по теме:
ГЕОМЕТРИЧЕСКАЯ
ПРОГРЕССИЯ
работу выполнил:
студент Ставропольского
Государственного Университета
IV курса, Физ-Мат Факультета,
отделения МИИТ, гр. ”Б”
Неботов Виталий Дмитриевич
Ставрополь 1997 г.
СОДЕРЖАНИЕ :
Стр.
1. Вступительное слово....................................................................................3
2. Определение геометрической прогрессии..................................................3
3. Свойства геометрической прогрессии.........................................................3
4. Сумма геометрической прогрессии.............................................................4
5. Заключение....................................................................................................5
6. Список использованной литературы............................................................6
Геометрическая прогрессия играет большую и важную роль не только в школьном курсе алгебры, но и (как я мог убедится) в дальнейшем обучении в высших учебных заведениях. Важность этого на первый взгляд небольшого раздела школьного курса заключается в его чрезвычайно широких областях применения, в частности он часто применяется в теории рядов, рассматриваемой на II-III курсах университета. Поэтому мне кажется крайне важным дать здесь полное описание этого курса, дабы внимательный читатель мог повторить уже известный ему (надеюсь - прим. автора) из школьного курса материал, или даже почерпнуть много нового и интересного.
Прежде всего необходимо дать определение геометрической прогрессии, ибо не определившись о предмете разговора невозможно продолжать сам разговор. Итак: числовая последовательность, первый член которой отличен от нуля, а каждый член, начиная со второго, равен предшествующему члену, умноженному на одно и тоже не равное нулю число, называется геометрической прогрессией.
Внесу некоторую ясность в данное выше определение: во-первых, мы требуем от первого члена неравенства нулю для того, что при умножении его на любое число мы в результате снова получим ноль, для третьего члена опять ноль, и так далее. Получается последовательность нулей, которая не попадает под данное выше определение геометрической прогрессии и не будет являться предметом нашего дальнейшего рассмотрения.
Во-вторых, число на которое умножаются члены прогрессии опять же не должно быть равно нулю, по вышеизложенным причинам.
В-третьих, предоставляю возможность вдумчивому читателю самому найти ответ на вопрос, почему мы умножаем все члены прогрессии на одно и тоже число, а не, скажем, на разные. Ответ не так прост, как может показаться вначале.
Далее, из определения геометрической прогрессии следует, что отношение любого ее члена к предшествующему равно одному и тому же числу, т. е. b2:b1 = b3:b2 = ... = bn:bn-1 = bn+1:bn = ... . Это число называется знаменателем геометрической прогрессии и обычно обозначается буквой q.
Несколько слов необходимо сказать и о способах задания геометрической прогрессии. Для того чтобы задать геометрическую прогрессию (bn), достаточно знать ее первый член b1 и знаменатель q. Например, условиями b1 = 2, q = -5 (q < 0) задается геометрическая прогрессия 2, -10, 50, -250, ... . Эта прогрессия не является ни возрастающей ни убывающей последовательностью.
Следует заметить, что: последовательность называется возрастающей (убывающей) если каждый последующий член последовательности больше (меньше) предыдущего.
Таким образом, если q > 0 (q1), то прогрессия является монотонной последовательностью. Пусть, например, b1 = -3, q = 4, тогда геометрическая прогрессия -3, -12, -48, -192, ... есть монотонно убывающая последовательность.
Однако, если q = 1, то все члены прогрессии равны между собой. В этом случае прогрессия является постоянной последовательностью.
Любая геометрическая прогрессия обладает определенным характеристическим свойством. Это свойство является следствием самого правила задания геометрической прогрессии: последовательность (bn) является геометрической прогрессией тогда и только тогда, когда каждый ее член, начиная со второго, есть среднее геометрическое соседних с ним членов, т. е.
.
Пользуясь этим свойством можно находить любой член геометрической прогрессии если известны два рядом стоящие.
Для нахождения n-ного члена геометрической прогрессии есть еще одна формула. Для того чтобы найти любой член геометрической прогрессии необходимо, чтобы она была задана, т. е. были известны значения b1 и q:
.
Так как геометрическая прогрессия это числовая последовательность, то мы можем найти ее сумму. Для нахождения суммы геометрической прогрессии применяют следующую формулу:
Если в данную формулу подставить вместо bn его выражение в виде b1qn-1, то получим еще одну формулу для вычисления суммы геометрической прогрессии:
У геометрической прогрессии есть еще одно свойство, а именно: из определения знаменателя геометрической прогрессии следует, что b1bn = b2bn-1 = ..., т. е. произведение членов, равно отстоящих от концов прогрессии, есть величина постоянная.
Наконец, нельзя не коснуться такого важного с научной точки зрения понятия, как бесконечной геометрической прогрессии при . Здесь наиболее важным понятием является понятие суммы бесконечной геометрической прогрессии: пусть (xn) - геометрическая прогрессия со знаменателем q, где Суммой бесконечной геометрической прогрессии, знаменатель которой удовлетворяет условию, называется предел суммыn первых ее членов при .
