанный с носителем. Тонер находится в специальном бункере. Внутри бункера устанавливается мешалка, которая предотвращает спрессовывание тонера.

Тонер переходит на фоторецептор за счет противоположного заряда на фоторецепторе. Весь этот процесс носит название проявки.

Во время этого процесса бумага подается на регистрацию. Т.е. она выбирается из лотка и устанавливается таким образом, чтобы начинать печать. Когда датчик регистрации бумаги сообщает, что бумага дошла до фото барабана, происходит перенос изображения с фото барабана на бумагу.

После того, как тонер перенесен подается бумага. Под бумагой проходит коротрон переноса (вал переноса), который имеет потенциал сильнее потенциала фоторецептора. Этот вал выполняется из металла, покрытого специальной токопроводящей резиной. Вал за счет более сильного потенциала на нем оттягивает на себя тонер, который осаждается на бумаге. Затем с помощью специального механизма бумага отрывается от рецептора и подается на запекание. В некоторых машинах существует такой механизм, в некоторых нет. Он представляет собой еще один коротрон, который оттягивает бумагу от рецептора.

Запекание представляет собой процесс высокотемпературного нагрева бумаги с одновременным прижимом специальным валиком. Механизм состоит из нагреваемого тефлонового вала, с кварцевой лампой внутри, и резинового прижимного вала. Механизм для запекания носит название печка (fuser). Иногда вместо тефлонового вала устанавливается специальный термоэлемент, покрытый термопленкой. Такие копиры имеют меньший срок прогрева и меньшее энергопотребление, однако и ходит термопленка значительно меньшее количество копий и повредить ее значительно легче при неправильном извлечении бумаги. В некоторых аппаратах предусмотрена смазывание прижимного вала силиконовой смазкой. Эта смазка предотвращает прилипание бумаги к валу.

Механизм с кварцевой лампой более дорогой, но и более надежный обычно используется в высокопроизводительных машинах. Механизм с термопленкой используется в принтерах и копирах малого класса.

Фоторецептор очищается от остатков тонера с помощью ракельного ножа, который сделан из специального материала и находится в плотном контакте с рецептором. Ракельный нож обычно выполняется в виде полосы из мягкого пластика. В некоторых аппаратах предусмотрена смазка ракельного ножа. Остатки тонера удаляются в бункер отработки. Это наиболее распространенный принцип удаления остатков тонера.

В некоторых аппаратах вместо ракельного ножа используется электростатическое удаление остатков тонера. В этих машинах опять же практически весь тонер переносится на бумагу. В больших машинах тонер, фоторецептор, девелопер, ракельный нож, коротрон меняются раздельно, после прохождения определенного количества копий. В малых принтерах и копирах все эти части объединяются в один картридж. В части аппаратов такой картридж разделяют на два: копи картридж (фоторецептор с ракелем) и тонер-картридж (тонер с магнитным валом). По правилам эксплуатации все такие картриджи имеют определенный срок службы и должны заменяться после его окончания.

Лазерный принтер как уже говорилось действует по тому же принципу, но в качестве источника света используется лазер, который меняет потенциал в определенных участках фоторецептора, на которые затем переносится тонер. При этом используется следующий механизм.

Лазерная пушка светит на зеркало, которое вращается с высокой скоростью. Отраженный луч через систему зеркал и призму попадает на барабан и за счет поворота зеркала выбивает заряды по всей длине барабана. Затем происходит поворот барабана на один шаг (этот шаг измеряется в долях дюйма и именно он определяет разрешение принтера по вертикали) и вычерчивается новая линия. В некоторых принтерах кроме поворота барабана используется поворот зеркала по вертикали, которое позволяет на одном шаге поворота барабана вычертить два ряда точек. В частности первые принтеры Lexmark с разрешением 1200 dpi использовали именно этот принцип.

Лазерные принтеры и копировальные аппараты потребляют много электроэнергии, которая расходуется на нагрев печки и на поддержание высокого напряжения на коротронах.

Лазерные принтеры кроме механической части включают в себя достаточно серьезную электронику. В частности на принтерах устанавливается память большого объема, для того, чтобы не загружать компьютер и хранить задания в памяти. На части принтеров устанавливаются винчестеры. Электронная начинка принтера также содержит различный языки описания данных (Adobe PostScript, PCL и т. д.). Эти языки опять же предназначены для того, чтобы забрать часть работы у компьютера и передать принтеру.

4. Термопринтеры.Термопринтеры как таковые практически не используются. Обычно они устанавливаются в факсах, однако когда-то они существовали как отдельные принтеры .

Принцип действия термопринтера очень прост. Печатающий элемент представляет собой панель с нагреваемыми элементами. В зависимости от подаваемого изображения нагреваются те или иные элементы, которые заставляют темнеть специальную термобумагу в месте нагрева. Достоинством данного типа принтера несомненно служит то, что ему не нужны расходные материалы кроме специальной бумаги. Недостаток - все в той же специальной бумаге и медленной скорости печати.

5. Дубликаторы.Дубликатор (ризограф) предназначен для печати больших тиражей с одного экземпляра (от 50 экз.).

