Реакции обнаружения ионов алюминия Al3+
Действие группового реагента (Nh5)2S. Из водного раствора сульфид аммония осаждает катион алюминия Al3+ в виде гидроксида Аl(ОН)3 за счет гидролиза:
2АlС13 + 3(Nh5)2S + бН2О = 2Аl(ОН)3 + 6Nh5C1 + ЗН2S,
2Al3+ + 3S2- + 6Н2O = 2Аl(ОН)3 + 3h3S.
Действие NaOH (в избытке) и Nh5C1. Кристаллический хлорид аммония Nh5C1 или насыщенный раствор этой соли, взятый в избытке, осаждает А1(ОН)3 из щелочного раствора, содержащего гидроксокомплекс (гидроксокомплекс получается при прибавлении раствора щелочи к раствору соли Аl3+ до полного растворения выпадающего осадка):
АlС13 + 6NaOH = Na3[Al(OH)6] + 3NaCl,
Na3[Al(OH)6] + 3Nh5C1 = А1(ОН)3 + 3NaCl + 3Nh4 + ЗН2О.
При этом Аl(ОН)3 в присутствии Nh5C1 не растворяется, так как КS° (А1(ОН)з) — величина сравнительно небольшая.
ИОНЫ р-ЭЛЕМЕНТОВ IVA ГРУППЫ
Реакции обнаружения ионов свинца Рb2+
Действие группового реагента НС1. При действии соляной кислоты на ионы Рb2+ образуется белый осадок хлорида свинца, растворяющийся при нагревании в воде:
Рb(NО3)2 + 2НС1 = PbCl2 + 2HNO3,
Рb2+ + 2С1- = РbСl2.
Действие йодида калия KI. Йодид калия KI образует с раствором солей свинца желтый осадок РbI2:
Pb(NO3)2 + 2KI = PbI2 + 2KNO3.
Осадок растворяется при нагревании в воде и 2 М растворе уксусной кислоты. При медленном охлаждении раствора выпадают характерные золотистые чешуйки кристаллов PbI2. Медленное охлаждение благоприятствует росту крупных кристаллов.
Реакции обнаружения карбонат-ионов СО32-
Действие группового реагента BaCl2. При действии хлорида 6aрия на ионы СО32- образуется белый осадок карбоната бария, растворяющийся в кислотах с бурным выделением углекислого газа:
Na2CO3 + BaCl2 = ВаСО3 + 2NaCl,
СО32- + Ва2+ = ВаСО3.
Действие соляной кислоты НС1. Важнейшей реакцией на карбонат-ион является реакция разложения карбонатов сильными кислотами. При этом с шипением выделяются пузырьки диоксида углерода:
Na2CO3 + 2НС1 = 2NaCl + Н2O + CO2.
Реакция обнаружения ионов аммония Nh5+
Гидроксиды щелочных металлов выделяют из растворов солей аммония газообразный аммиак, который окрашивает влажную красную лакмусовую бумагу в синий цвет:
Nh5C1 + NaOH = Nh4 + NaCI + Н2O.
Реакция обнаружения нитрат-ионов NO3-
Раствор дифениламина (C6H5)2NH в концентрированной серной кислоте дает с нитрат-ионом интенсивно-синее окрашивание вследствие окисления дифениламина образующейся азотной кислотой.
Реакции обнаружения нитрит-ионов NO2-
Действие серной кислоты Н2SO4. Сильные кислоты вытесняют из нитритов слабую азотистую кислоту, которая из-за свой неустойчивости сразу разлагается на воду и оксиды азота (NO2 — бурого цвета):
2NaNO2 + h3SO4 = Na2SO4 + NO2 + NO + Н2O.
Действие окислителей. Перманганат калия КМnO4 в присутствии разбавленной серной кислоты обесцвечивается солями азотистой кислоты:
5KNO2 + 2КМnO4 + 3h3SO4 = 5КNO3 + 2MnSO4 + K2SO4 + ЗН2O.
Реакции обнаружения фосфат-ионов РО43-
Действие группового реагента BaCl2. Хлорид бария ВаСl2 образует с раствором Nа2НРO4 белый осадок ВаНРO4, растворимый в кислотах (кроме h3SO4):
ВаСl2 + Na2HPO4 = ВаНРO4 + 2NaCl.
Если проводить реакцию в присутствии щелочей или аммиака, то ионы НРO42- превращаются в РО43- и осаждается средняя соль.
Действие нитрата серебра AgNO3. Раствор нитрата серебра AgNO3 образует с растворами солей фосфорной кислоты желтый осадок фосфата серебра, растворимый в азотной кислоте:
2Na2HPO4 + 3AgNO3 = Аg3РO4 + 3NaNO3 + Nah3PO4.
Реакция обнаружения сульфат-ионов SO42-
Групповой реагент хлорид бария BaCl2 образует с растворами, содержащими сульфат-ионы, белый осадок BaSO4, практически нерастворимый в кислотах:
BaCl2 + Na2SO4 = BaSO4 + 2NaCl.
Реакции обнаружения сульфит-ионов SO32-
Действие группового реагента BaCl2. При действии хлорида бария на соли сернистой кислоты образуется белый осадок, растворимый в кислотах:
Na2SO3 + BaCl2 = ВаSО3 + 2NaCl.
Действие соляной кислоты НСl. Кислоты разлагают соли сернистой кислоты с выделением оксида серы (IV), имеющего характерный запах жженой серы:
Na2SO3 + 2НС1 = 2NaCl + h3O + SO2.
Действие окислителей. Окислители (I2, KMnO4) в кислой среде обесцвечиваются растворами солей сернистой кислоты вследствие восстановления:
Na2SO3 + I2 + Н2O = Na2SO4 + 2HI.
Реакции обнаружения сульфид-ионов S2-
Действие группового реагента AgNO3. При действии нитрата серебра на сульфид-ион образуется черный осадок сульфида серебра:
Na2S + 2AgNO3 = Ag2S + 2NaNO3,
S2- + 2Ag+ = Ag2S.
