Языки программирования составные части и их назначение. Тема контрольной языки программирования


Контрольная работа - Языки программирования. Обзор, возможности, достоинства, недостатки

Оглавление

1. Понятие о языках программирования. 3

2. Компиляторы и интерпретаторы. 3

3. Уровни языков программирования. 5

4. Языки низкого уровня. 6

4.1 Ассемблер. 6

5. Обзор языков программирования высокого уровня. 7

5.1 Фортран. 7

5.2 Кобол. 7

5.3 Алгол. 8

5.4 Паскаль. 8

5.5 Бейсик. 9

5.6 Си. 9

5.7 Си++. 10

6. Список литературы: 12

Язык программирования – один из способов записи алгоритмов; совокупность набора символов системы, правил образования и истолкования конструкций из символов для задания алгоритмов с использованием символов естественного языка.

Понятие о языках программирования.

Процессор компьютера – это большая интегральная микросхема. Все команды и данные он получает в виде электрических сигналов, но их можно представить и как совокупности нулей и единиц, т. е. числами. Поэтому реально программа, с которой работает процессор, представляет собой последовательность чисел, называемых машинным кодом.

Написать программу в машинном коде достаточно сложно, причем сложность работы непропорционально возрастает с увеличением размера программы. Условно можно считать, что машинный код приемлем, если размер программы не превосходит нескольких десятков байтов и нет потребности в операциях ручного ввода и вывода данных. Такая ситуация встречается, например, при программировании простейших автоматов.

Более сложные программы создают с помощью так называемых языков программирования. Теоретически программу можно написать и средствами обычного человеческого языка – это называется программированием на метаязыке, но автоматически перевести в машинный код обычный человеческий язык пока невозможно. Перевод выполняют специальные служебные программы, называемые трансляторами, а трансляторов, способных перевести в машинный код обычный человеческий язык, пока не существует (из-за высокой неоднозначности естественного языка).

Языки программирования – искусственные языки. Они отличаются от естественных человеческих языков малым количеством слов, значение которых понятно транслятору (эти слова называются ключевыми ), и довольно жесткими требованиями по форме записи операторов (совокупность этих требований образует грамматику и синтаксис языка программирования). Нарушения формы записи приводят тому, что транслятор не может правильно выполнить перевод и выдает сообщение об ошибке.

Компиляторы и интерпретаторы.

Что же нужно, чтобы «создать язык программирования»?

На первый взгляд, для этого необходимо определить какие инструкции в нем могут использоваться (их называют операторами ), жестко утвердить список ключевых слов, которые допустимо использовать, и разработать правила записи каждого из операторов (правила синтаксиса). Однако этого не достаточно. Это лишь идея языка программирования. Для того, чтобы он имел практическое применение, следует разработать программу, способную транслировать текст, записанный по всем правилам данного языка в машинный код, то есть создать транслятор. Таким образом, именно транслятор представляет собой конкретную реализацию идеи языка программирования.

По принципу действия различают два вида трансляторов: компиляторы и интерпретаторы. Соответственно с этим можно выделить два класса языков программирования: компилируемые и интерпретируемые .

Трансляция – это перевод. Если мы посмотрим, как работают переводчики с иностранных языков, то тоже увидим, что существует два подхода: синхронный перевод и перевод текстов.

Синхронный переводчик «ловит» услышанную фразу и переводит ее как можно ближе к смыслу. В момент перевода он не знает, какая фраза последует далее, и не успевает учитывать фразы, высказанные ранее. Он как бы в любой момент времени работает с одной конкретной фразой. Для перевода каких-либо специфических понятий ему приходится выстраивать целые конструкции. Фразы синхронного перевода обычно длиннее, чем их оригинал, и не отличаются изяществом.

Литературный переводчик сначала несколько раз прочитает весь текст, подлежащий переводу. Он заранее найдет в нем все особо сложные для перевода места, построит нужные конструкции и будет ими пользоваться всякий раз, когда возникнет необходимость. При переводе одной конкретной фразы переводчик должен учитывать особенность всей книги в целом и даже особенности других произведений того же автора.

Интерпретаторы работают как синхронные переводчики. Они берут один оператор из программы, транслируют его в машинный код (или в какой-то промежуточный код, близкий к машинному коду) и исполняют его. Если какой-то оператор многократно используется в программе, интерпретатор всякий раз будет добросовестно выполнять его перевод так, как будто встретил его впервые.

Компиляторы обрабатывают программу в несколько приемов. Сначала они несколько раз просматривают исходный текст (обычно он называется исходным кодом), находят общие места, Выполняют проверку на отсутствие ошибок синтаксиса и внутренних противоречий, и лишь потом переводят текст в машинный код. В результате программа получается компактной и эффективной.

Если программа написана на интерпретируемом языке программирования, то ее можно выполнить только на том компьютере, на котором предварительно будет установлен интерпретатор, ведь он должен участвовать в исполнении программы. Программы, написанные на компилируемых языках программирования, в посредниках не нуждаются – после компиляции уже получен машинный код, в котором есть все необходимее для работы процессора. Поэтому такие программы работают на любом компьютере и делают это в сотни раз быстрее. Это достоинство компилируемых языков программирования.