Принцип работы следующий: после сканирования копии на специальной мастер пленке термопечатающим устройством прожигается изображение. Затем мастер-пленка наматывается на барабан, выполненный из сетчатого материала. Через барабан подаются чернила, которые вытекают через прожженные отверстия в мастер пленке и переносятся на копию. С одной мастер пленки можно получить до 10000 экземпляров.

Низкая себестоимость печати при большом тираже обуславливается низкой стоимостью чернил, которые в принципе представляют собой типографскую краску.

Для цветной печати используются сменные барабаны. При этом каждая копия прогоняется столько раз, сколько цветов нужно напечатать. Однако полно цветной печати на данном аппарате получить нельзя. Реально получить 3-4 цветную печать да и то на хорошей бумаге, поскольку при использовании большего количества цветов качество копии значительно ухудшается.

Качество передачи оттенков примерно соответствует обычному копиру. Причиной того, что данный аппарат может служить только для печати большими тиражами является высокая стоимость мастер пленки, которая может использоваться только один раз.

Заключение.

Мы рассмотрели основные виды принтеров и видим , что каждый из видов по своему удобен в эксплуатации , а также боле пригоден для определенных родов деятельности. Так скажем струйные принтера наиболее подходят для домашнего использования и не больших фирм если основная задача - распечатка текстов, так как здесь не требуется высокое качество печати. Лазерные принтеры это более качественное решение тех же задач, которые решают струйные принтера ( за исключением работы с цветом, где качество струйных принтеров выше ) . Матричные принтера используются там, где не требуется качество , а нужна надежность и наименьшие расходы по использованию.

Но всё же в общем все фирмы производители принтеров преследуют такие задачи как:

И учитывая, что процесс модернизации и улучшения каждого из видов печати не завершен, то возможно, что все выше описанное на данный момент может являться историей.

Литература.

  1. Выбор, сборка, абгрейд качественного компьютера Ю.Кравацкий, М. Рамендик
  2. М.Н. Голопупенко “Матричные принтеры”
  3. Сайты крупнейших производителей принтеров.
  4. Журнал “HARD’n’SOFT”
  5. Журнал “КомпьютерПресс”

www.studmed.ru

Реферат - Принтеры - Рефераты на репетирем.ру

Принтеры

Принтеры – устройства вывода текстовой и графической информации из персонального компьютера на бумажный носитель. В современных моделях принтеров существует возможность вывода информации на какой-либо другой носитель, например - синтетическая пленка.

Принтеры – довольно таки обширный класс устройств. Для того чтобы более полно объять этот класс устройств их нужно классифицировать. Классифицировать принтеры можно по разным признакам, например, по скорости вывода текстовой информации (этот параметр измеряется в количестве выведенных символов за единицу времени. У современных принтеров этот параметр может достигать нескольких тысяч символов в секунду), по разрешающей способности (этот параметр отражает возможность принтера выводить мелкие линии и точки и измеряется максимальным количеством линий, длина которых равна их ширине, на один квадратный сантиметр или дюйм. У современных принтеров этот параметр может достигать нескольких тысяч точек на один дюйм). Однако лучше всего (и проще) – классифицировать принтеры по принципу вывода графической и текстовой информации, т.е. по принципу их устройства.

По принципу вывода текстовой и графической информации принтеры делятся на:

  1. Лепестковые

  2. Матричные

  3. Струйные

  4. Лазерные

В свою очередь каждый из этих классов устройств можно подразделить еще на несколько подклассов.

Исторически первым типом принтеров были лепестковые принтеры. Их устройство походило на устройство печатных машинок. То есть у принтеров были такие же литеры, закрепленные на рычагах, как и у простых печатных машинок. При механическом воздействии на рычаг литеры, они под действием пружин, ударяли по бумаге через копировальную бумагу или специальную красящую ленту и оставляли на бумаге отпечаток буквы. В отличие от печатных машинок в таких принтерах рычаги приводились в движение не при помощи кнопок, а при помощи электромагнитов, включением и выключением которых управляли компьютеры. Данные принтеры имели несколько недостатков:

  1. Они не могли выводить графическую информацию т.к. имели ограниченный набор символов.

  2. Низкая скорость вывода информации (около 100-200 знаков в минуту).

  3. Сильный шум при работе.

  4. Низкая механическая надежность, определяемая большим количеством элементов и большими ударными нагрузками, приходящимися на эти элементы.

Низкая скорость вывода информации заставила ученых искать способы повышения скорости печати матричных принтеров. И этот способ был вскоре найден.

Было предложено использовать вместо отдельных рычагов с литерами один диск, с выгравированными по периметру на нем литерам символов букв и знаков. Этот диск при помощи шагового двигателя поворачивался на нужный угол (так, что бы печатаемая буква или символ находилась напротив электромагнита), затем этот электромагнит включался и ударял по выбранной литере. Литера ударяла по бумаге через специальную красящую ленту, и, таким образом, получался отпечаток требуемой буквы или символа на бумаге.

Такие принтеры были способны намного быстрее выводить информацию на бумажный носитель (200-300 знаков минуту) и обладали большей механической надежностью, по сравнению с предыдущим типом принтеров.

Но эти принтеры так же обладали еще и некоторыми недостатками:

  1. Невозможность вывода графической информации т.к. они тоже имели ограниченный набор символов.