Действие кислот (НСl, Н2SO4). Кислоты (НСl, h3SO4) выделяют из сульфидов свободный сероводород с характерным запахом тухлых яиц:
Na2S + h3SO4 = h3S + Na2SO4.
Реакции обнаружения хлорид-ионов Сl- групповым реагентом АgNО3 (рН 7)
Хлорид-ионы образуют с групповым реагентом AgNO3 (рН 7) практически нерастворимый в воде осадок AgCl, который хорошо растворяется в избытке раствора Nh5OH; при этом образуется растворимая в воде комплексная соль серебра [Ag(Nh4)2]Cl. При последующем действии азотной кислоты комплексный ион разрушается и хлорид серебра снова выпадает в осадок. Это свойство солей серебра используется для его обнаружения. Реакция проводится в три этапа: 1) получение осадка AgCl; 2) растворение AgCl в избытке раствора Nh5OH; 3) выпадение осадка (мути) при воздействии раствором HNO3 (все три этапа выполняются в указанной последовательности в одной и той же пробирке):
AgNO3 + NaCI = AgCl + NaNO3,
AgCl + 2Nh5OH = [Ag(Nh4)2]Cl + 2h3O,
[Ag(Nh4)2]Cl + 2HNO3 = AgCl + 2Nh5NO3.
Реакции обнаружения бромид-ионов Вr-
Действие группового реагента AgNO3. При действии нитрата се ребра на бромид-ион образуется желтоватый осадок бромида серебра:
NaBr + AgNO3 = AgBr + NaNO3,
Вr - + Ag+ = AgBr.
Действие хлорной воды. Хлорная вода при взаимодействии растворами бромидов окисляет бромид-ион в молекулярный бром который окрашивает органический растворитель (бензол, хлоро форм) в желто-оранжевый цвет:
2NaBr + С12 = Br2 + NaCl.
Реакции обнаружения йодид-ионов
Действие группового реагента AgNO3. При действии нитрата се ребра на йодид-ион образуется светло-желтый осадок йодида се ребра:
KI + AgNO3 = AgI + KNO3,
I- + Ag+ = AgI.
Действие хлорной воды. Хлорная вода при взаимодействии с растворами йодидов окисляет йодид-ион в молекулярный йод, который окрашивает органический растворитель (бензол, хлороформ) ] розово-фиолетовый цвет:
2KI + Cl2 = I2 + KCl.
www.coolreferat.com
Запорожский государственный медицинский университет
ІІ медицинский факультет
Кафедра физколлоидной химии
На тему «Биогенные d-элементы»
Выполнила
Студентка 1 курса 35 группы
Отришко Ольга
Запорожье
Распространение химических элементов…………………….3
Общая характеристика………………………………………...4
Медико-биологическое значение…………………………….6
Серебро…………………………………………………………7
Марганец………………………………………………………..9
Список использованной литературы………………………...11
Ученые объясняют возникновение химических элементов теорией Большого Взрыва. Согласно ей, Вселенная образовалась после Большого Взрыва огромного огненного шара, который разбросал во всех направлениях частицы материи и потоки энергии.
Распространенность химических элементов в земной коре зависит от заряда ядра атома, радиуса атома и его относительной атомной массы.Из химических элементов наиболее распространены в земной коре кислород и кремний. Эти элементы вместе с элементами алюминий, железо, кальций, натрий, калий, магний, водород и титан составляют более 99 % массы земной оболочки, так что на остальные элементы приходится менее 1 %. В морской воде, помимо кислорода и водорода — составных частей самой воды, высокое содержание имеют такие элементы, как хлор, натрий, магний, сера, калий, бром и углерод. Массовое содержание элемента в земной коре называется кларковым числом или кларком элемента.
Содержание элементов в коре Земли отличается от содержания элементов в Земле, взятой как целое, поскольку химсоставы коры, мантии и ядра Земли различны. Так, ядро состоит в основном из железа и никеля. В свою очередь, содержания элементов в Солнечной системе и в целом во Вселенной также отличаются от земных. Наиболее распространённым элементом во Вселенной является водород, за ним идёт гелий. Исследование относительных распространённостей химических элементов и их изотопов в космосе является важным источником информации о процессах нуклеосинтеза и об эволюции Солнечной системы и небесных тел.
К d-блоку относятся 32 элемента периодической системы. d-Элементы входят в 4—7-й большие периоды. У атомов IIIБ-группы появляется первый электрон на d-орбитали. В последующих Б-группах происходит заполнение d-подуровня до 10 электронов (отсюда название d-элементы). Строение внешних электронных оболочек атомов d-блока описывается общей формулой (n-1)dansb, где а = 1—10, b = 1—2.
Особенностью элементов этих периодов является непропорционально медленное возрастание атомного радиуса с возрастанием числа электронов. Такое относительно медленное изменение радиусов объясняется так называемым лантаноидным сжатием вследствие проникновения ns-электронов под d-электронный слой. В результате наблюдается незначительное изменение атомных и химических свойств d-элементов с увеличением атомного номераю Сходство химических свойств проявляется в характерной особенности d-элементов образовывать комплексные соединения с разнообразными лигандами.
Важным свойством d-элементов является переменная валентность и, соответственно, разнообразие степеней окисления. Эта особенность связана главным образом с незавершенностью предвнешнего d-электронного слоя (кроме элементов IБ- и IIБ-групп). Возможность существования d-элементов в разных степенях окисления определяет широкий диапазон окислительно-восстановительных свойств элементов. В низших степенях окисления d-элементы проявляют свойства металлов.
С увеличением атомного номера в группах Б металлические свойства закономерно уменьшаются.
В растворах кислородсодержащие анионы d-элементов с высшей степенью окисления проявляют кислотные и окислительные свойства. Катионные формы низших степеней окисления характеризуются основными и восстановительными свойствами.
d-Элементы в промежуточной степени окисления проявляют амфотерные свойства. В периоде с увеличением заряда ядра наблюдается уменьшение устойчивости соединений элементов в высших степенях окисления. Параллельно возрастают окислительно-восстановительные потенциалы этих соединений. Наибольшая окислительная способность наблюдается у феррат-ионов и перманганат-ионов. Следует отметить, что у d-элементов при нарастании относительной электроотрицательности усиливаются кислотные и неметаллические свойства.