Однако у программ, написанных на интерпретируемых языках программирования, есть другое преимущество. Так как мы можем исполнять их только под управлением интерпретатора, то соответственно мы можем в любой момент времени остановить работу программы, посмотреть ее операторы, внести нужные изменения, вновь запустить и т. д. Содержание программы открыто для пользователя. Для откомпилированных программ все это сделать практически невозможно. После компиляции программы ее исходный текст остается только у автора. Все остальные пользователи получают машинный код, который можно исполнять, но практически нельзя ни посмотреть, ни изменить. Хотя теоретически это сделать можно, но для этого необходимы огромные затраты времени, наличие специальных программ и высокий уровень знаний и опыта.

Уровни языков программирования.

Существует два уровня языков программирования: языки низкого уровня и языки высокого уровня.

Язык программирования низкого уровня – это язык программирования, созданный для использования со специальным типом процессора и учитывающий его особенности. В данном случае «низкий уровень» не значит «плохой». Имеется в виду, что язык близок к машинному коду (он позволяет непосредственно реализовать некоторые команды процессора).

Языки низкого уровня мало похожи на нормальный, привычный человеку язык. Большие, грамосткие программы на таких языках пишутся редко. Зато если программа будет написана на таком языке, то она будет работать быстро, занимая маленький объем и допуская минимальное количество ошибок. Чем ниже и ближе к машинному уровень языка, тем меньше и конкретнее задачи, которые ставятся перед каждой командой.

Для каждого типа процессоров самым низким уровнем является язык ассемблера, который позволяет представить машинный код не в виде чисел, а в виде условных обозначений, называемых мнемониками. У каждого типа процессора свой язык ассемблера; его можно рассматривать одновременно и как особую форму записи машинных команд, и как язык программирования самого низкого уровня.

Достоинством языков низкого уровня является то, что с их помощью создают самые эффективные программы (краткие и быстрые). Недостаток таких языков в том, что их трудно изучать из-за необходимости понимать устройство процессора и в том, что программа, созданная на таком язык, неприменима для процессоров других типов.

Языки программирования высокого уровня заметно проще в изучении и применении. Программы, написанные с их помощью, можно использовать на любой компьютерной платформе, правда при условии, что для нее существует транслятор данного языка. Эти языки вообще никак не учитывают свойства конкретного процессора и не предоставляют прямых средств для обращения к нему. В некоторых случаях это ограничивает возможности программистов, но зато и оставляет меньше возможностей для совершения ошибок.

Языки высокого уровня в большей степени ориентированы на человека; команды этих языков – понятные человеку английские слова. Чем выше уровень языка, тем больше приходится проделать операций для выполнения необходимой команды.

С появлением языков высокого уровня программисты получили возможность больше времени уделять решению конкретной проблемы, не отвлекаясь особенно на весьма тонкие вопросы организации самого процесса выполнения задания на машине. Кроме того, появление этих языков ознаменовало первый шаг на пути создания программ, которые вышли за пределы научно-исследовательских лабораторий и финансовых отделов.

Достоинства языков программирования высокого уровня :

· алфавит языка значительно шире машинного, что делает его гораздо более выразительным и существенно повышает наглядность и понятность текста;

· набор операций, допустимых для использования, не зависит от набора машинных операций, а выбирается из соображений удобства формулирования алгоритмов решения задач определенного класса;

· конструкции операторов задаются в удобном для человека виде;

· поддерживается широкий набор типов данных.

Существуют также как универсальные, так и специализированные языки программирования.

Языки низкого уровня.

Ассемблер.

К языкам низкого уровня относятся языки Ассемблера. Свое название они получили от имени системной программы Ассемблер, которая преобразует исходные программы, написанные на таких языках, непосредственно в коды машинных команд. Термин «ассемблер» произошел от английского слова assembler – сборщик частей в одно целое. Частями здесь служат операторы, а результатом сборки – последовательность машинных команд. Процесс сборки называется ассемблированием.

Ассемблер машинно-зависимый язык, т. е. он отражает особенности архитектуры конкретного типа компьютера. Исходная программа, написанная на ассемблере, состоит из одного или нескольких модулей, а каждый модуль – из операторов.

Язык Ассемблера объединяет в себе достоинства языка машинных команд и некоторые черты языков высокого уровня. Ассемблер обеспечивает возможность применения символических имен в исходной программе и избавляет программистов от утомительного труда по распределению памяти компьютера для команд, переменных и констант, что неизбежно при программировании на языке машинных команд.

Ассемблер позволяет также гибко и полно использовать технические возможности компьютера, как и язык машинных команд. Транслятор исходных программ в Ассемблере проще транслятора, требующегося для языка программирования высокого уровня. На Ассемблере можно написать столь же эффективную по размеру и времени выполнения программу, как и программу на языке машинных команд. Это достоинство отсутствует у языков высокого уровня.

Данный язык часто применяют для программирования систем реального времени, технологическими процессами и оборудованием, для обеспечения работы информационно-измерительных комплексов. К таким системам обычно предъявляются высокие требования по объему занимаемой машиной памяти.