  2. Сильный шум при работе.

Дальнейшей разновидностью таких принтеров были принтеры, у которых литеры располагались не на диске, а на сфере. Эта сфера имела форму булавы, на каждом выступе которой была выгравирована буква. Эта сфера приводилась в движение при помощи шагового двигателя, поворотом которого выбиралась требуемая литера в ряду, и рычагом, наклон которого выбирал нужный ряд букв. После выбора нужной буквы включался электромагнит и литера ударяла по бумаге через красящую ленту, оставляя на ней отпечаток необходимой буквы или символа. Такие принтеры обладали большой скоростью выводимых на бумагу символов, но им так же были присущи и недостатки предыдущего типа принтеров, а именно сильный шум и невозможность вывода графической информации.

Два последних типа принтеров не получили широкого распространения т.к. их вскоре вытеснили более производительные матричные принтеры.

Матричные принтеры.

Любое изображение, будь то текст или какая-либо картинка, можно воспроизвести на бумаге по точкам. На этом и основан принцип работы всех следующих типов принтеров.

Печать на бумаге в матричных принтерах осуществляется при помощи блока иголочек, приводимых в движение электромагнитами. Иголочки, ударяя по бумаге через красящую ленту, оставляют на бумаге точки. Затем блок с иголочками перемешается на некоторое расстояние и процесс повторяется. Так как расстояние между такими точками невелико, то в результате на бумаге получается изображение нужного символа или картинки.

Качество печати графической информации таких принтеров сравнимо с обыкновенными газетными фотографиями, однако, благодаря малой массе блока с иголочками, его можно довольно таки быстро перемещать по листу бумаги, что позволяет получить большие скорости вывода информации (у современных моделей матричных принтеров скорость печати достигает 1200 знаков в минуту).

Данный тип принтеров обладает следующими достоинствами:

  1. высокая скорость печати

  2. меньшие габариты и масса, чем у лепестковых принтеров

  3. возможность вывода разнообразной графической информации

  4. высокая надежность

Однако, несмотря на все эти достоинства, данные принтеры обладают следующими недостатками:

  1. низкая разрешающая способность (300 точек на дюйм), и, как следствие этого, невозможность применять такие принтеры для печати высококачественных изображений

  2. неприятный шум при работе

  3. невозможность или сложность печати многоцветных документов

Низкая скорость печати матричных принтеров определялась в первую очередь тем, что необходимо было иголочкой совершить сильный удар по красящей ленте. Этот недостаток был исправлен в следующем классе принтеров.

Капельные и струйные принтеры

В этих типах принтеров краска непосредственно переносится на бумагу.

Принцип работы каплеструйных принтеров похож на принцип работы электронно-лучевой трубки. В таких принтерах краска наливается в специальный сосуд, имеющий в дне настолько маленькое отверстие (это отверстие называется форсунка), что в нормальных условиях краска из сосуда не вытекает. Однако при кратковременной подаче разности потенциалов между форсункой и бумагой, краска начинает вытекать небольшими каплями, которые затем ускоряются в электрическом поле, отклоняются на определенный угол системой отклоняющих пластин и попадают на бумагу, оставляя на ней след. Изображение на листе бумаги, так же как и у матричных принтеров, формируется из точек, но за счет того, что точка у каплеструйного принтера намного меньше, чем у матричного, изображение на листе бумаги получается лучшего качества.

Высокая скорость печати таких принтеров определяется тем, что нет необходимости перемещать громоздкие печатающие головки.

Достоинство таких принтеров заключается в том, что при использовании нескольких сосудов с разными красками можно получить цветное изображение.

Однако эти принтеры не нашли широкого применения за счет того, что в них используется высоковольтное напряжение. Сейчас такие принтеры можно встретить лишь где-нибудь на производстве. Они используются там, в основном, для нанесения даты изготовления (типичным примером может служить ликероводочное производство, где такими принтерами наносится дата изготовления и другая техническая информация непосредственно на бутылки с напитком).

Следующей разновидностью каплеструйных принтеров были капельные принтеры (их еще зачастую называют струйными). В таких принтерах есть головка, нижняя часть которой находится на небольшом расстоянии (около 1 мм и даже меньше) от листа бумаги. В нижней части головки на небольшом расстоянии друг от друга находятся несколько форсунок (иногда до нескольких сотен и даже тысяч), объединенных в прямоугольную матрицу. Внутри корпуса, чуть выше этих форсунок находятся микроскопические резисторы (каждый над определенной форсункой). Сосуд с краской, нагревательные резисторы и форсунки зачастую объединяются в один блок, который носит название картридж.

Краска стекает на резисторы и задерживается под ними т.к. не может просочиться через маленькие форсунки. При подаче напряжения на определенный резистор он нагревается, краска вскипает и под давлением выплескивается через форсунку. Т.к. расстояние между форсункой и бумагой невелико, то капля краски попадает в строго определенное место на листе бумаги. Затем печатающая головка перемещается на некоторое расстояние и процесс повторяется.

Большое количество форсунок обусловлено тем, что при большем количестве форсунок можно большее количество капель выплеснуть на бумагу одновременно. Это определяет скорость печати таких принтеров. Скорость печати принтеров такого типа может достигать нескольких десятков страниц формата А4 в минуту.