С увеличением устойчивости соединений при движении сверху вниз в Б-группах одновременно уменьшаются их окислительные свойства.
Необходимо отметить высокие комплексообразующие способности d-элементов, которые обычно значительно выше, чем у s- и p-элементов. Это прежде всего объясняется возможностями d-элементов быть как донорами, так и акцепторами пары электронов, образующих координационное соединение.
Более 1/3 всех микроэлементов организма составляют d-элементы. В организмах они существуют в виде комплексных соединений или гидратированных ионов со среднем временем обмена гидратной оболочки от 10-1 до 10-10 с. Поэтому можно утверждать, что «свободные» ионы металлов в организме не существуют: это либо их гидраты, либо продукты гидролиза.
studfiles.net
ХИМИЧЕСКИЕ СВОЙСТВА И БИОЛОГИЧЕСКАЯ РОЛЬ ЭЛЕМЕНТОВ S-БЛОКА
К s-элементам относятся две группы Периодической системы: IА и IIА.
В группу IА входят 8 элементов: литий, калий, натрий, рубидий, цезий, франций, водород, гелий. В группу IIА входят 6 элементов: бериллий, магний, кальций, стронций, барий, радий.
Общим является застраивание в их атомах электронами s-подуровня внешнего энергетического уровня. (Т.Е. говорим о "семействе элементов". ВСПОМИНАЕМ: "семейство элементов" определяется тем, какой подуровень заполняется электронами в последнюю очередь.)
Электронная формула внешней оболочки:
СРАВНЕНИЕ СВОЙСТВ ЭЛЕМЕНТОВ IА И IIА (КОМПЛЕКСООБРАЗОВАНИЕ, ОБРАЗОВАНИЕ ОСАДКОВ) НА ПРИМЕРЕ Na, K И Mg, Ca
Общая характеристика элементов IА и IIА
Элементные вещества - типичные металлы, обладающие блеском, высокой электрической проводимостью и теплоповодимостью, химически весьма активны.
Как следует из электронных формул, элементы IА группы (Na, K) имеют на внешнем энергетическом уровне по одному s электрону. Элементы IIА группы (Mg, Ca) по 2 s электрона.
Химические свойства s элементов IА и IIА групп сходны.
s-элементы IА и IIА имеют относительно большие радиусы атомов и ионов.
s-элементы IА и IIА групп легко отдают валентные электроны. Являются сильными восстановителями. С ростом радиуса атома в группах IА и IIА ослабевает связь валентных электронов с ядром, следовательно s-элементы этих групп имеют низкие значения Еи и Еср. к ẽ. Все щелочные и щелочноземельные металлы имеют отрицательные стандартные окислительно-восстановительные потенциалы, большие по абсолютной величине. Что также характеризует их, как сильных восстановителей. Восстановительные свойства возрастают закономерно с увеличением радиуса атома. Восстановительная способность увеличивается по группе сверху вниз.
Для элементов IIА группы характерна большая, чем для элементов IА группы способность к комплексообразованию.
s-элементы IА и IIА образуют соединения с ионным типом связи.
Исключение составляет водород, для которого в соединениях даже с самыми электроотрицательными элементами характерна преимущественно ковалентная связь (например, фтороводород или вода). Частично ковалентный характер связи в соединениях имеет место у лития, бериллия и магния.
Сравнение свойств элементов IА и IIА (комплексообразование, образование осадков) на примере Na, K и Mg, Ca
Атомы элементов IА группы имеют по одному валентному электрону на s подуровне внешнего энергетического уровня. Это обуславливает проявление степени окисления +1.
Все элементы IА группы сходны по свойствам, что объясняется однотипным строением не только внешней, валентной оболочки, но и предвнешней (исключение литий).
С ростом радиуса атома в группе IА ослабевает связь валентного электрона с ядром. Соответственно, уменьшается энергия ионизации атомов. Так как радиус атома калия больше, чем радиус атома натрия, то энергия ионизации калия меньше, чем у натрия.
В результате ионизации образуются катионы Э+, имеющие устойчивую конфигурацию благородных газов.
Химическая активность металлов IА группы возрастает закономерно с увеличением радиуса атома и уменьшением их способности к гидратированию (чем меньше способность к гидратированию, тем активнее металл).
Так как радиус атома калия больше, чем радиус атома натрия, то способность к гидратации для катиона калия будет ниже, чем для катиона натрия, а, следовательно, химическая активность катиона калия выше, чем у катиона натрия.
Вследствие незначительного поляризующего действия (устойчивая электронная структура, большие размеры, малый заряд ядра) комплексообразование для ионов щелочных металлов малохарактерно. Вместе с тем, они способны образовывать комплексные соединения с некоторыми биолигандами (КЧ для натрия и калия может принимать значения 4 и 6). Способность образовывать донорно-акцепторные связи с соответствующими лигандами едва намечается у натрия. У калия имеется значительная тенденция к использованию имеющихся в атоме вакантных d-орбиталей.
Например, образование комплексов калия с антибиотиком валиномицином. Валиномицин образует с калием прочные комплексы, связывание этого антибиотика с натрием очень незначительно.
Большинство солей щелочных металлов хорошо растворимы в воде (исключение составляют некоторые соли лития).
Атомы элементов IIА группы имеют по два валентных электрона на s подуровне внешнего энергетического уровня.
В нормальном состоянии у атомов этих элементов нет неспаренных электронов, но при переходе атомов в возбужденное состояние один из s валентных электронов переходит на р-подуровень. Это обуславливает проявление степени окисления +2.
Степени окисления больше +2 элементы IIА группы не проявляют.
Несмотря на то, что число валентных s электронов у атомов IIА группы одинаково, свойства магния и кальция отличаются друг от друга.