Часто язык Ассемблера дополняется средствами формирования макрокоманд, каждая из которых эквивалентна целой группе машинных команд. Такой язык называют языком макроассемблера. Применение «макстроительных» блоков и приближает язык Ассемблера к языкам высокого уровня.

Обзор языков программирования высокого уровня.

Фортран.

Фортран – исторически первый компилируемый язык программирования, разработанный в 1954-1958 г.г. Джимом Бекусом. Базовые принципы, заложенные в основу этого языка, впоследствии легли в основу многих других языков программирования высокого уровня.

Не отягощенный формальностями, язык Фортран оказался достаточно прост в изучении и потому нашел широкое распространение в среде ученых и инженеров. С его помощью оказалось удобно выполнять сложные научно-технические вычисления, если количество операторов не превосходит нескольких сотен. Обычно в эту категорию укладываются расчеты на прочность теплофизические, термодинамические, электротехнические и т. п. расчеты.

В последующие десятилетия язык существенно модернизировался и расширился. Его и сегодня широко применяют в названных областях техники, хотя современные версии языка отличаются универсальностью и могут использоваться и в других областях науки и техники.

Большинство крупных научно-технических программ написано на Фортране потому, что он обладает переносимостью и устойчивостью, а также благодаря наличию встроенных математических и тригонометрических функций. Неотъемлемой частью любой прикладной программы на языке Фортран является расширенная графическая библиотека, позволяющая использовать различные графические данные и изображения.

Кобол.

Кобол – компилируемый язык программирования для «делового» применения. Этот язык программирования был разработан в 1959-1961 г.г. прежде всего для исследований в экономической сфере. Язык позволяет эффективно работать с большим количеством данных, он насыщен разнообразными возможностями поиска, сортировки и распределения.

О программах на Коболе, основанных на широком использовании английского языка, говорят, что они понятны даже тем, кто не владеет Коболом, поскольку тексты на этом языке программирования не нуждаются в каких-либо специальных комментариях. Такие программы принято называть самодокументирующимися.

К числу других плюсов Кобола относят его структурированность. Довольно мощные компиляторы с этого языка разработаны для персональных компьютеров. Некоторые из них столь эффективны, что программу, отлаженную на персональном компьютере, нетрудно перенести на большие ЭВМ.

Перечисляя недостатки языка, нельзя не вспомнить о том, что на Коболе можно запрограммировать лишь простейшие алгебраические вычисления. Для инженерных расчетов этот язык не годится.

Еще одной причиной, сдерживающей развитие языка, является наличие в США отраслевого комитета, вырабатывающего стандарты, за соблюдением которых следит правительственная комиссия. Как это всегда бывает в подобных случаях, фирмы, занимающиеся разработкой программного обеспечения, не торопятся подгонять свои заготовки к жестким требованиям комиссии, отсутствует конкуренция, а в итоге проигрывает распространение языка.

Алгол.

Алгол – компилируемый язык программирования, впервые опубликованный в 1960 г.

От языка Фортран Алгол отличался значительно более строгими правилами синтаксиса, что позволило создавать с его помощью программы больших размеров, но вызвало существенные сложности в практическом применении для решения повседневных задач. Поэтому Алгол нашел применение не в инженерных, а в научных кругах, в первую очередь среди специалистов по прикладной математике, теоретической и экспериментальной физике. В этих сферах он использовался, пока его не сменил более удобный и не менее строгий язык Паскаль.

Паскаль.

Паскаль – компилируемый язык программирования, созданный в 1968-1970 г.г. в Швейцарском Федеральном институте технологии в Цюрихе Никласом Виртом.

В основу языка Паскаль были положены принципы, впервые представленные Алголом, но правила синтаксиса были несколько упрощены, и язык получил большую популярность. Особенно широкое распространение языка началось после 1984 г., когда был представлен удобный и эффективный компилятор TurboPascal.

Язык Паскаль впервые ввел некоторые принципиально новые типы данных и подвел программистов к понятию о структурном программировании, что сказалось на самом стиле разработки программ. С распространением этого языка впервые появилось понятие о программировании, как о проектировании программ, которое в дальнейшем было развито другими языками и системами программирования.

Достоинства языка Паскаль:

· простота языка позволяет быстро его осваивать и создавать алгоритмически сложные программы;

· развитые средства представления структур данных обеспечивают удобство работы как с числовой, так и с символьной и битовой информацией;

· возможность структурного программирования, что делает программу наглядной и дает хорошие возможности для разработки и отладки;

· наличие специальных методик создания трансляторов с Паскаля упростило их разработку и способствовало широкому распространению языка;

· возможность создавать достаточно сложные и мобильные (т. е. легко переносимые на другие PC) программы.

Сегодня Паскаль является одним из трех основных языков программирования. Строгость и четкость делают его почти идеальным для академического изучения. Этот язык считается базовым во многих неспециализированных высших учебных заведениях и университетах мира.

Бейсик.