Разрешающая способность таких принтеров составляет до 1200 точек на дюйм.

Достоинствами этого типа принтеров являются:

  1. Высокая скорость печати

  2. Возможность цветной печати при использовании нескольких сосудов с разной краской

  3. Высокая разрешающая способность принтеров, что позволяет получать распечатки фотографического качества

К недостаткам данных типов принтеров можно отнести:

  1. Высокую стоимость расходных материалов, по сравнению с матричными принтерами

  2. Низкую ремонтопригодность (ведь если засорилась форсунка или сгорел нагревательный резистор то проще будет купить новый картридж, чем починить сломанный)

Лазерные и светодиодные принтеры

Данный тип появился недавно. Из всех современных типов принтеров он наиболее перспективен т.к. обеспечивает высокую скорость вывода как графической, так и текстовой информации (десятки и сотни страниц формата А4 в минуту), имеет высокую разрешающую способность (от 1200 и более точек на дюйм) и может использоваться для цветной печати.

Устроен такой принтер следующим образом. Бумага, проходя через принтер, электризуется при помощи лазера или блока светодиодов в тех местах, где должно быть изображение. Затем на наэлектризованную бумагу наносится порошкообразная краска (ее называют тонером), которая прилипает к наэлектризованным участкам бумаги, и затем прилипшая краска впекается в бумагу при помощи специальной, очень мощной лампы.

Если последовательно применить несколько таких операций электризации–впекания, но разными красками, то в итоге получится цветное изображение.

К недостаткам такого типа принтеров можно отнести:

  1. дороговизна расходных материалов

  2. образование озона при длительной работе принтера

Список используемой литературы:

  1. Глобальная компьютерная сеть INTERNET

  2. Глобальная компьютерная сеть FIDONET

ref.repetiruem.ru

Реферат - Принтер как устройство вывода. Виды принтеров

Содержание

Введение

1. Принтеры ударного типа (impactprinter)

1.1 Барабанные построчные принтеры

1.2 Матричные принтеры

2. Струйные принтеры

2.1 Печатающие устройства с пьезоэлектрическими исполнительными механизмами

2.2 Печатающие устройства с термографическими исполнительными механизмами

2.3 Цветные струйные принтеры

3. Фотоэлектронные печатающие устройства

3.1 Лазерные принтеры

3.2 Светодиодные принтеры

3.3 Принтеры с жидкокристаллическим затвором

4. Принтеры других технологий

4.1 Твердые чернила

4.2 Сублимация красок

4.3 Термовоск

4.4 Термоавтохром

Заключение

Литература

Современный этап развития человеческой цивилизации характеризуется небывалой скоростью развития науки, техники и новых технологий, что принесло огромное количество новых знаний, которые необходимо как минимум учитывать, хранить и перерабатывать. Информационные потоки в обществе увеличиваются с каждым днем, и этот процесс носит лавинообразный характер. Развитие современного общества напрямую связано с ростом производства, потребления и накопления информации во всех отраслях человеческой деятельности. Вся жизнь человека, так или иначе, связана с получением, накоплением и обработкой информации. Информатизация охватывает все сферы, все отрасли общественной жизни, прочно входит в жизнь каждого человека, воздействует на его образ мышления и поведение.

По своему значению для развития общества информация приравнивается к важнейшим ресурсам наряду с сырьем и энергией. В развитых странах большинство работающих заняты не в сфере производства, а в той или иной степени занимаются обработкой информации. Поэтому философы называют современную эпоху постиндустриальной.

Вместе с тем можно отметить и новую тенденцию, заключающуюся во все большей информационной зависимости общества в целом и отдельного человека в частности. Именно поэтому в последнее время появились такие категории как «информационная политика», «информационная безопасность» и ряд других понятий, связанных с информацией. Это обстоятельство подчеркивает насколько важной является информация для современного общества.

Принтер — устройство для вывода текстовой или графической информации на различные твердые носители. Представляет собой сложный электромеханический аппарат, обеспечивающий формирование изображения, продвижение носителя, подачу красителя и его закрепление на носителе. Существует несколько типов принтеров: матричные, струйные, лазерные, твердочернильные, термосублимационные и так далее. Каждую группу принтеров характеризуют свои отличительные черты, присущие только этому типу устройств вывода информации. Рассмотрим каждую из групп подробнее.

Принтеры ударного действия, или impact-принтеры, создают изображение путем механического давления на бумагу через ленту с красителем. В качестве ударного механизма применяются либо шаблоны символов (механизм печатающей машинки), либо иголки, конструктивно объединенные в матрицы.

Первые модели печатающих устройств для вывода информации конструктивно представляли собой модернизированные варианты электрических пишущих машинок и применялись в 60 — 70-х годах в основном для диалогового ввода — вывода небольшого количества данных. Основным типом устройств для вывода массовой информации в то время были построчные печатающие устройства барабанного типа, использующие механизм, состоящий из символьного барабана, красящей ленты, системы продвижения перфорированной бумажной ленты (обычно рулонной либо сфальцованной в стопу) и ударных пуассонов. На символьном барабане размещены выпуклые изображения символов (обычно строками по 120 одинаковых символов). При вращении барабана символы проходят между бумагой, красящей лентой и пуассоном. Удар пуассона, синхронизированный с прохождением требуемого символа, оставляет на бумаге отпечаток. Таким образом, одна строка печатается за один оборот символьного барабана, что обеспечивает весьма высокое быстродействие (5 — 20 строк в секунду).