Это связанно с тем, что в атоме кальция, в отличие от атома магния, имеются свободные d-орбитали, близкие по энергии к ns орбиталям.
Магний и кальций существенно различаются размерами атомов и ионов:
металлический радиус атома Mg = 160 пм;
металлический радиус атома Ca = 197 пм.
кристаллический радиус иона Mg2+ = 74 пм;
кристаллический радиус иона Ca2+ = 104 пм..
Больший размер иона кальция обусловливает и более высокое координационное число этого иона – КЧ (Ca2+) 6, 8, тогда как КЧ (Mg2+) – 6. Прочность комплексных соединений уменьшается по мере увеличения радиуса атома, следовательно, комплексные соединения магния будут более прочными, чем комплексные соединения кальция. Ион Mg2+ образует шестикоординационные соединения регулярной структуры. Ca2+ образует несимметричные комплексы. Кальций предпочтительно координируется с атомами кислорода, магний – с атомами азота.
www.coolreferat.com
Реакции обнаружения ионов алюминия Al3+
Действие группового реагента (Nh5)2S. Из водного раствора сульфид аммония осаждает катион алюминия Al3+ в виде гидроксида Аl(ОН)3 за счет гидролиза:
2АlС13 + 3(Nh5)2S + бН2О = 2Аl(ОН)3 + 6Nh5C1 + ЗН2S,
2Al3+ + 3S2- + 6Н2O = 2Аl(ОН)3 + 3h3S.
Действие NaOH (в избытке) и Nh5C1. Кристаллический хлорид аммония Nh5C1 или насыщенный раствор этой соли, взятый в избытке, осаждает А1(ОН)3 из щелочного раствора, содержащего гидроксокомплекс (гидроксокомплекс получается при прибавлении раствора щелочи к раствору соли Аl3+ до полного растворения выпадающего осадка):
АlС13 + 6NaOH = Na3[Al(OH)6] + 3NaCl,
Na3[Al(OH)6] + 3Nh5C1 = А1(ОН)3 + 3NaCl + 3Nh4 + ЗН2О.
При этом Аl(ОН)3 в присутствии Nh5C1 не растворяется, так как КS° (А1(ОН)з) — величина сравнительно небольшая.
ИОНЫ р-ЭЛЕМЕНТОВ IVA ГРУППЫ
Реакции обнаружения ионов свинца Рb2+
Действие группового реагента НС1. При действии соляной кислоты на ионы Рb2+ образуется белый осадок хлорида свинца, растворяющийся при нагревании в воде:
Рb(NО3)2 + 2НС1 = PbCl2 + 2HNO3,
Рb2+ + 2С1- = РbСl2.
Действие йодида калия KI. Йодид калия KI образует с раствором солей свинца желтый осадок РbI2:
Pb(NO3)2 + 2KI = PbI2 + 2KNO3.
Осадок растворяется при нагревании в воде и 2 М растворе уксусной кислоты. При медленном охлаждении раствора выпадают характерные золотистые чешуйки кристаллов PbI2. Медленное охлаждение благоприятствует росту крупных кристаллов.
Реакции обнаружения карбонат-ионов СО32-
Действие группового реагента BaCl2. При действии хлорида 6aрия на ионы СО32- образуется белый осадок карбоната бария, растворяющийся в кислотах с бурным выделением углекислого газа:
Na2CO3 + BaCl2 = ВаСО3 + 2NaCl,
СО32- + Ва2+ = ВаСО3.
Действие соляной кислоты НС1. Важнейшей реакцией на карбонат-ион является реакция разложения карбонатов сильными кислотами. При этом с шипением выделяются пузырьки диоксида углерода:
Na2CO3 + 2НС1 = 2NaCl + Н2O + CO2.
Ионы р-элементов VA группыРеакция обнаружения ионов аммония Nh5+
Гидроксиды щелочных металлов выделяют из растворов солей аммония газообразный аммиак, который окрашивает влажную красную лакмусовую бумагу в синий цвет:
Nh5C1 + NaOH = Nh4 + NaCI + Н2O.
Реакция обнаружения нитрат-ионов NO3-
Раствор дифениламина (C6H5)2NH в концентрированной серной кислоте дает с нитрат-ионом интенсивно-синее окрашивание вследствие окисления дифениламина образующейся азотной кислотой.
Реакции обнаружения нитрит-ионов NO2-
Действие серной кислоты Н2SO4. Сильные кислоты вытесняют из нитритов слабую азотистую кислоту, которая из-за свой неустойчивости сразу разлагается на воду и оксиды азота (NO2 — бурого цвета):
2NaNO2 + h3SO4 = Na2SO4 + NO2 + NO + Н2O.
Действие окислителей. Перманганат калия КМnO4 в присутствии разбавленной серной кислоты обесцвечивается солями азотистой кислоты:
5KNO2 + 2КМnO4 + 3h3SO4 = 5КNO3 + 2MnSO4 + K2SO4 + ЗН2O.
Реакции обнаружения фосфат-ионов РО43-
Действие группового реагента BaCl2. Хлорид бария ВаСl2 образует с раствором Nа2НРO4 белый осадок ВаНРO4, растворимый в кислотах (кроме h3SO4):
ВаСl2 + Na2HPO4 = ВаНРO4 + 2NaCl.
Если проводить реакцию в присутствии щелочей или аммиака, то ионы НРO42- превращаются в РО43- и осаждается средняя соль.
Действие нитрата серебра AgNO3. Раствор нитрата серебра AgNO3 образует с растворами солей фосфорной кислоты желтый осадок фосфата серебра, растворимый в азотной кислоте:
2Na2HPO4 + 3AgNO3 = Аg3РO4 + 3NaNO3 + Nah3PO4.
Ионы р-элементов VIA группыРеакция обнаружения сульфат-ионов SO42-
Групповой реагент хлорид бария BaCl2 образует с растворами, содержащими сульфат-ионы, белый осадок BaSO4, практически нерастворимый в кислотах:
BaCl2 + Na2SO4 = BaSO4 + 2NaCl.