Бейсик – интерпретируемый язык, хотя существуют некоторые версии, для которых имеются компиляторы. Он был создан в 1963 г. при непосредственном участии в его разработке американцев Джона Кемени и Томаса Курца.

Данный язык программирования считается простейшим. В принципе, Бейсик создавался в качестве учебного языка, средствами которого легко можно представить принципы создания алгоритмов.

Однако простота языка программирования оборачивалась, особенно в ранних версиях, трудностями структурирования. Кроме того, Бейсик не допускал рекурсию – интересный прием, позволяющий составлять эффективные и в то же время короткие программы.

Одно из удобств Бейсика состоит в небольшом размере интерпретатора: существуют реализации, в которых он занимает всего несколько кБайт. В простейших 8-разрядных компьютерах это свойство используют для встраивания интерпретатора в микросхему постоянного запоминающего устройства, и тогда компьютер сразу при включении готов к исполнению команд и программ Бейсика (не надо ничего загружать).

Язык Бейсик хорошо подходит для алгоритмического программирования. С его помощью можно создавать программы длиной до 100-200 операторов, но для более крупных проектов он не подходит, поскольку становится трудно следить за непрерывно возникающими связями между отдельными частями программы.

Си.

Сотрудник фирмы BellLabsДенис Ритчи создал язык Си в 1972 г. во время совместной работы с Кеном Томпсоном, как инструментальное средство для реализации операционной системы Unix, однако популярность этого языка быстро переросла рамки конкретной операционной системы и конкретных задач системного программирования. В настоящее время любая инструментальная и операционная система не может считаться полной, если в ее состав не входит компилятор языка Си.

Ритчи не выдумывал Си просто из головы, прообразом послужил язык Би, разработанный Томпсоном. Язык Си был разработан как инструмент для программистов-практиков. В соответствии с этим главной целью его автора было создание удобного и полезного во всех отношениях языка.

Язык Си задумывался как язык промежуточный между языками высокого и низкого уровня. От компилятора пытались добиться производительности, близкой к производительности Ассемблера, но в то же время сохранить возможность переноса программ между компьютерными платформами, характерную для языков высокого уровня. Хотя язык требует от программистов высокой дисциплины, он не строг в формальных претензиях и допускает краткие формулировки.

Си – современный язык. Он включает в себя те управляющие конструкции, которые рекомендованы теорией и практикой программирования.

Си – эффективный язык. Его структура позволяет наилучшим образом использовать возможности современных персональных компьютеров. Программирование на этом языке отличается компактностью и быстротой исполнения.

Си – переносимый и мобильный язык.

Си – мощный и гибкий язык. Большая часть операционной системы Unix, компиляторы и интерпретаторы языков Фортран, Паскаль и Бейсик написаны именно с его помощью.

Си – удобный язык. Он достаточно структурирован, чтобы поддерживать хороший стиль программирования и вместе с тем не связан жесткими ограничениями.

Необычайную популярность язык Си приобрел благодаря тому, что он, как и Паскаль, является языком структурного программирования, но позволяет генерировать более производительный и компактный рабочий код.

Характерным недостатком языка стала относительно высокая сложность изучения по сравнению с языками Паскаль и Бейсик.

Си++.

Язык Си++ был разработан в 1980 г. Бьерном Страуструпом в компании BellLabs.

Си++ — компилируемый язык программирования. Он позволяет создавать программы более компактные и эффективные, чем, например Паскаль, но его изучение сложнее. Поэтому Си++ обычно изучают в специализированных учебных заведениях, в которых готовят программистов.

Сложность изучения языка Си++ во многом связана с тем, что в самом языке отсутствуют средства для управления вводом и выводом информации. И это понятно, поскольку эти средства у каждой модели компьютера свои, а Си++ является абстрактным языком, не ориентированным на конкретную модель компьютера. Поэтому часто язык изучают не на конкретных примерах, а на абстрактных теоретических конструкциях, что крайне не удобно для начинающих.

Очевидно, что очень многое Си++ позаимствовал у языка Си. Эти заимствования обеспечили Си++ мощными средствами низкого уровня, позволяющими решать сложные задачи системного программирования. Но Си++ отличается от Си в первую очередь разной степенью внимания к типам и структурам данных. Это связано с появлением понятий класса, производного класса и виртуальной функции. Это дает Си++ более эффективные возможности для контроля типов данных и обеспечивает модульность программы.

В отличие от традиционных структур Си и Паскаля, в Си++ членами класса являются не только данные, но и функции. Функции имеют привилегированный доступ к данным внутри объектов этого класса и обеспечивают интерфейс между этими объектами и остальной программой. При дальнейшей работе совершенно не обязательно помнить о внутренней структуре класса и механизме работы встроенной функции. В этом смысле класс подобен электрическому прибору: мало кто знает о его устройстве, но все знают, как им пользоваться.

Язык Си++ является средством объектного программирования, новейшей методики проектирования и реализации программ, которая в текущем десятилетии, скорее всего, заменит традиционное процедурное программирование.

В последнее время появились среды быстрого проектирования на Си++, которые предоставляют готовые компоненты для ввода и вывода информации и поддерживают концепцию виртуального проектирования приложений Windows. Это значительно упростило изучение языка.