Следующим этапом совершенствования принтеров ударного типа можно считать типовые принтеры. Печатающая головка типового принтера или типовой диск представляет собой пластмассовый диск со спицами, на концах которых располагаются прямоугольные пластинки с нанесенными в виде штемпелей типами в виде букв, цифр и знаков препинания. Типовой диск, приводимый в движение шаговым двигателем, вращается до тех пор, пока желаемый знак не окажется точно перед ударником. При срабатывании ударника производится печать символа через красящую ленту. Типовой принтер обеспечивает достаточно хорошее изображение знаков, но при этом невысокую скорость печати — от 30 до 40 знаков в секунду, не универсален в смысле изменения шрифтов и не позволяет выводить графическую информацию.

В матричных принтерах (dotmatrixprinter) изображение формируется иголками, расположенными в головке принтера, и активизируется электромагнитным методом. Каждая ударная иголка приводится в движение независимым электромеханическим преобразователем на основе соленоида. Головка двигается по горизонтальной направляющей и управляется шаговым двигателем. Печать выполняется как при прямом, так и при обратном проходе печатающей головки. Бумага продвигается с помощью вала, а между бумагой и головкой принтера располагается красящая лента. У большинства моделей принтеров красящая лента заключена в специальный пластмассовый корпус, называемый картриджем, который различается по величине и форме для различных моделей. Красящая лента находится внутри корпуса картриджа в виде бесконечной ленты Мебиуса.

Качество печати матричных принтеров определяется количеством иголок в печатающей головке. В головке 9-игольчатого принтера находятся 9 иголок, которые располагаются вертикально в один ряд. Диаметр одной иголки около 0,2 мм. Благодаря горизонтальному движению головки принтера и активизации отдельных иголок напечатанный знак образует как бы матрицу, причем отдельные буквы, цифры и знаки «заложены» внутри принтера в виде бинарных кодов. Для улучшения качества печати каждая строка пропечатывается два раза, при этом увеличивается время процесса печати и имеется возможность смещения при втором проходе отдельных точек, составляющих знаки. Качество печати 9-игольчатых принтеров оставляет желать лучшего, но для распознавания букв этого достаточно. Дальнейшим развитием 9-игольчатого принтера являлся 18-игольчатый, который имел два ряда по девять иголок. В 24-игольчатом принтере, ставшим современным стандартом матричных принтеров, иголки располагаются в два ряда по двенадцать штук так, что они в соседних рядах сдвинуты по вертикали. За счет этого точки при печати изображений перекрываются. В 24-игольчатых принтерах имеется возможность перемещения головки дважды по одной и той же строке, что обеспечивает печать на уровне машинописного качества LQ (LetterQuality).

Разновидностью принтеров ударного действия является строчный принтер, у которого печатающая головка выполнена в виде планки, укомплектованной иголками по всей длине. Таким образом, при печати изображения матрица, соответствующая строке, полностью переносится на бумагу. За счет того, что строка печатается целиком за один раз, такие принтеры обеспечивают скорость печати до 20 страниц в минуту.

Некоторые модели 24-игольчатых матричных принтеров обладают возможностью цветной печати за счет использования многоцветной красящей ленты, при этом микропроцессор принтера формирует сигналы для управления иглами печатающей головки принтера в соответствии с таблицей цветности. Достигаемое при этом качество цветной печати значительно уступает качеству печати струйного принтера, но является вполне приемлемым для печати деловой графики (таблиц, диаграмм и так далее).

К числу несомненных преимуществ матричных принтеров относится возможность печати одновременно нескольких копий документа с использованием копировальной бумаги. Существуют специальные матричные принтеры для одновременной печати пяти и более экземпляров, которые предназначены для эксплуатации в промышленных условиях и могут печатать на карточках, сберегательных книжках и других носителях из плотного материала. Кроме того, многие матричные принтеры оборудованы стандартными направляющими для обеспечения печати в рулоне и механизмом автоматической подачи бумаги, с помощью которого принтер самостоятельно заправляет новый лист.

Достоинствами матричных принтеров являются:

дешевизна расходных материалов;

долговечность работы;

низкая себестоимость печати;

относительная дешевизна матричных принтеров формата А3

Матричные принтеры обеспечивают скорость печати до 400 знаков в секунду, обладают разрешением 360 х 360 точек на дюйм, оборудованы оперативной памятью небольшого объема — порядка 64 — 128 Кбайт.

Существенным недостатком матричных принтеров является шум, который достигает 58 дБ. Для устранения этого недостатка в отдельных моделях предусмотрен так называемый тихий режим, однако такое понижение шума приводит к снижению скорости печати в два раза. Другое направление борьбы с шумом матричных принтеров связано с использованием специальных звуконепроницаемых кожухов.