Реакции обнаружения сульфит-ионов SO32-
Действие группового реагента BaCl2. При действии хлорида бария на соли сернистой кислоты образуется белый осадок, растворимый в кислотах:
Na2SO3 + BaCl2 = ВаSО3 + 2NaCl.
Действие соляной кислоты НСl. Кислоты разлагают соли сернистой кислоты с выделением оксида серы (IV), имеющего характерный запах жженой серы:
Na2SO3 + 2НС1 = 2NaCl + h3O + SO2.
Действие окислителей. Окислители (I2, KMnO4) в кислой среде обесцвечиваются растворами солей сернистой кислоты вследствие восстановления:
Na2SO3 + I2 + Н2O = Na2SO4 + 2HI.
Реакции обнаружения сульфид-ионов S2-
Действие группового реагента AgNO3. При действии нитрата серебра на сульфид-ион образуется черный осадок сульфида серебра:
Na2S + 2AgNO3 = Ag2S + 2NaNO3,
S2- + 2Ag+ = Ag2S.
Действие кислот (НСl, Н2SO4). Кислоты (НСl, h3SO4) выделяют из сульфидов свободный сероводород с характерным запахом тухлых яиц:
Na2S + h3SO4 = h3S + Na2SO4.
Ионы р-элементов VIIA группыРеакции обнаружения хлорид-ионов Сl- групповым реагентом АgNО3 (рН 7)
Хлорид-ионы образуют с групповым реагентом AgNO3 (рН 7) практически нерастворимый в воде осадок AgCl, который хорошо растворяется в избытке раствора Nh5OH; при этом образуется растворимая в воде комплексная соль серебра [Ag(Nh4)2]Cl. При последующем действии азотной кислоты комплексный ион разрушается и хлорид серебра снова выпадает в осадок. Это свойство солей серебра используется для его обнаружения. Реакция проводится в три этапа: 1) получение осадка AgCl; 2) растворение AgCl в избытке раствора Nh5OH; 3) выпадение осадка (мути) при воздействии раствором HNO3 (все три этапа выполняются в указанной последовательности в одной и той же пробирке):
AgNO3 + NaCI = AgCl + NaNO3,
AgCl + 2Nh5OH = [Ag(Nh4)2]Cl + 2h3O,
[Ag(Nh4)2]Cl + 2HNO3 = AgCl + 2Nh5NO3.
Реакции обнаружения бромид-ионов Вr-
Действие группового реагента AgNO3. При действии нитрата се ребра на бромид-ион образуется желтоватый осадок бромида серебра:
NaBr + AgNO3 = AgBr + NaNO3,
Вr — + Ag+ = AgBr.
Действие хлорной воды. Хлорная вода при взаимодействии растворами бромидов окисляет бромид-ион в молекулярный бром который окрашивает органический растворитель (бензол, хлоро форм) в желто-оранжевый цвет:
2NaBr + С12 = Br2 + NaCl.
Реакции обнаружения йодид-ионов
Действие группового реагента AgNO3. При действии нитрата се ребра на йодид-ион образуется светло-желтый осадок йодида се ребра:
KI + AgNO3 = AgI + KNO3,
I- + Ag+ = AgI.
Действие хлорной воды. Хлорная вода при взаимодействии с растворами йодидов окисляет йодид-ион в молекулярный йод, который окрашивает органический растворитель (бензол, хлороформ) ] розово-фиолетовый цвет:
2KI + Cl2 = I2 + KCl.
www.ronl.ru
Реакцииобнаружения ионов алюминия Al3+
Действиегруппового реагента (Nh5)2S. Из водного раствора сульфидаммония осаждает катион алюминия Al3+ в виде гидроксидаАl(ОН)3 за счет гидролиза:
2АlС13 + 3(Nh5)2S+ бН2О = 2Аl(ОН)3 + 6Nh5C1 + ЗН2S,
2Al3+ + 3S2- + 6Н2O = 2Аl(ОН)3 + 3h3S.
Действие NaOH(в избытке) и Nh5C1. Кристаллический хлорид аммония Nh5C1или насыщенный раствор этой соли, взятый в избытке, осаждает А1(ОН)3из щелочного раствора, содержащего гидроксокомплекс (гидроксокомплексполучается при прибавлении раствора щелочи к раствору соли Аl3+ дополного растворения выпадающего осадка):
АlС13 + 6NaOH = Na3[Al(OH)6]+ 3NaCl,
Na3[Al(OH)6]+ 3Nh5C1 = А1(ОН)3 + 3NaCl + 3Nh4 + ЗН2О.
При этом Аl(ОН)3в присутствии Nh5C1 не растворяется, так как КS°(А1(ОН)з) — величина сравнительно небольшая.
ИОНЫр-ЭЛЕМЕНТОВ IVA ГРУППЫ
Реакцииобнаружения ионов свинца Рb2+
Действиегруппового реагента НС1. При действии соляной кислоты на ионы Рb2+образуется белый осадок хлорида свинца, растворяющийся при нагревании в воде:
Рb(NО3)2+ 2НС1 = PbCl2 + 2HNO3,
Рb2++ 2С1- = РbСl2.
Действие йодидакалия KI. Йодид калия KI образует с раствором солей свинца желтый осадок РbI2:
Pb(NO3)2 + 2KI = PbI2+ 2KNO3.
Осадокрастворяется при нагревании в воде и 2 М растворе уксусной кислоты. Примедленном охлаждении раствора выпадают характерные золотистые чешуйкикристаллов PbI2. Медленное охлаждение благоприятствует росту крупныхкристаллов.
Реакцииобнаружения карбонат-ионов СО32-
Действиегруппового реагента BaCl2. При действии хлорида 6aрия на ионы СО32-образуется белый осадок карбоната бария, растворяющийся в кислотах с бурнымвыделением углекислого газа:
Na2CO3 + BaCl2 = ВаСО3 +2NaCl,
СО32-+ Ва2+ = ВаСО3.