Список литературы:

1. Под редакцией Конюховского П.В. и Колесова Д.Н., «Информатика», Санкт-Петербург: изд-во «Питер», 2000.

2. К.Г.Скрипкин, «Экономическая эффективность информационных систем», Москва: изд-во «ДМК-Пресс», 2002.

3. Сухомлин В.А., «Введение в анализ информационных технологий» Москва: изд-во «Горячая линия – Телеком», 2003.

www.ronl.ru

Контрольные вопросы

  1. Что представляет собой решение задачи на ПЭВМ?

  2. Охарактеризуйте этапы решения задачи на ПЭВМ.

  3. Что такое алгоритм?

  4. Назовите основные свойства алгоритмов и дайте им характеристику.

  5. Опишите способы записи алгоритмов.

  6. Что такое псевдокод?

  7. Дайте перечень блоков в методе блок-схем.

  8. Дать понятие «структура данных».

  9. Привести классификацию структур данных.

  10. Что называется структурой хранения?

  11. Чем отличаются физические и логические структуры данных?

  12. Какой признак структуры данных является наиболее важным?

  13. Дать определение типу данных.

  14. Какие бывают типы данных? Охарактеризуйте их.

  15. На какие вычислительные процессы делятся алгоритмы? Привести примеры основных вычислительных процессов (алгоритмов).

  16. Какие процессы имеют место при вычислении арифметических выражений?

  17. Что является целью анализа трудоемкости алгоритмов?

  18. Дайте определения «трудоемкость» алгоритма и «функция трудоемкости».

  19. Как проводится анализ алгоритмов?

  20. Что является целью асимптотического анализа алгоритмов?

Тема 6. Знакомство с языками программирования.

6.1. Обзор языков программирования

Компьютерная программа представляет собой логически упорядоченную последовательность команд, предназначен­ных для управления компьютером. Процессор компьютера — это большая интегральная схема. Все данные и команды он получает в виде электрических сигналов. В двоичном коде наличие сигнала описывается понятием «1», а его отсутствие - понятием «О». Команды, обрабатываемые процессором, можно интерпретировать как ряд чередующихся определенным образом единиц и нулей, то есть любая команда преобразуется в двоичное число. Таким образом, процессор исполняет программы, представляющие собой последовательность чисел и называемые машинным кодом.

Писать программы в машинных кодах очень сложно, причем с ростом размера программы эта задача усложняется. В компьютерах первого поколения использовались программы, написанные в машинных кодах, причем для каждого компьютера существовал свой собственный машинный код. Числовая кодировка команд, адресов ячеек и обрабатываемых данных, зависимость вида программы от ее места в памяти не давали возможность следить за смыслом програм­мы. Это во многом ограничивало область применения компьютеров первого поколения.

В тот период (начало 50-х гг.) средства программирования и программное обеспечение только зарождались и были еще не развиты. Для того чтобы сделать программу читабельной и иметь возможность следить за ее смысловой структурой, придумали символический язык ассемблер, близкий к машинному (конец 50-х -начало 60-х гг.), в котором появилось понятие переменной. Ассемб­лер стал первым полноценным языком программирования. Благода­ря этому заметно уменьшилось время разработки и возросла надеж­ность программ. Для записи кодов операций и обрабатываемой информации в ассемблере используются стандартные обозначения, позволяющие записывать числа и текст в общепринятом виде, для кодов команд приняты мнемонические обозначения. Для обозначе­ния величин, размещаемых в памяти, можно применять имена. После ввода программы ассемблер сам заменяет символические имена на адреса памяти, а символические коды команд на числовые. Исполь­зование ассемблера сделало процесс программирование более нагляд­ным. Дальнейшее развитие этой идеи привело к созданию языков программирования высокого уровня, в которых длинные и сложные последовательности машинных кодов были заменены одним един­ственным обозначающим их словом - операторы.

Сегодня практически все программы создаются с помощью язы­ков программирования. Теоретически программу можно написать и на естественном языке (говорят: программирование на метаязыке), но из-за неоднозначности естественного языка автоматически пере­вести такую программу в машинный код пока невозможно.

Языки программирования — это формальные искусственные язы­ки. Как и естественные языки, они имеют алфавит, словарный запас, грамматику и синтаксис, а также семантику.

Алфавит — разрешенный к использованию набор символов, с помощью которого могут быть образованы слова и величины данного языка.

Словарный состав или лексика языка - это совокупность употребляемых в нем слов, т.е. правильных слов данного языка.

Грамматика - это конечная система правил, определяющих язык.

Грамматика определяет способы построения изменения и сочетания слов.

Синтаксис — система правил, определяющих допустимые конст­рукции языка программирования из букв алфавита.

Семантика - система правил однозначного толкования каждой языковой конструкции, позволяющих производить процесс обработ­ки данных.

Взаимодействие синтаксических и семантических правил опре­деляет основные понятия языка, такие как операторы, идентифика­торы, константы, переменные, функции, процедуры и т.д. В отличие от естественных, язык программирования имеет ограниченный запас слов (операторов) и строгие правила их написания, а правила грам­матики и семантики, как и для любого формального языка, явно однозначно и четко сформулированы.