Главным элементом струйного принтера является печатающая головка, состоящая из сопел, к которым подводятся чернила. Число сопел находится в диапазоне от 16 до 64, а иногда достигает нескольких сотен. Чернила подаются к соплам за счет капиллярных свойств и удерживаются от вытекания за счет сил поверхностного натяжения жидкости. В головку встроен специальный механизм, позволяющий выбрасывать из сопла микроскопическую капельку чернил. Печатающая головка при печати перемещается поступательно слева направо, отпечатав строку, перемещается вниз по листу. Работают эти принтеры практически бесшумно. В зависимости от устройства этого механизма различают принадлежность принтера к тому или иному классу.

Лорд Рейли, лауреат Нобелевсокй премии по физике, сделал свои фундаментальные открытия в области распада струй жидкости и формирования капель еще в XIX веке, однако датой рождения технологии струйной печати можно считать только 1948 год, когда шведская фирма SiemensElema запатентовала заявку на устройство, работающее как гальванометр, но оборудованное не измерительной стрелкой, а распылителем, с помощью которого регистрировались результаты измерений. Разработчики воспользовались закономерностью, выявленной лордом Рейли: струя жидкости стремится распасться на отдельные капли. Нужно откорректировать случайный процесс распада, накладывая с помощью пьезоэлектрического преобразования высокочастотные колебания на струю красителя, выбрасываемую под высоким давлением. Таким способом может выбрасываться до 106 капель в секунду, размеры которых зависят от формы распылителей, а скорость достигает 40 м/с. Благодаря высокой скорости полета капель допускается использовать поверхности с сильными неровностями и в зависимости от требований к качеству печати размещать их на расстоянии 1 — 2 см от сопла-распылителя. В результате можно наносить маркировку, например данные о сроке годности товара на картонные коробки, бутылки, консервные банки, Куринные яйца или кабели. Эту технологию печати нетрудно узнать по точкам, кажущимся неравномерными и как бы обтрепанными.

Струйные принтеры подразделяются на устройства непрерывного действия (continuousdrop) и дискретного (drop-on-demand) действия. Ввиду менее высокой цены более распространенными являются принтеры второго типа, которые в свою очередь подразделяются на следующие:

пьезоэлектрические (piezo-ink) — Epson, Brother;

пузырьковые (bubble-jet) — Hewlett-Packard, Canon, Lexmark

Каждый из этих двух способов по-своему привлекателен, однако каждый из них не лишен недостатков.

Пьезоэлектрическая технология дешева, отличается надежностью, так как не используется высокая температура. Этот способ менее инерционен, чем нагрев, что позволяет повысить скорость печати.

Пузырьковая (термическая) технология связана с высокой температурой. При высокой температуре нагреватель со временем покрывается слоем нагара, поэтому в принтерах, использующих эту технологию, печатающая головка довольно часто выходит из строя. В таких случаях она вместе с резервуаром для чернил образует конструктивный единый узел. Достоинством этого типа принтеров является долговечность, исключая печатающие головки, которые быстро изнашиваются и заменяются вместе со сменой чернильного картриджа, а недостатком — низкая резкость получаемых отпечатков.

2.1 Печатающие устройства с пьезоэлектрическими исполнительными механизмами

Для реализации пьезоэлектрического метода в каждое сопло установлен пьезокристалл, связанный с диафрагмой. Под воздействием электрического заряда происходит деформация пьезоэлемента. При печати находящийся в трубке пьезоэлемент, сжимая и разжимая трубку, наполняет капиллярную систему чернилами. Чернила, которые отжимаются назад, перетекают обратно в резервуар, а чернила, которые выдавились наружу, образуют на бумаге точки. Первые заявки на регистрацию изобретения систем струйной печати с исполнительными пьезоэлектрическими механизмами были поданы в 1970 и 1971 годах.

Пьезоэлектрические трубки. В 1977 году был продемонстрирован первый струйный принтер с дозированным выбросом красителя. Он был оснащен двенадцатью соплами-распылителями и печатал почти бесшумно со скоростью 270 знаков в секунду. В принтере в качестве электромеханического преобразователя использовалась пьезоэлектрическая трубка, помещенная в канал литой пластмассы. Все каналы заканчиваются пластиной с калиброванными отверстиями для распыления, расположенной на передней стороне устройства. Передача электроэнергии и красителя производится посредством колебаний давления распространяющихся в канале в соответствии с законами акустики.

Пьезопластины. В начале 1985 года компания Epson представила первый из своих пьезопланарных струйных принтеров. Вместо пьезоэлектрических трубочек, как у Siemens, в печатающих головках, выполненных из структурированных стеклянных пластинок, укреплены небольшие пьезопластинки. Если к ним приложить электрическое напряжение, их диаметр чуть-чуть изменится, но и этого будет достаточно, чтобы они согнулись вместе с пассивной стеклянной многослойной подложкой подобно биметаллической пластине, что приведет к возникновению в канале избыточного давления, и красители выталкиваются тем же способом, что и в головках с пьезотрубками. В 1987 году был предложен другой принцип использования пьезоэлектриков для струйной печати, основанный на применении пластинчатого пьезопреобразователя. Пластинчатые пьезопреобразователи сочетают в себе преимущества как плоских, так и трубчатых систем — высокую частоту распыления и компактную конструкцию.