Действиесоляной кислоты НС1. Важнейшей реакцией на карбонат-ион является реакцияразложения карбонатов сильными кислотами. При этом с шипением выделяютсяпузырьки диоксида углерода:
Na2CO3 + 2НС1 = 2NaCl + Н2O + CO2.Ионыр-элементов VA группы
Реакцияобнаружения ионов аммония Nh5+
Гидроксидыщелочных металлов выделяют из растворов солей аммония газообразный аммиак,который окрашивает влажную красную лакмусовую бумагу в синий цвет:
Nh5C1 + NaOH = Nh4 + NaCI + Н2O.
Реакцияобнаружения нитрат-ионов NO3-
Раствордифениламина (C6H5)2NH в концентрированной серной кислоте дает снитрат-ионом интенсивно-синее окрашивание вследствие окисления дифениламинаобразующейся азотной кислотой.
Реакцииобнаружения нитрит-ионов NO2-
Действие сернойкислоты Н2SO4. Сильные кислоты вытесняют из нитритовслабую азотистую кислоту, которая из-за свой неустойчивости сразу разлагаетсяна воду и оксиды азота (NO2 — бурого цвета):
2NaNO2 + h3SO4 = Na2SO4+ NO2 + NO + Н2O.
Действиеокислителей. Перманганат калия КМnO4 в присутствии разбавленнойсерной кислоты обесцвечивается солями азотистой кислоты:
5KNO2 + 2КМnO4 + 3h3SO4= 5КNO3 +2MnSO4 + K2SO4 + ЗН2O.
Реакцииобнаружения фосфат-ионов РО43-
Действиегруппового реагента BaCl2. Хлорид бария ВаСl2 образует сраствором Nа2НРO4 белый осадок ВаНРO4,растворимый в кислотах (кроме h3SO4):
ВаСl2+ Na2HPO4 = ВаНРO4 + 2NaCl.
Если проводитьреакцию в присутствии щелочей или аммиака, то ионы НРO42-превращаются в РО43- и осаждается средняя соль.
Действиенитрата серебра AgNO3. Раствор нитрата серебра AgNO3образует с растворами солей фосфорной кислоты желтый осадок фосфата серебра,растворимый в азотной кислоте:
2Na2HPO4 + 3AgNO3 = Аg3РO4 + 3NaNO3 +Nah3PO4.Ионыр-элементов VIA группы
Реакцияобнаружения сульфат-ионов SO42-
Групповойреагент хлорид бария BaCl2 образует с растворами, содержащимисульфат-ионы, белый осадок BaSO4, практически нерастворимый вкислотах:
BaCl2 + Na2SO4 = BaSO4+ 2NaCl.
Реакцииобнаружения сульфит-ионов SO32-
Действиегруппового реагента BaCl2. При действии хлорида бария на солисернистой кислоты образуется белый осадок, растворимый в кислотах:
Na2SO3 + BaCl2 = ВаSО3 +2NaCl.
Действиесоляной кислоты НСl. Кислоты разлагают соли сернистой кислоты с выделениемоксида серы (IV), имеющего характерный запах жженой серы:
Na2SO3 + 2НС1 = 2NaCl + h3O+ SO2.
Действиеокислителей. Окислители (I2, KMnO4) в кислой средеобесцвечиваются растворами солей сернистой кислоты вследствие восстановления:
Na2SO3 + I2 + Н2O = Na2SO4+ 2HI.
Реакцииобнаружения сульфид-ионов S2-
Действиегруппового реагента AgNO3. При действии нитрата серебра насульфид-ион образуется черный осадок сульфида серебра:
Na2S + 2AgNO3 = Ag2S+ 2NaNO3,
S2- + 2Ag+ = Ag2S.
Действие кислот(НСl, Н2SO4). Кислоты (НСl, h3SO4)выделяют из сульфидов свободный сероводород с характерным запахом тухлых яиц:
Na2S + h3SO4 = h3S+ Na2SO4.Ионыр-элементов VIIA группы
Реакцииобнаружения хлорид-ионов Сl- групповым реагентом АgNО3 (рН 7)
Хлорид-ионыобразуют с групповым реагентом AgNO3 (рН 7) практическинерастворимый в воде осадок AgCl, который хорошо растворяется в избыткераствора Nh5OH; при этом образуется растворимая в воде комплекснаясоль серебра [Ag(Nh4)2]Cl. При последующем действииазотной кислоты комплексный ион разрушается и хлорид серебра снова выпадает восадок. Это свойство солей серебра используется для его обнаружения. Реакцияпроводится в три этапа: 1) получение осадка AgCl; 2) растворение AgCl в избыткераствора Nh5OH; 3) выпадение осадка (мути) при воздействии растворомHNO3 (все три этапа выполняются в указанной последовательности водной и той же пробирке):
AgNO3 + NaCI = AgCl + NaNO3,
AgCl + 2Nh5OH = [Ag(Nh4)2]Cl+ 2h3O,
[Ag(Nh4)2]Cl + 2HNO3= AgCl + 2Nh5NO3.
Реакцииобнаружения бромид-ионов Вr-
Действиегруппового реагента AgNO3. При действии нитрата се ребра набромид-ион образуется желтоватый осадок бромида серебра:
NaBr + AgNO3 = AgBr + NaNO3,
Вr -+ Ag+ = AgBr.
Действиехлорной воды. Хлорная вода при взаимодействии растворами бромидов окисляетбромид-ион в молекулярный бром который окрашивает органический растворитель(бензол, хлоро форм) в желто-оранжевый цвет:
2NaBr + С12 = Br2 + NaCl.
Реакцииобнаружения йодид-ионов
Действиегруппового реагента AgNO3. При действии нитрата се ребра найодид-ион образуется светло-желтый осадок йодида се ребра:
KI + AgNO3 = AgI + KNO3,
I- + Ag+ = AgI.