Языки программирования, ориентированные на команды процессора и учитывающие его особенности, называют языками низкого уровня. «Низкий уровень» не означает неразвитый, имеется в виду, что операторы этого языка близки к машинному коду и ориентиро­ваны на конкретные команды процессора.

Языком самого низкого уровня является ассемблер. Программа, написанная на нем, представляет последовательность команд машинных кодов, но записанных с помощью символьных мнемоник. С помощью языков низкого уровня создаются компактные оптимальные программы, так как программист получает доступ ко всем возмож­ностям процессора. С другой стороны, при этом требуется хорошо понимать устройство компьютера, а использование такой програм­мы на компьютере с процессором другого типа невозможно. Такие языки программирования используются для написания небольших системных приложений, драйверов устройств, модулей стыковки с нестандартным оборудованием, когда важнее компактность, быстро­действие, прямой доступ к аппаратным ресурсам.

Языки программирования, имитирующие естественные, обладающие укрупненными командами, ориентированные «на человека», называют языками высокого уровня. Чем выше уровень языка, тем ближе структуры данных и конструкции, использующиеся в програм­ме, к понятиям исходной задачи. Особенности конкретных компь­ютерных архитектур в них не учитываются, поэтому исходные тек­сты программ легко переносимы на другие платформы, имеющие трансляторы этого языка. Разрабатывать программы на языках высокого уровня с помощью понятных и мощных команд значительно проще; число ошибок, допускаемых в процессе программирования, намного меньше. В настоящее время насчитывается несколько сотен таких языков (без учета их диалектов).

Таким образом, языки программирования высокого уровня, ориентированные на решение больших содержательных прикладных задач, являются аппаратно-независимыми и требуют использования соответствующих программ-переводчиков для преобразования текста программы в машинный код, который в итоге и обрабатывается процессором.

Язык высокого уровня «непонятен» компьютеру, поэтому суще­ствуют специальные программы-трансляторы, переводящие опера­торы языка высокого уровня в машинные коды.

Существуют два типа программ-трансляторов: компилятор и ин­терпретатор.

Компилятор работает сразу со всем исходным модулем, форми­руя на его основе загрузочный модуль, т. е. исполняемый файл, го­товый для выполнения на компьютере. Программа в виде загрузоч­ного модуля выполняется независимо от исходного модуля.

Интерпретатор работает с исходным модулем по шагам. Он раз­бирает (интерпретирует) каждый оператор исходного модуля и вы­полняет его. В режиме интерпретации проще отлаживать програм­му, однако программа работает значительно медленнее, чем ском­пилированная программа.

Существенным шагом по снижению трудоемкости создания программ при повышении их качества, надежности и возможности использования в массовом порядке явилось структурированное программирование. Его основные принципы следующие:

• нисходящее программирование;

• модульное программирование;

• структурное программирование;

• структурный контроль.

Нисходящее программирование основано на иерархическом под­ходе к решению задач и используется на начальной стадии процесса разработки решения задачи. При этом составляется иерархическая модель объекта, выбираются функция, степень детализации.

Иерархическая модель строится по следующим правилам:

- каждый модуль может быть связан только с одним модулем верхнего уровня и с несколькими модулями нижнего уровня;

- для каждого модуля нижнего уровня имеется выход в модуль верхнего уровня;

- связи между модулями организуются сверху вниз;

- обращение к одному модулю возможно несколько раз, при этом он изображается один раз и оформляется как подпрограмма.

Модульное программирование предполагает независимое программи­рование каждого модуля, начиная с верхнего уровня иерархии. При осу­ществлении тестирования модулей верхнего уровня на модули нижне­го уровня ставится «заглушка», чаще всего в виде оператора печати. Модули добавляются по одному. После окончания разработки каждого модуля тестируется весь комплекс в целом.

Модульное программирование позволяет существенно сокра­тить время, необходимое на отладку программ.

Структурное программирование — это процесс программирова­ния на алгоритмическом языке с использованием определенных конструкций. При этом следует соблюдать следующие правила:

- любая программа составляется на базе основных алгоритми­ческих структур трех видов: линейного, разветвляющегося, цикли­ческого;

- между этими структурами производится передача управления только вперед — от более высокого уровня иерархии к более низкому;

- запрещается использовать команду переходов «GOTO». Структурное программирование используется в основном для программирования отдельных модулей.

Структурный контроль используется при решении сложных многомодульных задач. Группе специалистов-сотрудников выдают­ся рабочие материалы по разрабатываемой задаче, они обсуждают и вносят замечания, которые разработчики должны реализовать.

Свойства языков программирования:

Понятность

Понятность (удобочитаемость) конструкций языка — это свойство, обеспечивающее легкость восприятия программ человеком.

Надежность

Под надежностью понимается степень автоматического обнаружения ошибок, которое может быть выполнено транслятором или операционной средой, в которой выполняется программа.