Метод газовых пузырей базируется на термической технологии. Каждое сопло оборудовано нагревательным элементом, который при пропускании через него тока за несколько микросекунд нагревается до температуры 500 0С. Возникающие при резком нагревании газовые пузыри выталкивают через выходное отверстие сопла порцию (каплю) жидких чернил, которые переносятся на бумагу. При отключении тока нагревательный элемент остывает, паровой пузырь уменьшается и через входное отверстие поступает новая порция чернил.

Первый струйно-пузырьковый термопринтер компании Hewlett-Packard вышел в 1985 году. Метод пузырьково-струйной печати за несколько лет получил широкое распространение. Если пьезоэлектрические печатающие механизмы приходилось с большим или меньшим трудом собирать из множества отдельных деталей, то пузырьково-струйные печатающие головки, представляющие собой кристаллы на кремневых подложках, изготавливались по тонкослойной технологии сотнями.

Цветные струйные принтеры имеют более высокое качество печати по сравнению с игольчатыми цветными принтерами и меньшую стоимость по сравнению с лазерными. Цветное изображение получается за счет использования, то есть наложения друг на друга, четырех основных цветов. Уровень шума струйных принтеров значительно ниже, чем у игольчатых, поскольку его источником является только двигатель, управляющий перемещением печатающей головки. При черновой печати скорость струйного принтера значительно выше, чем у игольчатого, при печати с качеством LQ скорость составляет 3 — 4 (до 10) страницы в минуту. Качество печати зависит от количества сопел в печатающей головке — чем их больше, тем выше качество. Большое значение имеет качество и толщина бумаги. Основной недостаток струйного принтера — возможность засыхания чернил внутри сопла, что приводит к необходимости замены печатающей головки.

Печать цветных изображений на струйных принтерах происходит путем смешения четырех основных цветов — голубого, пурпурного, желтого и черного. Эти цвета часто называют базовыми триадными, а в полиграфии это называется цветовой моделью CMYK (от англ. названий — Cyan, Magenta, Yellow, black). В дорогих моделях принтеров используются дополнительно два цвета — либо светло-голубой и светло-пурпурный, либо оранжевый и зеленый. Такие модели называют фотопринтерами и отличаются повышенным качеством цветопередачи. Хороший струйный фотопринтер представляет собой приемлемую альтернативу дорогим цветным лазерным устройствам.

Фотоэлектронные способы печати основаны на освещении заряженной светочувствительной поверхности промежуточного носителя и формировании на ней изображения в виде электростатического рельефа, притягивающего частицы красителя, которые далее переносятся на бумагу. Для освещения поверхности промежуточного носителя используют:

в лазерных принтерах — полупроводниковый лазер;

в светодиодных — светодиодную матрицу;

в принтерах с жидкокристаллическим затвором — люминесцентную лампу

Эти устройства обеспечивают более высокое качество, чем струйные принтеры. Принцип действия лазерного принтера основан на методе сухого электростатического переноса изображения, предложенном Ч.Ф. Карлсоном в 1939 году.

Основным элементом конструкции лазерного принтера является вращающийся барабан, служащий промежуточным носителем, с помощью которого производится перенос изображения на бумагу. Принтер является постраничным, так как формирует для печати полную страницу. Барабан представляет собой цилиндр, покрытый тонкой пленкой светопроводящего полупроводника (оксид цинка или селен). По поверхности барабана равномерно распределяется статический заряд, что обеспечивается с помощью тонкой проволоки или сетки, называемой коронирующим проводом. На этот провод подается высокое напряжение, вызывающее возникновение вокруг него светящейся ионизированной области, называемой короной. Лазер, управляемый микроконтроллером, генерирует тонкий световой луч, отражающийся от вращающегося зеркала. Развертка изображения происходит так же, как и в телевизионном кинескопе: движение луча по строке и кадру. С помощью вращающегося зеркала луч скользит вдоль барабана и изменяет его электрический заряд в точках падения. Размер заряженной точки зависит от фокусировки луча лазера с помощью объектива. Таким образом, на барабане, промежуточном носителе, возникает скрытая копия изображения в виде электростатического рельефа.

На следующем этапе на фотонаборный барабан наносится тонер — краска, состоящая из мельчайших частиц. Под действием статического заряда эти частицы притягиваются к поверхности барабана в точках, подвергшихся экспозиции, и формируют изображение в виде рельефа красителя. Бумага втягивается из подающего латка и с помощью системы валиков перемещается к барабану. Перед подходом к барабану бумаге сообщается статический заряд. Затем бумага соприкасается с барабаном и притягивает благодаря своему заряду частички тонера, ранее нанесенные на барабан. Для фиксации тонера страница вновь заряжается и пропускается между двумя роликами с температурой около 180 0С. После окончания печати барабан полностью разряжается, очищается от прилипших частиц, готовясь для печати следующей страницы.

Цветное изображение с помощью лазерного принтера получается по стандартной схеме CMYK. Это фактически четыре черно-белых аппарата с одним общим фотобарабаном. Изображение формируется на светочувствительной фотоприемной ленте последовательно для каждого цвета, имеются четыре емкости для тонеров и от двух до четырех узлов проявления.