Действиехлорной воды. Хлорная вода при взаимодействии с растворами йодидов окисляетйодид-ион в молекулярный йод, который окрашивает органический растворитель(бензол, хлороформ) ] розово-фиолетовый цвет:
2KI + Cl2 = I2 + KCl.Списоклитературы
Для подготовкиданной работы были использованы материалы с сайта http://chemistry.narod.ru/
2dip.su
1. Химические свойства и биологическая роль элементов d-блока
К d-блоку относятся 32 элемента периодической системы. Они расположены в побочных подгруппах периодической системы в 4-7 больших периодах между s— и p-элементами.
/>
Характерной особенностью элементов d-блокаявляется то, что в их атомах последними заполняются орбитали не внешнего слоя (как у s— и p-элементов), а предвнешнего [(n— 1)d] слоя. В связи с этим, у d-элементов валентными являются энергетически близкие девять орбиталей – одна ns-орбиталь, три nр-орбитали внешнего и пять (n— 1)d-орбиталей предвнешнего энергетического уровней:
/>
Строение внешних электронных оболочек атомов dблока описывается формулой (n-1)dansb, где а=1~10, b=1~2.
2. Общая характеристика d-элементов
В периодах(слева направо) с увеличением заряда ядра радиус атома возрастает медленно, непропорционально числу электронов, заполняющих оболочку атома.
Причины – лантаноидное сжатие и проникновение nsэлектронов под d-электронныйслой (в соответствии с принципом наименьшей энергии). Происходит экранирование заряда ядра внешними валентными электронами: у элементов 4-го периода внешние электроны проникают под экран электронов 3d-подуровня, а у элементов 6-го периода – под экран 4fи 5dэлектронов (двойное экранирование).
В периодах (слева направо) наблюдается уменьшение энергии ионизации, энергии сродства к электрону. Поскольку изменения энергии ионизации и энергии сродства к электрону незначительны, химические свойства элементов и их соединений изменяются мало.
В группах (сверху вниз) с увеличением заряда ядра атома возрастают энергия ионизации, относительная электроотрицательность элементов (ОЭО), нарастают неметаллические и кислотные свойства, уменьшаются металлические свойства элементов.
3. Кислотно-основные и окислительно-восстановительные свойства и закономерности их изменения
Элементы d-блока находящиеся в III, IV, V, VI, VIIBгруппах имеют незавершенный d-электронный слой (предвнешний эн. уровень). Такие электронные оболочки неустойчивы.Этим объясняется переменная валентность и возможность проявлять различные степени окисления d-элементов. Степени окисления элементов d-блока в соединениях всегда только положительные.
Соединения с высшей степенью окисления проявляют кислотные и окислительные свойства (в растворах представлены кислородсодержащими анионами). Соединения с низшей степенью окисления – основные и восстановительные свойства (в растворах представлены катионами). Соединения с промежуточной степенью окисления – проявляют амфотерные свойства.
Например: CrOосновной оксид, Cr2O3– амфотерный оксид, CrO3– кислотный оксид.
/>
В периодес возрастанием заряда ядра атома уменьшается устойчивость соединений с высшей степенью окисления, возрастают их окислительные свойства.
В группах увеличивается устойчивость соединений с высшей степенью окисления, уменьшаются окислительные и возрастают восстановительные свойства элементов.
4. Окислительно-восстановительные свойства d-элементов в организме человека
Вследствие разнообразия степеней окисления для химии 3d-элементов характерны окислительно-восстановительные реакции.
В свою очередь, способность 3d-элементов изменять степень окисления, выступая в роли окислителей или восстановителей, лежит в основе большого количества биологически важных реакций.
В ходе эволюции природа отбирала элементы в такой степени окисления, чтобы они не были ни сильными окислителями, ни сильными восстановителями.
Нахождение в организме человека d-элементов в высшей степени окисления возможно только в том случае, если эти элементы проявляют слабые окислительно-восстановительные свойства.
Например, Мо+6в комплексных соединениях в организме в организме имеет степень окисления +5 и +6.
Катионы Fe+3и Cu+2в биологических средах не проявляют восстановительных свойств.
Существование соединений в низших степенях окисления оправдано для организма. Ионы Mn+2, Co+2, Fe+3при рН физиологических жидкостей не являются сильными восстановителями. Окружающие их лиганды стабилизируют ионы именно в этих степенях окисления.
--PAGE_BREAK--5. Комплексообразующая способность d-элементов
Возможность создания химических связей с участием d-электронов и свободных d-орбиталей обуславливает ярко выраженную способность d-элементов к образованию устойчивых комплексных соединений.
При низких степенях окисления для d-элементов более характерны катионные, а при высоких – анионные октаэдрические комплексы.
КЧ d-элементов непостоянны, это четные числа от 4 до 8, реже 10,12.
Используя незаполненные d-орбитали и неподеленные пары d-электронов на предвнешнем электронном слое, d-элементы способны выступать как донорами электронов – дативная связь, так и акцепторами электронов.
Пример соединений с дативной связью: [HgI]¯, [CdCl4]¯.
6. Металлоферменты
Октаэдрическое строение иона комплексообразователя определяется способностью его орбиталей к d2sp3-гибридизаци. Например, для хрома (III), d2sp3-гибридизация будет выглядеть следующим образом:
/>
Бионеорганические комплексы d-элементов с белковыми молекулами называют биокластерами. Внутри биокластера находится полость, в которой находится ион металла определенного размера, размер иона должен точно совпадать с диаметром полости биокластера. Металл взаимодействует с донорными атомами связующих групп: гидроксильные –ОН¯, сульфгидрильные –SH¯, карбоксильные –СОО¯, аминогруппы белков или аминокислот – Nh3.
Биокластеры, полости которых образуют центры ферментов, называют металлоферментами.
В зависимости от выполняемой функции биокластеры условно подразделяют на:
— транспортные,доставляют организму кислород и биометаллы. Хорошими транспортными формами м/б комплексы металлов с АМК. В качестве координирующего металла могут выступать: Со, Ni, Zn, Fe. Например – трансферрин.
— аккумуляторные, накопительные. Например – миоглобин и ферритин.