Гибкость

Гибкость языка программирования проявляется в том, сколько возможностей он предоставляет программисту для выражения всех операций, которые требуются в программе, не заставляя его прибегать к вставкам ассемблерного кода или различным ухищрениям.

Простота

Простота языка обеспечивает легкость понимания семантики языковых конструкций и запоминания их синтаксиса.

Естественность

Язык должен содержать такие структуры данных, управляющие структуры и операции, а также иметь такой синтаксис, которые позволяли бы отражать в программе логические структуры, лежащие в основе реализуемого алгоритма.

Мобильность

Язык, независимый от аппаратуры, предоставляет возможность переносить программы с одной платформы на другую с относительной легкостью. Это позволяет распределить высокую стоимость программного обеспечения на ряд платформ.

Стоимость

Суммарная стоимость использования языка программирования складывается из нескольких составляющих. В нее входят:

• стоимость обучения языку;

• стоимость создания программы;

• стоимость трансляции программы;

• стоимость выполнения программы;

• стоимость сопровождения программы.

Языки программирования или алгоритмические языки классифицируются: по степени их зависимости от вычислительной машины; по ориентации на сферу применения; по специфике организационной структуры языковых конструкций и т.п. (рис. 6.1),

Рис. 6.1. Классификация языков программирования

Любую систему обозначений и согласованную с ней систему понятий, которую можно использовать для описания алгоритмов и структур данных, в первом приближении можно считать языком программирования.

Знание концептуальных основ языков программирования с точки зрения использования и реализации базовых языковых конструкций позволит:

Все эти языки называются еще и формальными. Нас более всего интересуют алгоритмические языки, к которым относятся все известные языки программирования.

Для решения задачи на ЭВМ составляется алгоритм, обеспечивающий выполнение всех необходимых действий для получения искомых результатов. Этот алгоритм описывается средствами формального языка, понятного ЭВМ - языка программирования.

К таким средствам относятся элементы языка - символы, цифры, специальные знаки, а также правила составления операторов для описания действий по вводу - выводу и распределению памяти, управлению ветвлением и организацией циклов, обращениям ко внешним устройствам, контролю и отладке отдельных фрагментов и программы в целом, формированию выходных документов и так далее. Каждая ЭВМ имеет свой собственный язык кодов команд, называемый машинным, который обеспечивает непосредственное выполнение любой последовательности машинных операций. Практически компьютер выполняет программы, записанные только на машинном языке. Однако с помощью дополнительных средств (системных программ) реализуются многоуровневые переводы (трансляции) текстов программ с различных языков программирования на язык ЭВМ. Эти языки программирования в отличие от машинных, называются языками высокого уровня, они мало зависят от особенностей конфигурации конкретной ЭВМ, то есть эти языки являются машинно-независимыми.

В языке символического кодирования (ЯСК), в отличие от машинного, цифровые коды заменены буквенными или буквенно-цифровыми (мнемоническими) обозначениями. Это облегчает работу по составлению программы и позволяет автоматизировать действия, связанные с размещениями программы и данных в памяти ЭВМ. Каждой команде языка символического кодирования при трансляции соответствует одна машинная команда. Такие языки называются мнемокодами или языками ассемблеров.

Язык более высокого уровня - макроязык - включает наряду с мнемоническими обозначениями машинных команд отдельные макрокоманды, которые при трансляции заменяются группами команд машинного языка (подпрограммами). Это сокращает запись исходной программы и упрощает программирование, так как исключаются записи часто повторяющихся фрагментов программы. В настоящее время все языки ассемблерного типа допускают использование макросредств, то есть являются макроассемблерами.

Машинно-ориентированные языки содержат все необходимые средства для программирования любых задач. Однако они применяются, когда требуется создать особо быстродействующие программы при минимальных объемах используемой памяти. В частности, на этих языках пишут программы управления устройствами ЭВМ и предварительной обработки данных.

Большинство производственных задач решают с помощью программ, написанных на процедурно - ориентированных языках. Средства этих языков позволяют наиболее просто описать часто встречающиеся фрагменты действий в соответствующих задачах. Процедурно-ориентированные языки предполагают знания пользователя в области математических (численных) методов и основ алгоритмизации (базовый язык для научно-технических расчетов ФОРТРАН, БЕЙСИК (персональные ЭВМ - основной), современный ПАСКАЛЬ).

В процессе развития созданы многоцелевые (универсальные) языки программирования, объединяющие основные средства и возможности многих процедурно - ориентированных языков, например: ПЛ/1 -используемый для решения задач обработки экономической и научно-технической информации, задач управления объектами и т.п.; язык АДА - многоцелевой стандартный язык, способный заменить множество других языков и на длительный период обеспечить разработку и совершенствования программ обеспечения; язык МОДУЛА - объединяет средства и особенности . машинно-ориентированных и процедурно - ориентированных языков; включает средства для написания подпрограмм управления устройствами, управления потоками сообщений, для чего традиционно использовались языки ассемблерного типа.