Найти эту сумму можно по следующей формуле:
Заканчивая описание геометрической прогрессии хочется лишний раз повторить, что за видимой простотой геометрической прогрессии скрывается большой прикладной потенциал этого раздела алгебры.
Список использованной литературы:
1. В. С. Крамор, Повторяем и систематизируем школьный курс
алгебры и начал анализа, Москва, Просвещение, 1990 г.
2. С. А. Теляковский, Алгебра, учебник для 8 класса средней школы,
Москва, Просвещение, 1987 г.
3. Личные заметки и наблюдения автора.
studfiles.net
Реферат на тему:
Геометри́ческая прогре́ссия — последовательность чисел (членов прогрессии), в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое число (знаменатель прогрессии), где , : [1].
Любой член геометрической прогрессии может быть вычислен по формуле:
Если b1 > 0 и q > 1, прогрессия является возрастающей последовательностью, если 0 < q < 1, — убывающей последовательностью, а при q < 0 — знакопеременной
Своё название прогрессия получила по своему характеристическому свойству:
то есть каждый член равен среднему геометрическому его соседей.
Доказательство
Пусть wn — последовательность :
Полученное соотношение является характеристическим для арифметической прогрессии.Доказательство
Доказательство
Доказательство
Доказательство
Категории: Арифметика.
Текст доступен по лицензии Creative Commons Attribution-ShareAlike.wreferat.baza-referat.ru
Ставропольский Государственный Университет
РЕФЕРАТ
по теме:
ГЕОМЕТРИЧЕСКАЯ
ПРОГРЕССИЯ
работу выполнил:
студент Ставропольского
Государственного Университета
IV курса, Физ-Мат Факультета,
отделения МИИТ, гр. ”Б”
Неботов Виталий Дмитриевич
Ставрополь 1997 г.
СОДЕРЖАНИЕ :
Стр.
1. Вступительное слово....................................................................................3
2. Определение геометрической прогрессии..................................................3
3. Свойства геометрической прогрессии.........................................................3
4. Сумма геометрической прогрессии.............................................................4
5. Заключение....................................................................................................5
6. Список использованной литературы............................................................6
Геометрическая прогрессия играет большую и важную роль не только в школьном курсе алгебры, но и (как я мог убедится) в дальнейшем обучении в высших учебных заведениях. Важность этого на первый взгляд небольшого раздела школьного курса заключается в его чрезвычайно широких областях применения, в частности он часто применяется в теории рядов, рассматриваемой на II-III курсах университета. Поэтому мне кажется крайне важным дать здесь полное описание этого курса, дабы внимательный читатель мог повторить уже известный ему (надеюсь - прим. автора) из школьного курса материал, или даже почерпнуть много нового и интересного.
Прежде всего необходимо дать определение геометрической прогрессии, ибо не определившись о предмете разговора невозможно продолжать сам разговор. Итак: числовая последовательность, первый член которой отличен от нуля, а каждый член, начиная со второго, равен предшествующему члену, умноженному на одно и тоже не равное нулю число, называется геометрической прогрессией.
Внесу некоторую ясность в данное выше определение: во-первых, мы требуем от первого члена неравенства нулю для того, что при умножении его на любое число мы в результате снова получим ноль, для третьего члена опять ноль, и так далее. Получается последовательность нулей, которая не попадает под данное выше определение геометрической прогрессии и не будет являться предметом нашего дальнейшего рассмотрения.
Во-вторых, число на которое умножаются члены прогрессии опять же не должно быть равно нулю, по вышеизложенным причинам.
В-третьих, предоставляю возможность вдумчивому читателю самому найти ответ на вопрос, почему мы умножаем все члены прогрессии на одно и тоже число, а не, скажем, на разные. Ответ не так прост, как может показаться вначале.
Далее, из определения геометрической прогрессии следует, что отношение любого ее члена к предшествующему равно одному и тому же числу, т. е. b2:b1 = b3:b2 = ... = bn:bn-1 = bn+1:bn = ... . Это число называется знаменателем геометрической прогрессии и обычно обозначается буквой q.
Несколько слов необходимо сказать и о способах задания геометрической прогрессии. Для того чтобы задать геометрическую прогрессию (bn), достаточно знать ее первый член b1 и знаменатель q. Например, условиями b1 = 2, q = -5 (q < 0) задается геометрическая прогрессия 2, -10, 50, -250, ... . Эта прогрессия не является ни возрастающей ни убывающей последовательностью.
Следует заметить, что: последовательность называется возрастающей (убывающей) если каждый последующий член последовательности больше (меньше) предыдущего.
Таким образом, если q > 0 (q 1), то прогрессия является монотонной последовательностью. Пусть, например, b1 = -3, q = 4, тогда геометрическая прогрессия -3, -12, -48, -192, ... есть монотонно убывающая последовательность.