— биокатализаторыи активаторы инертных процессов.
Реакции, катализируемые этими ферментами подразделяются на:
Кислотно-основные реакции. Карбоангидраза катализирует процесс обратимой гидратации CO2в живых организмах.
Окислительно-восстановительные.
Катализируются металлоферментами, в которых металл обратимо изменяет степень окисления.
А. Карбоангидраза, карбоксипептидаза, алкогольдегидрогеназа.
Карбоангидраза– Znсодержащий фермент. Фермент крови, содержится в эритроцитах. Карбоангидраза катализирует процесс обратимой гидратации CO2, также катализирует реакции гидролиза, в которых участвует карбоксильная группа субстрата.
Н2О + СО2↔ Н2СО3↔ Н++ НСО3¯ (механизм «цинк-вода»)
ОН¯ + СО2↔ НСО3¯ (механизм «цинк-гидроксид»)
Координационное число цинка 4. Три координационные места заняты аминокислотами, четвертая орбиталь связывает воду или гидроксильную группу.
Механизм действия:
/>
Обратимая гидратация CO2в активном центре карбоангидразы
/>
КарбоксипептидазаZnсодержащий фермент. Объектами концентрации являются печень, кишечник, поджелудочная железа.
Участвует в реакциях гидролиза пептидных связей.
Схема взаимодействия цинка карбоксипептидазы с субстратом («цинк-карбонил»):
/>
Схема реакции гидролиза пептидных связей карбоксипетидазы:
/>
Алкогольдегидрогеназаэто -содержащий фермент.
Б. Цитохромы, каталаза, пероксидаза.
Цитохром С. (см лекцию КС). Гемсодержащий фермент, имеет октаэдрическое строение.
/>
продолжение
--PAGE_BREAK--Перенос электронов в окислительно-восстановительной цепи с участием этого фермента осуществляется за счет изменения состояния железа:
ЦХ*Fe3++ ẽ↔ ЦХ*Fe2+
Группы ферментов, катализирующие реакции окисления водородпероксидом, называются каталазамии пероксидазами. Они имеют в своей структуре гем, центральный атомом является Fe3+. Лигандное окружение в случае каталазы представлено АМК (гистидин, тирозин), в случае пероксидазы – лигандами являются белки. Концентрируются ферменты в крови и в тканях. Каталаза ускоряет разложение пероксида водорода, образующегося в результате реакций метаболизма:
Н2О2+ Н2О2↔каталаза↔ 2 Н2О + О2
Фермент пероксидаза ускоряет реакции окисления органических веществ (RH) пероксидом водорода:
Н2О2+ Н2О*RH↔пероксидаза↔ 2 Н2О + RCOOH
В. СОД, ОКГ, ЦХО, ЦП.
СОД – супероксиддисмутаза– медьсодержащий белок. Ускоряет реакцию разложения супероксид-иона />, свободный радикал. Этот радикал вступая во взаимодействие с компонентами клети разрушает ее. СОД переводит супероксид-ион />в пероксид водорода. Который, в свою очередь, разлагается в организме под действием фермента каталазы.
Схематически процесс можно представить:
/>
/>
ОКГ – оксигеназы– ферменты, активирующие молекулу кислорода, которая участвует в процессе окисления органических соединений. Оксигеназы присоединяют оба атома кислорода с образованием пероксидной цепочки.
Механизм действия оксигеназ можно представить следующим образом:
/>
Цитохромоксидаза – ЦХО– важнейший дыхательный фермент.
Катализирует завершающий этап тканевого дыхания. В ходе каталитического процесса степень окисления меди ЦХО обратимо изменяется: Cu2+↔Cu1+.
Окисленная форма ЦХО (Cu2+) принимает электроны, переходя в восстановленную форму (Cu1+), окисляющуюся молекулярным кислородом, который сам при этом восстанавливается.
Затем кислород принимает протоны из окружающей среды и превращается в воду. Схема действия ЦХО:
/>
Церулоплазмин – ЦП – медьсодержащий белок содержится в плазме млекопитающих. ЦП содержит 8 атомов меди на 1 молекулу белка. ЦП участвует в окислении железа:
/>/>
Параллельно идет процесс окисления протонированных субстратов (RH) с образованием свободнорадикальных промежуточных продуктов:
HR→ R+ H++ ẽ
В то же время ЦП катализирует восстановление кислорода до воды:
О2+ 4ẽ + 4Н+→ЦП→ 2Н2О
Выполняя транспортную функцию, ЦП регулирует баланс меди и обеспечивает выведение избытка меди из организма.
7. Железо, кобальт, хром, марганец, цинк, медь, молибден в организме: содержание, биологическая роль
Элемент
Содержание в организме (взрослого человека)
Биологическая роль
Fe
5 г (около 70% в гемоглобине)
Входит в состав гемоглобина, т.е. принимает участие в транспорте кислорода, обеспечивает процесс дыхания живых организмов.
Входит в состав ферментов цитохромов, каталазы, пероксидазы.
В связанной форме находится в некоторых белках, выполняющих роль переносчиков железа.
Co
Входит в состав витамина В12.
Влияет на углеводный, минеральный, белковый и жировой обмен, принимает участие в кроветворении.
Cr
6 мг
Биогенный элемент.
Mn
0,36 моль
Входит в состав ферментов аргиназа, холинестераза, фосфоглюкомутаза, пируваткарбоксилаза и д.р.
Участвует в синтезе витаминов С и В, доказано его участие в синтезе хлорофилла.
Участвует в процессе аккумуляции и переноса эрги.
Zn
Входит в состав ферментов катализирующих гидролиз пептидов, белков, некоторых эфиров и альдегтдов.
Cu
1,1 ммоль
Входит в состав ферментов окигеназ и гидролаз.
Участвует в кроветворении.
Mo
Входит в состав ферментов, катализирующих ОВР: ксанингидрогеназа, ксантиноксидаза, альдегидоксидаза и д.р.
Важный микроэлемент для растений: принимает участие в мягкой фиксации азота.
www.ronl.ru