Для пользователей, не имеющих специальной подготовки, но нуждающихся в оперативном использовании ЭВМ для решения стереотипных задач, разрабатываются специальные проблемно - ориентированные языки (непроцедурные), которые не требуют подробной записи алгоритма решения задачи. На таком языке лишь формулируется задача и указывается последовательность подзадач из готового набора с указанием исходных данных и форм требуемых документов. Специальные средства программы-генераторы из готовых блоков автоматически формируют программу для решения поставленной задачи. Эти языки ещё более высокого уровня, т.е. удалены от машины более, чем процедурно-ориентируемые языки. К ним относятся языки для задания и обработки таблиц данных при решении экономических задач, а также языки моделирования сложных систем СИМУЛА, НЕДИС и другие (СИМСКРИПТ).

Граница между проблемно - и процедурно - ориентированными языками очерчена не очень четко (условно) - ЛИСП, ПРОЛОГ.

studfiles.net

Языки программирования составные части и их назначение

ГОУ ВПО Академия государственной службы

Кафедра информатики и математики

Контрольная работа

По теме « Языки программирования: составные части и назначения"По дисциплине: Информатика

Проверила: Геращенко М. М.Выполнила: Кошман Юлия Владимировна,группа 10132Новосибирск 2010

Оглавление.Введение. - 3 -

Что такое программа и язык программирования?. - 3 -

Этапы разработки программы. - 4 -

Состав языка. - 4 -

А) Операторы. - 4 -

Б) Алфавит и лексемы. - 5 -

В) Константы. - 5 -

Г) Имена, ключевые слова и знаки операций. - 6 -

Д) Переменные. - 7 -

Е) Пример программы. - 7 -

Заключение. - 8 -

Приложение №1(константы). - 9 -

Приложение №2 (ключевые слова). - 10 -

Приложение №3( языки программирования). - 11 -

Приложение №4 (специальные символы). - 12 -

Приложение №5 ( составные символы). - 13 -

Список литературы.. - 14 -

Введение.

По моему мнению, тема « ЯЗЫКИ ПРОГРАММИРОВАНИЯ» очень актуальна на сегодняшний день, ведь прогресс компьютерных технологий определил процесс появления новых разнообразных знаковых систем для записи алгоритмов, для повышения эффективности труда пользователя, а также сокращения времени и затрат на подготовку и выполнение программ.

Команды, выполняемые процессором, являются электрическими сигналами, которые можно представить в виде нулей и единиц. Каждой команде соответствует свое число. Таким образом, процессор имеет дело с машинным кодом. Написать программу на нем может только очень опытный программист, хорошо знающий "архитектуру" процессора ( его устройство) и систему команд ( набор допустимых инструкций).

Совокупность средств и правил представления алгоритма в виде, пригодном для выполнения вычислительной машиной, называется языком программирования. Из чего же состоят эти языки программирования, какого их назначения и примеры, я  рассмотрю в своем реферате.

Что такое программа и язык программирования?

Программа - это запись (реализация) алгоритма на языке программирования.

"...Программа - законченный последовательный набор команд, операторов, реализующих решение функциональной задачи..."Извлечение из документа:Приказ Минздравсоцразвития РФ от 16.01.2006 N 22"Об утверждении Межотраслевых типовых норм времени на работы по сервисному обслуживанию оборудования телемеханики, сопровождению и доработке программного обеспечения"

 Язык – это набор правил, определяющих систему записей, составляющих программу. Язык программирования - это специальный язык, на котором пишут команды для управления компьютером. Языки программирования созданы для того, чтобы людям было проще читать и писать для компьютера, но они затем должны транслироваться в машинный код, который только и может исполняться компьютером. Языки программирования можно разделить на языки высокого уровня и языки низкого уровня.

Язык низкого уровня - это язык программирования, предназначенный для определенного типа компьютера и отражающий его внутренний машинный код; языки низкого уровня часто называют машинно-ориентированными языками. Их довольно сложно изучать, поскольку для этого требуется хорошо знать принципы внутренней работы компьютера. Примеры (ассемблер, форт).

Язык высокого уровня - это язык программирования, предназначенный для удовлетворения требований программиста; он не зависит от внутренних машинных кодов компьютера любого типа. Языки высокого уровня используют для решения проблем и поэтому их часто называют проблемно-ориентированными языками. Каждая команда языка высокого уровня эквивалентна нескольким командам в машинных кодах, поэтому программы, написанные на языках высокого уровня, более компактны, чем аналогичные программы в машинных кодах.

Этапы разработки программы.

В процессе создания любой программы можно выделить несколько этапов.

·       Постановка задачи – выполняется специалистом. Необходимо определить цель задачи, ее содержание и общий подход к решению.

·       Анализ задачи и моделирование – определяются исходные данные и результат.

·       Разработка или выбор алгоритма решения задачи – программист должен выбрать оптимальное решение на основе математического описания.

·       Проектирование общей структуры программы – формируется модель решения с последующей детализацией.

·       Кодирование – запись алгоритма на языке программирования.

·       Откладка и тестирование программы. Под откладкой понимается устранение ошибок в программе. Тестирование позволяет вести их поиск и, в конечном итоге, убедиться в том, что полностью отлаженная программа дает правильный результат.

·       Анализ результатов.

www.coolreferat.com


Смотрите также