Однако, если q = 1, то все члены прогрессии равны между собой. В этом случае прогрессия является постоянной последовательностью.
Любая геометрическая прогрессия обладает определенным характеристическим свойством. Это свойство является следствием самого правила задания геометрической прогрессии: последовательность (bn) является геометрической прогрессией тогда и только тогда, когда каждый ее член, начиная со второго, есть среднее геометрическое соседних с ним членов, т. е.
.
Пользуясь этим свойством можно находить любой член геометрической прогрессии если известны два рядом стоящие.
Для нахождения n-ного члена геометрической прогрессии есть еще одна формула. Для того чтобы найти любой член геометрической прогрессии необходимо, чтобы она была задана, т. е. были известны значения b1и q:
.
Так как геометрическая прогрессия это числовая последовательность, то мы можем найти ее сумму. Для нахождения суммы геометрической прогрессии применяют следующую формулу:
Если в данную формулу подставить вместо bn его выражение в виде b1qn-1, то получим еще одну формулу для вычисления суммы геометрической прогрессии:
У геометрической прогрессии есть еще одно свойство, а именно: из определения знаменателя геометрической прогрессии следует, что b1bn = b2bn-1 = ..., т. е. произведение членов, равно отстоящих от концов прогрессии, есть величина постоянная.
Наконец, нельзя не коснуться такого важного с научной точки зрения понятия, как бесконечной геометрической прогрессии при . Здесь наиболее важным понятием является понятие суммы бесконечной геометрической прогрессии: пусть (xn) - геометрическая прогрессия со знаменателем q, где Суммой бесконечной геометрической прогрессии, знаменатель которой удовлетворяет условию , называется предел суммы n первых ее членов при .
Найти эту сумму можно по следующей формуле:
Заканчивая описание геометрической прогрессии хочется лишний раз повторить, что за видимой простотой геометрической прогрессии скрывается большой прикладной потенциал этого раздела алгебры.
Список использованной литературы:
1. В. С. Крамор, Повторяем и систематизируем школьный курс
алгебры и начал анализа, Москва, Просвещение, 1990 г.
2. С. А. Теляковский, Алгебра, учебник для 8 класса средней школы,
Москва, Просвещение, 1987 г.
3. Личные заметки и наблюдения автора.
referat.store
Числовая последовательность. Арифметическая прогрессия.
Разность прогрессии. Геометрическая прогрессия. Знаменатель
прогрессии. Бесконечно убывающая геометрическая прогрессия.
Обращение периодической десятичной дроби в обыкновенную.
Последовательности. Рассмотрим ряд натуральных чисел:
1, 2, 3, … , n – 1, n , … .
Если заменить каждое число n в этом ряду некоторым числом un , следуя некоторому закону, мы получим новый ряд чисел:
u1 , u2 , u3 , …, u n - 1 , u n , … ,
называемый числовой последовательностью. Число un называется общим членом числовой последовательности.
П р и м е р ы числовых последовательностей:
2, 4, 6, 8, 10, … , 2n, … ;
1, 4, 9, 16, 25, … , n² , … ;
1, 1/2, 1/3, 1/4, 1/5, … , 1/n , … .
Арифметическая прогрессия. Числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с постоянным для этой последовательности числом d , называется арифметической прогрессией. Число d называется разностью прогрессии. Любой член арифметической прогрессии вычисляется по формуле:
an = a1 + d ( n – 1 ) .
Сумма n первых членов арифметической прогрессии вычисляется как:
П р и м е р . Найти сумму первых ста нечётных чисел.
Р е ш е н и е . Применим последнюю формулу. Здесь a1 = 1, d = 2 . Тогда
Геометрическая прогрессия. Числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на постоянное для этой последовательности число q , называется геометрической
прогрессией. Число q называется знаменателем прогрессии. Любой член геометрической прогрессии вычисляется по формуле:
bn = b1 q n - 1 .
Сумма n первых членов геометрической прогрессии вычисляется как:
Бесконечно убывающая геометрическая прогрессия. Это геометрическая прогрессия, у которой | q | < 1 . Для неё определяется понятие суммы членов бесконечно убывающей геометрической прогрессии, а именно: это число, к
которому неограниченно приближается сумма n первых членов рассматриваемой прогрессии при неограниченном возрастании числа n. Сумма членов бесконечно убывающей геометрической прогрессии вычисляется по формуле:
П р и м е р . Найти сумму членов бесконечно убывающей геометрической прогрессии:
Р е ш е н и е . Применим последнюю формулу. Здесь b1 = 1, q = 1/2. Тогда:
Обращение периодической десятичной дроби в обыкновенную. Предположим, мы хотим обратить периодическую десятичную дробь 0.(3) вобыкновенную. Рассмотрим эту десятичную дробь в следующем виде:
Это бесконечно убывающая геометрическая прогрессия, первый член которой равен 3/10, а разность q = 1/10. В соответствии с выше приведенной формулой эта сумма равна:
Таким образом, 0.(3) = 1/3.
uclg.ru