Основаны на том принципе действия, что и лазерные. Конструктивным различием является то, что барабан освещается не лучом лазера, а неподвижной диодной строкой, состоящей из 2500 светодиодов, которая описывает не каждую точку, а целую строку.

В качестве источника света служит люминесцентная лампа. Свет лампы управляется жидкокристаллическим затвором, прерывателем света, который выполняет команды драйвера. Скорость печати такого принтера ограничена скоростью срабатывания жидкокристаллического затвора и не превышает 9 листов в секунду.

Несмотря на то, что лазерные и струйные принтеры доминируют на рынке, существуют и другие технологии печати. Технология твердых чернил занимает значительную долю рынка, так как предлагает продукцию хорошего качества в широком ассортименте, в то время как термовоск и сублимация красок играют важную роль в специализированных областях печати.

Твердочернильные принтеры были разработаны в попытке устранить основные недостатки цветных лазерных принтеров, а именно низкую скорость печати за счет совершения четырех проходов барабана по бумаге. Отпечаток, сделанный на твердочернильном принтере, получается немного зернистым из-за физических свойств красителя, зато очень насыщенным и хорошо передающим полутона. Восковые чернильные палочки расплавляются, а затем смесь впрыскивают на передающий барабан, откуда она через отверстия попадает на бумагу, где практически мгновенно застывает.

Твердые струйные принтеры дешевле, чем аналогичные цветные лазерные. Однако они не так хороши для графики и текста.

В основу действия сублимационных принтеров положен термоперенос красителя с помощью испарения с последующим его внедрением в специальную бумагу с полистирольным покрытием. При этом получается довольно высокое качество, близкое к фотографическому.

Вместо того, чтобы распылять чернила через сопло на страницу, как это делают струйные принтеры, принтеры сублимации красок используют для переноса краски пластиковую пленку. Она имеет форму рулона или ленты и содержит последовательные изображения составных цветов — синего, бордо, желтого и черного. Передающая пленка проходит по тепловой печатающей головке, состоящей из тысяч нагревающихся элементов. Высокая температура заставляет краски на пленке сублимироваться — превращаться в газ, без жидкой фазы, и краска в форме пара поглощается бумагой. Когда чернила попадают на бумагу, они размываются. Этот эффект позволяет принтеру создавать непрерывные тона цвета, смешивая чернила.

Технология, родственная сублимации красок. Принтеры используют рулоны пластиковой пленки CMYK, покрытой красителями на основе воска. Тысячи нагревательных элементов на печатающей головке заставляют воск таять и покрывать бумагу.

Термоавтохром (ТА) появился сравнительно недавно. Этот процесс печати более сложен. Бумага ТА содержит три слоя пигмента — синий, бордовый и желтый, каждый из которых обладает чувствительностью к специфическому диапазону температур. Принтер оборудован тепловыми и ультрафиолетовыми головками, и печать производится в три этапа. При первом этапе бумага нагревается до температуры, необходимой для активации желтого пигмента, далее облучается ультрафиолетом перед прохождением на следующий цвет (бордо, синий).

Процесс информатизации и создание информационной среды, охватывая материальное производство, социальную среду, а также услуги, включает в себя: создание информационных техники и технологий, обеспечивающих производство, обработку и распространение информации, разработку инфраструктуры, обеспечивающей применение и развитие средств и процессов информатизации, производство самой информации, информационных продуктов и услуг.

Создание современной инфраструктуры информатизации должно обеспечивать пользователям широкий набор информационно-вычислительных услуг с доступом к локальным и удаленным машинным ресурсам, технологиям и базам данных.

Информационными ресурсами являются формализованные идеи и знания, различные данные, методы и средства их накопления, хранения и обмена между источниками и потребителями информации. Под информацией понимаются сведения об объективно существующих объектах и процессах, а также их связях и взаимодействии, доступные для практического пользования в деятельности людей.

На всех этапах развития общества информационные технологии обеспечивали информационный обмен между людьми, коллективами, институтами, отражали соответствующий уровень и возможности систем регистрации, хранения, обработки и передачи информации и являлись синтезом методов оперирования человека с информацией в интересах той или иной сферы его деятельности. Развитие компьютерной и связанной с ней другой техники, а также различных информационных технологий происходит непрерывно, они тесно взаимосвязаны и все время взаимно стимулируют процессы развития.

1. Бешенков С. А, «Информатика». Учебное пособие — Екатеринбург: Уральский государственный педагогический университет, 1995 г.

2. Алексеев А.П. «Информатика». Учебник — Издательство: «СОЛОН-Р», 2002 г.

3. Максимов Н.В. «Информатика». Учебное пособие — М.: ФОРУМ: ИНФРА-М, 2003 г.

4. Курбаков К.И. «Основы информатики». Учебное пособие — М.: ЭКЗАМЕН, 2004 г.

5. Хохлова Н.М. «Информационные технологии». Учебное пособие — М.: Приориздат, 2004 г.

6. Бройло В.Л. «Архитектура ЭВМ и систем». Учебник — СПб: Питер, 2006 г.

www.ronl.ru


Смотрите также